
symmetryS S

Article

An Intelligent Approach for Handling Complexity by
Migrating from Conventional Databases to Big Data

Shabana Ramzan 1, Imran Sarwar Bajwa 1,* and Rafaqut Kazmi 2

1 Department of Computer Science & IT, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
shabana@gscwu.edu.pk

2 School of Computing, University of Technology Malaysia, Johor 81310, Malaysia; rafaqutkazmi@gmail.com
* Correspondence: imran.sarwar@iub.edu.pk

Received: 26 October 2018; Accepted: 14 November 2018; Published: 3 December 2018
����������
�������

Abstract: Handling complexity in the data of information systems has emerged into a serious
challenge in recent times. The typical relational databases have limited ability to manage the discrete
and heterogenous nature of modern data. Additionally, the complexity of data in relational databases
is so high that the efficient retrieval of information has become a bottleneck in traditional information
systems. On the side, Big Data has emerged into a decent solution for heterogenous and complex
data (structured, semi-structured and unstructured data) by providing architectural support to
handle complex data and by providing a tool-kit for efficient analysis of complex data. For the
organizations that are sticking to relational databases and are facing the challenge of handling
complex data, they need to migrate their data to a Big Data solution to get benefits such as horizontal
scalability, real-time interaction, handling high volume data, etc. However, such migration from
relational databases to Big Data is in itself a challenge due to the complexity of data. In this paper,
we introduce a novel approach that handles complexity of automatic transformation of existing
relational database (MySQL) into a Big data solution (Oracle NoSQL). The used approach supports a
bi-fold transformation (schema-to-schema and data-to-data) to minimize the complexity of data and
to allow improved analysis of data. A software prototype for this transformation is also developed as
a proof of concept. The results of the experiments show the correctness of our transformations that
outperform the other similar approaches.

Keywords: big data; complexity; NoSQL databases; Oracle NoSQL; data migration

1. Introduction

The modern information systems have to deal with high-dimension data in terms of gigantic
size, and the heterogenous and complex nature of the data. Similarly, the cloud applications and
social media applications also have to store, manage and process a massive amount of data. However,
the Relational Databases (RDBs) have fixed schema and allow storage and handling of only structured
data in the form of tuples or relations [1]. Additionally, the RDBs only provide vertical scalability
(vertical scalability allows only vertical growth of a data-structure by adding only new records at
run-time.) at higher hardware cost but no horizontal scalability (horizontal scalability allows horizontal
growth of a data-structure by also allowing the addition of fields at run-time.) is provided by the
RDBs. Since horizontal scalability is needed by today’s software applications to handle high-speed
heterogenous data; currently, the relational databases have to face various challenges at the application
development level and operational level. At the application development level, the system developer
needs high coding velocity to handle large number of users; however, such capability is not available
in relational databases. Additionally, modern complex and heterogenous data needs horizontal scaling

Symmetry 2018, 10, 698; doi:10.3390/sym10120698 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-5161-6441
http://dx.doi.org/10.3390/sym10120698
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/12/698?type=check_update&version=2

Symmetry 2018, 10, 698 2 of 20

but that feature is also not provided by the relational databases and consequently, they fail to cope
with the needs of modern data-intensive software applications.

Once of the key challenges in recent times has been to handle high-speed data, as there is a rapid
increase in digital information, exponentially growing (see Figure 1) to Petabytes (PB) PB = 1000 TB)
from Terabytes (TB) 1TB = 1000 GB, and even to Exabytes (EB) 1EB = 1000 TB as shown in Figure 1.
John Gantz and David Reinse also predicted this phenomenon [2]. Typical relational database systems
have shown their limits for such exponential growth of data. The shortcomings of typical relational
databases are addressed by Big data solutions such as NoSQL databases [3–5]. Here, NoSQL stands for
“Not Only SQL”. Such databases are currently the main focus of research due to the fast and persistent
growth of data. The NoSQL was introduced in 1998 by Carlo, and the name given to his relational
database solution that was due to not using Structured Query Language (SQL) [6]. The idea of NoSQL
was redefined in 2009 and became the competitor of RDBs. Now they have become the backbone of
large-sized enterprises such as Google, Twitter, Facebook, Amazon, etc. due to its peculiar features
such as high availability (when a data is automatically distributed evenly across a cluster with no single
master.), efficient performance, horizontal scalability, and the support of a variety of data models and
queries. Moreover, the rapid growth of cloud computing has highlighted the problems that are endured
in handling large volumes of data. However, NoSQL databases can handle “Big Data” problems
efficiently rather than RDBs. These databases are becoming popular because they are providing a
high level of scalability. Additionally, they are very efficient in handling the unstructured data to
facilitate universal data communication [7] in modern information systems. Relational databases follow
the ACID (Atomicity, Consistency, Isolation, Durability) and BASE (Basically available, Soft-state,
Eventual-consistency) properties. Whereas, NoSQL databases exist in a spectrum between ACID and
BASE alliance.

Symmetry 2018, 10, x FOR PEER REVIEW 2 of 20

databases and consequently, they fail to cope with the needs of modern data-intensive software
applications.

Once of the key challenges in recent times has been to handle high-speed data, as there is a rapid
increase in digital information, exponentially growing (see Figure 1) to Petabytes (PB) PB = 1000 TB)
from Terabytes (TB) 1TB = 1000 GB, and even to Exabytes (EB) 1EB = 1000 TB as shown in Figure 1.
John Gantz and David Reinse also predicted this phenomenon [2]. Typical relational database
systems have shown their limits for such exponential growth of data. The shortcomings of typical
relational databases are addressed by Big data solutions such as NoSQL databases [3–5]. Here,
NoSQL stands for “Not Only SQL”. Such databases are currently the main focus of research due to
the fast and persistent growth of data. The NoSQL was introduced in 1998 by Carlo, and the name
given to his relational database solution that was due to not using Structured Query Language (SQL)
[6]. The idea of NoSQL was redefined in 2009 and became the competitor of RDBs. Now they have
become the backbone of large-sized enterprises such as Google, Twitter, Facebook, Amazon, etc. due
to its peculiar features such as high availability (when a data is automatically distributed evenly
across a cluster with no single master.), efficient performance, horizontal scalability, and the support
of a variety of data models and queries. Moreover, the rapid growth of cloud computing has
highlighted the problems that are endured in handling large volumes of data. However, NoSQL
databases can handle “Big Data” problems efficiently rather than RDBs. These databases are
becoming popular because they are providing a high level of scalability. Additionally, they are very
efficient in handling the unstructured data to facilitate universal data communication [7] in modern
information systems. Relational databases follow the ACID (Atomicity, Consistency, Isolation,
Durability) and BASE (Basically available, Soft-state, Eventual-consistency) properties. Whereas,
NoSQL databases exist in a spectrum between ACID and BASE alliance.

Figure 1. Exponential growth of digital information, going to Exabyte.

The NoSQL databases have typically four different models: (1) key-value store, (2) column store,
(3) graph store, and (4) document store [8]. Each NoSQL database model has its own distinct schema
of storing data [9]. The most simple and flexible model is a key value store that is used in our study
and an overview of key-value stores is given below:

1.1. Key-Value Stores

A Key-value store is a database that stores data in the form of associative arrays known as a hash
or a dictionary. Each dictionary has a collection of records that have different fields of data. They
store data as a key-value (record) pair as shown in Figure 2. Each value is stored and retrieved
through a unique key. A value is a data of an arbitrary type, size and structure. Here, value can be
anything such as a number, text, image, programming code (such as PHP), markup code (such as
HTML), etc. They do not have any query language, only use get, put and delete operations [10]. A
key can be simple (filename, hash or URL) or a composite key (such as in Oracle NoSQL) [11].

0

2000

4000

6000

8000

2005 2010 2015

Source: IDC's Digital University Study,sponosored by EMC, June 2011

Figure 1. Exponential growth of digital information, going to Exabyte.

The NoSQL databases have typically four different models: (1) key-value store, (2) column store,
(3) graph store, and (4) document store [8]. Each NoSQL database model has its own distinct schema
of storing data [9]. The most simple and flexible model is a key value store that is used in our study
and an overview of key-value stores is given below:

1.1. Key-Value Stores

A Key-value store is a database that stores data in the form of associative arrays known as a hash
or a dictionary. Each dictionary has a collection of records that have different fields of data. They store
data as a key-value (record) pair as shown in Figure 2. Each value is stored and retrieved through a
unique key. A value is a data of an arbitrary type, size and structure. Here, value can be anything
such as a number, text, image, programming code (such as PHP), markup code (such as HTML), etc.
They do not have any query language, only use get, put and delete operations [10]. A key can be
simple (filename, hash or URL) or a composite key (such as in Oracle NoSQL) [11].

Symmetry 2018, 10, 698 3 of 20

A set of operations are used to interact with key-value stores such as Get operation is used to
retrieve a value that is stored against a unique key and put operation is used to insert the key-value
pair. However, manipulation of multiple values in a single operation is not allowed by these single-key
operations. These operations facilitate the users that do not have proper knowledge of query language
to easily retrieve data. A key-value store handles the process data retrieval manually at the application
level. Here, lookup structures are used that are based on keys such as Log-Structured Merge-trees
(LSM-trees) and Distributed Hash Tables (DHTs) [12], and are highly suitable for applications that
can access data through a single key, such as web session information, user profile/configuration and
online shopping cart. Key-value stores are the only databases that provide efficient data retrieval
and storage mechanisms to cloud-based applications [13]. Key-value stores provide features like easy
partitioning and high scalability. Figure 2 shows a storage model of a typical key-value store.

Symmetry 2018, 10, x FOR PEER REVIEW 3 of 20

A set of operations are used to interact with key-value stores such as Get operation is used to
retrieve a value that is stored against a unique key and put operation is used to insert the key-value
pair. However, manipulation of multiple values in a single operation is not allowed by these single-
key operations. These operations facilitate the users that do not have proper knowledge of query
language to easily retrieve data. A key-value store handles the process data retrieval manually at the
application level. Here, lookup structures are used that are based on keys such as Log-Structured
Merge-trees (LSM-trees) and Distributed Hash Tables (DHTs) [12], and are highly suitable for
applications that can access data through a single key, such as web session information, user
profile/configuration and online shopping cart. Key-value stores are the only databases that provide
efficient data retrieval and storage mechanisms to cloud-based applications [13]. Key-value stores
provide features like easy partitioning and high scalability. Figure 2 shows a storage model of a
typical key-value store.

Figure 2. Key-Value Store data model.

On the base of storage models, key-value stores can be divided into three types of stores
including permanent, temporary and hybrid. In permanent stores, all the data is stored on the hard
disk but I/O operations are slow. The temporary key-value store ensures fast data access as all data
is stored in memory; however, if the system is down, the data will be lost. Whereas, a hybrid store is
a combination of the positive features of both permanent and temporary stores as it supports data
storage in memory and when specified conditions are met, the date is written to the hard disk. The
most popular key-value stores are hyperdex, Redis, Riak, Oracle NoSQL, BerkelyDB, Yahoo Pnuts
and Project Voldemort. The following section provides an overview of Oracle NoSQL.

1.2. Oracle NoSQL

Oracle NoSQL is a distributed type of key-value store. It provides important features like
horizontal scalability, monitoring, transactional semantics for improved data manipulation, and
simple administration of data. The Oracle NoSQL has a very simple data model. Each row is a key-
value pair; value is associated with a unique key. Value is of arbitrary length. It has tables, rows and
fields which are equivalent to tables, rows and columns of relational databases but has a different
concept. The following are the key features of Oracle NoSQL stores:

• Oracle NoSQL table is schema free but relational databases’ tables have predefined schema.
• Each column has a separate schema but in relational databases each table has a schema.
• Each row in Oracle NoSQL database can have unrelated fields but in relational databases each

row is a collection of related items.

Figure 3 shows the relational and Oracle NoSQL key-value store databases. Oracle Berkeley DB
Java Edition high-availability storage engine is the basis of Oracle NoSQL. It provides sharding,
replication, transparent load balancing, high availability and fault tolerance. It is a free schema and
supports various programming languages such as C++, C, C#, Ruby, Scala, Java, Javascript(Node.js),

Figure 2. Key-Value Store data model.

On the base of storage models, key-value stores can be divided into three types of stores including
permanent, temporary and hybrid. In permanent stores, all the data is stored on the hard disk but I/O
operations are slow. The temporary key-value store ensures fast data access as all data is stored in
memory; however, if the system is down, the data will be lost. Whereas, a hybrid store is a combination
of the positive features of both permanent and temporary stores as it supports data storage in memory
and when specified conditions are met, the date is written to the hard disk. The most popular
key-value stores are hyperdex, Redis, Riak, Oracle NoSQL, BerkelyDB, Yahoo Pnuts and Project
Voldemort. The following section provides an overview of Oracle NoSQL.

1.2. Oracle NoSQL

Oracle NoSQL is a distributed type of key-value store. It provides important features like
horizontal scalability, monitoring, transactional semantics for improved data manipulation, and simple
administration of data. The Oracle NoSQL has a very simple data model. Each row is a key-value
pair; value is associated with a unique key. Value is of arbitrary length. It has tables, rows and fields
which are equivalent to tables, rows and columns of relational databases but has a different concept.
The following are the key features of Oracle NoSQL stores:

• Oracle NoSQL table is schema free but relational databases’ tables have predefined schema.
• Each column has a separate schema but in relational databases each table has a schema.
• Each row in Oracle NoSQL database can have unrelated fields but in relational databases each

row is a collection of related items.

Figure 3 shows the relational and Oracle NoSQL key-value store databases. Oracle Berkeley
DB Java Edition high-availability storage engine is the basis of Oracle NoSQL. It provides sharding,
replication, transparent load balancing, high availability and fault tolerance. It is a free schema and
supports various programming languages such as C++, C, C#, Ruby, Scala, Java, Javascript(Node.js),

Symmetry 2018, 10, 698 4 of 20

and Python. Oracle NoSQL supports simple data types (java string float, integer, long, boolean, double)
as well as complex data types (array, enum, fixed binary, map, records).

Symmetry 2018, 10, x FOR PEER REVIEW 4 of 20

and Python. Oracle NoSQL supports simple data types (java string float, integer, long, boolean,
double) as well as complex data types (array, enum, fixed binary, map, records).

Figure 3. Relational database (a) and Oracle NoSQL Key-value store database (b).

Considering the challenges of big data, the modern organizations are rapidly shifting to NoSQL
databases from conventional RDBs. Relational to relational database like MySQL to Oracle
conversion is possible because they are based on mathematical theory [14]. On the other hand, NoSQL
databases are non-relational and their scheme design is completely different. So RDB-trained staff
has difficulty in converting existing RDB system to NoSQL databases [15,16]. However, the lack of
methodological and tool support for automated migration from RDB to NoSQL has been a real
challenge in recent times. In this paper, a methodology is presented to transform the existing
relational database into a NoSQL database. It automatically transforms both the data and schema.
The proposed approach transforms the MySQL database into an Oracle NoSQL database by handling
the complexity of data.

The rest of the paper is organized as follows. Section 2 introduces related work in the fields of
RDBs, NoSQL and migration between these two generations of databases. Section 3 describes the
used approach and Section 4 discusses the implementation details of our approach. The results of
experiments and discussion is given in Section 5 along the evaluation details. Finally, Section 6
concludes the results with possible future work.

2. Related Work

A data transformation from a relational database to an NOSQL database depends on different
factors such as mapping styles, query structures, storage structures, etc. Additionally, querying data
from a relational database and a NoSQL database at the same time is difficult but now it is applicable
by using the data adapter technique [17]. Here, a method DB converter is described that transforms
relational data into NoSQL data for querying results. However, this conversion is temporary, only
for query execution [17], since NoSQL databases are efficient in data storage and provide high levels
of scalability and availability. There are several different studies on NoSQL databases [4], such as
BigTable [13], Cassandra [18], HBase [15], MongoDB [19] and for big data [20]. It is studied that the
schema conversion from relational databases to NoSQL is difficult because relational databases use
JOINs but the NoSQL databases do not support it. In NoSQL databases, nesting tables are used as an
alternative to JOINs. This method is designed to improve the performance of cross table query. In
nesting table technique, the parent-child layer is designed with references as relationships between
the tables. Here, the referred table is defined as a child and the other one is defined as a parent [21].
The cross table query is important in SQL databases, but in NoSQL, a question arises on how to use
JOIN type or alternative queries to retrieve data from NoSQL databases. Column-oriented databases
provide a solution for these types of queries because column-oriented databases have a design
principle of DDI (Denormalization, Duplication and Intelligent keys). This method works as: initially,
denormalization of the database and its transformation into a big table; then identification of unique
keys in a big table; and finally, the selection of the most suitable key as primary key. In this method,
MySQL database is transformed into a column-oriented database [22]. Most of the web-based
applications and Content Management System (CMS) solutions are using relational databases for
data management, but users of internet and clouds are growing rapidly, so it is difficult for relational
databases to handle the huge data traffic. The designed approach transforms the real CMS SQL
database to a NoSQL database [23]. This approach has two steps, first to denormalize the SQL

Figure 3. Relational database (a) and Oracle NoSQL Key-value store database (b).

Considering the challenges of big data, the modern organizations are rapidly shifting to NoSQL
databases from conventional RDBs. Relational to relational database like MySQL to Oracle conversion
is possible because they are based on mathematical theory [14]. On the other hand, NoSQL databases
are non-relational and their scheme design is completely different. So RDB-trained staff has difficulty
in converting existing RDB system to NoSQL databases [15,16]. However, the lack of methodological
and tool support for automated migration from RDB to NoSQL has been a real challenge in recent
times. In this paper, a methodology is presented to transform the existing relational database into
a NoSQL database. It automatically transforms both the data and schema. The proposed approach
transforms the MySQL database into an Oracle NoSQL database by handling the complexity of data.

The rest of the paper is organized as follows. Section 2 introduces related work in the fields
of RDBs, NoSQL and migration between these two generations of databases. Section 3 describes
the used approach and Section 4 discusses the implementation details of our approach. The results
of experiments and discussion is given in Section 5 along the evaluation details. Finally, Section 6
concludes the results with possible future work.

2. Related Work

A data transformation from a relational database to an NOSQL database depends on different
factors such as mapping styles, query structures, storage structures, etc. Additionally, querying data
from a relational database and a NoSQL database at the same time is difficult but now it is applicable
by using the data adapter technique [17]. Here, a method DB converter is described that transforms
relational data into NoSQL data for querying results. However, this conversion is temporary, only for
query execution [17], since NoSQL databases are efficient in data storage and provide high levels
of scalability and availability. There are several different studies on NoSQL databases [4], such as
BigTable [13], Cassandra [18], HBase [15], MongoDB [19] and for big data [20]. It is studied that
the schema conversion from relational databases to NoSQL is difficult because relational databases
use JOINs but the NoSQL databases do not support it. In NoSQL databases, nesting tables are
used as an alternative to JOINs. This method is designed to improve the performance of cross table
query. In nesting table technique, the parent-child layer is designed with references as relationships
between the tables. Here, the referred table is defined as a child and the other one is defined as a
parent [21]. The cross table query is important in SQL databases, but in NoSQL, a question arises on
how to use JOIN type or alternative queries to retrieve data from NoSQL databases. Column-oriented
databases provide a solution for these types of queries because column-oriented databases have a
design principle of DDI (Denormalization, Duplication and Intelligent keys). This method works as:
initially, denormalization of the database and its transformation into a big table; then identification of
unique keys in a big table; and finally, the selection of the most suitable key as primary key. In this
method, MySQL database is transformed into a column-oriented database [22]. Most of the web-based
applications and Content Management System (CMS) solutions are using relational databases for
data management, but users of internet and clouds are growing rapidly, so it is difficult for relational
databases to handle the huge data traffic. The designed approach transforms the real CMS SQL
database to a NoSQL database [23]. This approach has two steps, first to denormalize the SQL database

Symmetry 2018, 10, 698 5 of 20

and then to choose a unique identifier key as a primary key for a big table. In this approach, MySQL
database is migrated to a column-oriented Hbase database.

Another method is designed to transform data from a relational database (MySQL) to NoSQL
(MongoDB). Migration from relational to NoSQL has a few steps; initially, MySQL database connection
is created, after connectivity, the details of the database are accessed through prototype software. In
next step, mapping is performed between the relational database MySQL to NoSQL MongoDB [24,25].

For transformation from RDBs to NoSQL, another application is developed which deals with the
transformation of relational database schema to NoSQL schema. This application is able to handle
both the DDL and DML commands of relational schema and transform these commands into equaling
commands of NoSQL [26]. To access the NoSQL database, a subset of SQL commands is used. CQL is
the query language for Cassandra, where CQL and SQL are quite similar. Cassandra and MongoDB are
integrated because MongoDB is capable of performing complex queries. Therefore, authors designed a
system for translation of SQL commands to NoSQL. This system is implemented by middleware in
C# [27]. Table 1 shows the comparison of existing approaches. The majority of the researchers tend to
use HBase and MonogoDB as a target database but no one used Oracle NoSQL. The facts tabulated
in the following table clearly show the research gap that currently no approach or tool supports
automated transformation of MySQL to Oracle NoSQL for both data and schema transformation.

Table 1. Comparison of transformation approaches.

Source
Database Target Database Schema

Conversion
Data

Conversion
Conversion

Time Data Set Technique Study
Reference

MySQL MongoDB Yes No No 72 Tables Transform algorithm Zhao et al.

MySQL HBase Yes No No
Hush database 1
thousand
transactio-ns)

Automatic
transformation
Mechanism based on
NoSQL DDI Design
Principle.

Lee et al.

MySQL MongoDB Yes Yes No
Two datasets
1. Twitter App.
2.W3Scho-ols App

framework
(1) migration module
(2) mapping module

Rocha et al.

MySQL MongoDB

No details
about

schema
conversion

Yes No __

Migration
Methodology
(1) Extracting logical
structure
(2) Mapping between
databases.

Hanine et al.

SQL any key-oriented
NoSQL DB Yes No No European Air

quality database Transformation layer Schreiner et al.

SQL HBase Yes No No
15 GB Dell DVD
Store relational
database

Heuristic based
approach Serrano et al.

RDB HBase Yes No No RDB schema with
7 tables.

Extracting conversion
rules and applied
conversion rules.

Ouanouki et al.

RDB HBase Yes No No __ heuristic-based
approach Li et al.

RDB document-oriented
NoSQL, Yes Yes No Different databases

of different sizes.

Column-level
Denormalization and
Atomic Aggregates

Yoo et al.

MySQL Oracle NoSQL Yes Yes Yes Five different
databases

Automatic
Transformation

Proposed
Scheme

There is another methodology for the conversion of a relational database to HBase in four
steps [28]. First, create a single merge table in HBase and convert all one-to-one and one-to-many
relationships into that table. Second, merge neighboring tables through a recursive method. Third,
a row key design, and fourth, create access patterns views. The set of rules for schema conversion
between an existing relational database to Hbase are defined [29]. First, experimentally justify the need
of conversion rules by observing the conversions without conversion rules. This first experiment is
used as a baseline of the second experiment. Second, the experiment is performed convert the existing
relational database application to Hbase using a first list of conversion rules. This conversion proves

Symmetry 2018, 10, 698 6 of 20

that the conversion rules reduce the difficulty of the whole conversion process. Another approach is
presented for RDBs to NoSQL migration that has two phases [30], the first phase transforms relational
database schema to HBase schema and also provides guidelines to develop HBase application. In the
second phase, schema mappings are used to create a set of programs to automatically transform the
data of the source database to the target database. Similarly, this proposed a solution for migrating
RDBMS schema to document oriented NoSQL database schema [16]. This method provides atomicity
using atomic aggregate and avoids join operations. It uses the column-level denormalization in order
to minimize the disadvantages of table-level denormalization.

Data extraction from Big data has been one of the major research challenges [31,32] in recent times.
Since, Big data has discrete and heterogenous types of data, this challenge becomes more difficult.
However, various contributions [32–34] are made to address this challenge. Suciu [33] discussed
the extraction of knowledge from Big data and [34] discussed how conceptual modeling can help in
addressing this challenge. The NoSQLayer tool presented is proposed for migrating from a relational
database to a NoSQL database; this approach has two modules. The data migration module migrates
the SQL database to the NoSQL database. Here, the metadata of the MySQL database is accessed
during Java Metadata API. The data mapping module transforms data from a relational database to a
NoSQL database seamlessly [35].

To the best of our knowledge, there is no approach or tool available to handle the complexity of
automatic conversion of a RDB (such as MySQL) to Big data solutions (such as Oracle NoSQL database)
and the major contribution of this paper is to present a novel approach that is intelligent enough to
handle the complexity of data and automatically transform MySQL database to Oracle NoSQL for
both data and schema conversion.

3. Used Approach for Handling Complexity of RDB to Big Data Conversion

The used approach is based on a rule-based system that has two modules: The first module
handles the conversion of a relational database (such as MySQL) schema to a NoSQL database schema
which is very flexible in nature (Schema Conversion). Whereas, the second module handles the
conversion of the data from the relational database (such as MySQL) to NoSQL database (such as
Oracle NoSQL). The working of the first module in the proposed approach is shown in Figure 4,
that performs the schema transformation.

Symmetry 2018, 10, x FOR PEER REVIEW 6 of 20

RDB HBase Yes No No __ heuristic-based
approach

Li et al.

RDB
document-

oriented
NoSQL,

Yes Yes No

Different
databases
of different
sizes.

Column-level
Denormalization
and Atomic
Aggregates

Yoo et al.

MySQL
Oracle
NoSQL

Yes Yes Yes
Five
different
databases

Automatic
Transformation

Proposed
Scheme

There is another methodology for the conversion of a relational database to HBase in four steps
[28]. First, create a single merge table in HBase and convert all one-to-one and one-to-many
relationships into that table. Second, merge neighboring tables through a recursive method. Third, a
row key design, and fourth, create access patterns views. The set of rules for schema conversion
between an existing relational database to Hbase are defined [29]. First, experimentally justify the
need of conversion rules by observing the conversions without conversion rules. This first experiment
is used as a baseline of the second experiment. Second, the experiment is performed convert the
existing relational database application to Hbase using a first list of conversion rules. This conversion
proves that the conversion rules reduce the difficulty of the whole conversion process. Another
approach is presented for RDBs to NoSQL migration that has two phases [30], the first phase
transforms relational database schema to HBase schema and also provides guidelines to develop
HBase application. In the second phase, schema mappings are used to create a set of programs to
automatically transform the data of the source database to the target database. Similarly, this
proposed a solution for migrating RDBMS schema to document oriented NoSQL database schema
[16]. This method provides atomicity using atomic aggregate and avoids join operations. It uses the
column-level denormalization in order to minimize the disadvantages of table-level denormalization.

Data extraction from Big data has been one of the major research challenges [32] in recent times.
Since, Big data has discrete and heterogenous types of data, this challenge becomes more difficult.
However, various contributions [32–34] are made to address this challenge. Suciu [33] discussed the
extraction of knowledge from Big data and [34] discussed how conceptual modeling can help in
addressing this challenge.

To the best of our knowledge, there is no approach or tool available to handle the complexity of
automatic conversion of a RDB (such as MySQL) to Big data solutions (such as Oracle NoSQL
database) and the major contribution of this paper is to present a novel approach that is intelligent
enough to handle the complexity of data and automatically transform MySQL database to Oracle
NoSQL for both data and schema conversion.

3. Used Approach for Handling Complexity of RDB to Big Data Conversion

The used approach is based on a rule-based system that has two modules: The first module
handles the conversion of a relational database (such as MySQL) schema to a NoSQL database
schema which is very flexible in nature (Schema Conversion). Whereas, the second module handles
the conversion of the data from the relational database (such as MySQL) to NoSQL database (such as
Oracle NoSQL). The working of the first module in the proposed approach is shown in Figure 4, that
performs the schema transformation.

Figure 4. Schema transformation module. Figure 4. Schema transformation module.

The following text explains the components used in both modules (schema transformation and
data transformation) and their working.

3.1. Schema Transformation

This module handles the transformation of MySQL schema to Oracle NoSQL schema. For this
purpose, a relational database in MySQL is taken as an input and parses in Java to extract metadata of
MySQL databases such as table-names, their attribute-names, attribute-data-types, relationship-names,
indexes from the database, etc. Here, the JDBC driver and the Java metadata base class library is
used to access the schema of tables from MySQL database. For relationship metadata extraction,
the primary and foreign key constraints of each table were used as the relationship information can be

Symmetry 2018, 10, 698 7 of 20

helpful for schema conversion. Here, Java metadata class library provides different methods to extract
schema information in different aspects, e.g., if we want to get information about a primary key then
we use metadata’s primary key function. The methods used for this approach are listed in Table 2.
When all required metadata of the tables’ schemas are extracted, the mapping given in Table 3 is used
to transform the MySQL metadata to Oracle NoSQL key-value store.

Table 2. List of methods used in schema transformation.

Methods Description

getTables() This method returns all the tables of the database. The list returned by this
method is traversed to get information of each table.

getColumns() The names of all attributes that are defined by the parameters and their
characteristics are retrieved through this method.

getMetaData() This method returns all other information about relational databases, such as data
type and constraints.

getIndexInfo() All indexes that are created on the relational database return through this method.

getImportedKeys() This method retrieves a description of the primary key columns that are
referenced by a table’s foreign key columns.

Getprimary keys() This method retrieves a description of the primary key columns of the given table.

This mapping is implemented in Java to accomplish the schema level transformation of MySQL
to Oracle NoSQL database. Once the schema transformation is accomplished, the data level
transformation is carried out; this is described in the following section.

Table 3. Migration mapping RDBs to Oracle NoSQL.

MySQL Oracle NoSQL

Table Record or Table
Column Name Field Name
Column Data
Type Field Type

Column Field
Users Users
Permisssions Priviliges
Index Index
JOIN Parent-Child link
Foreign Key Reference (parent-child link)

In our approach, we have created an online test preparation of a student database in MySQL.
A subset of this MySQL database is shown in Figure 5 that is used to explain the schema conversion
methodology of our approach.

Relational database has an important feature of JOIN. But Oracle NoSQL database uses
parent-child relationship instead of JOIN. MySQL database Student table (parent table) is linked
with Marks table (child table) and Marks table (parent table) is linked with Course table (child table)
and Course table (parent table) is linked with lecturer table (child table) and lecturer table (parent
table) is linked with Classes (child table). In Figure 6, we see that Student is a parent table, Marks is a
child table as well as the Course is a sub-child table and Course table is a parent table and Lecturer is a
child table and classes are sub-child table.

In Oracle NoSQL key-value store, these tables are stores in the form of Avro schema. Avro schema
supports both APIs of Oracle NoSQL, and that is why the entire key-value store is based on this
schema. Figure 7 shows the Avro Schema of tables stored in Oracle NoSQL store and Figure 8 shows
Avro Schema of Marks table. Table API of the Oracle NoSQL key-value store is just a front-end layer to
provide a user friendly environment.

Symmetry 2018, 10, 698 8 of 20
Symmetry 2018, 10, x FOR PEER REVIEW 8 of 20

Figure 5. Database model used as test database.

Relational database has an important feature of JOIN. But Oracle NoSQL database uses parent-
child relationship instead of JOIN. MySQL database Student table (parent table) is linked with Marks
table (child table) and Marks table (parent table) is linked with Course table (child table) and Course
table (parent table) is linked with lecturer table (child table) and lecturer table (parent table) is linked
with Classes (child table). In Figure 6, we see that Student is a parent table, Marks is a child table as
well as the Course is a sub-child table and Course table is a parent table and Lecturer is a child table
and classes are sub-child table.

In Oracle NoSQL key-value store, these tables are stores in the form of Avro schema. Avro
schema supports both APIs of Oracle NoSQL, and that is why the entire key-value store is based on
this schema. Figure 7 shows the Avro Schema of tables stored in Oracle NoSQL store and Figure 8
shows Avro Schema of Marks table. Table API of the Oracle NoSQL key-value store is just a front-
end layer to provide a user friendly environment.

Figure 6. Relationships of Oracle NoSQL database tables.

Marks
stdname varchar()
coursetitle varchar()
marks int
grade varchar()
rollno int

Student
rollno int
firstname varchar()
lastname varchar()
address varchar()
group varchar()

Course
courseid int
coursetitle varchar()
coursecontents varchar()
coursefee int
courseduration int

Lecturer
lecturerid int
firstname varchar()
lastname varchar()
course id int

Classses
classid int
day varchar()
lectuerid int

Figure 5. Database model used as test database.

Symmetry 2018, 10, x FOR PEER REVIEW 8 of 20

Figure 5. Database model used as test database.

Relational database has an important feature of JOIN. But Oracle NoSQL database uses parent-
child relationship instead of JOIN. MySQL database Student table (parent table) is linked with Marks
table (child table) and Marks table (parent table) is linked with Course table (child table) and Course
table (parent table) is linked with lecturer table (child table) and lecturer table (parent table) is linked
with Classes (child table). In Figure 6, we see that Student is a parent table, Marks is a child table as
well as the Course is a sub-child table and Course table is a parent table and Lecturer is a child table
and classes are sub-child table.

In Oracle NoSQL key-value store, these tables are stores in the form of Avro schema. Avro
schema supports both APIs of Oracle NoSQL, and that is why the entire key-value store is based on
this schema. Figure 7 shows the Avro Schema of tables stored in Oracle NoSQL store and Figure 8
shows Avro Schema of Marks table. Table API of the Oracle NoSQL key-value store is just a front-
end layer to provide a user friendly environment.

Figure 6. Relationships of Oracle NoSQL database tables.

Marks
stdname varchar()
coursetitle varchar()
marks int
grade varchar()
rollno int

Student
rollno int
firstname varchar()
lastname varchar()
address varchar()
group varchar()

Course
courseid int
coursetitle varchar()
coursecontents varchar()
coursefee int
courseduration int

Lecturer
lecturerid int
firstname varchar()
lastname varchar()
course id int

Classses
classid int
day varchar()
lectuerid int

Figure 6. Relationships of Oracle NoSQL database tables.Symmetry 2018, 10, x FOR PEER REVIEW 9 of 20

.

Figure 7. Detail of tables stored in Oracle NoSQL store.

Figure 8. Avro Schema of Marks Table.

3.2. Data Transformation

For data transformation, a table in source MySQL database is selected from which the data is to
be extracted and transformed into JSON format for final storage in an oracle NoSQL database. For

Figure 7. Detail of tables stored in Oracle NoSQL store.

Symmetry 2018, 10, 698 9 of 20

Symmetry 2018, 10, x FOR PEER REVIEW 9 of 20

.

Figure 7. Detail of tables stored in Oracle NoSQL store.

Figure 8. Avro Schema of Marks Table.

3.2. Data Transformation

For data transformation, a table in source MySQL database is selected from which the data is to
be extracted and transformed into JSON format for final storage in an oracle NoSQL database. For

Figure 8. Avro Schema of Marks Table.

3.2. Data Transformation

For data transformation, a table in source MySQL database is selected from which the data is to
be extracted and transformed into JSON format for final storage in an oracle NoSQL database. For this
purpose, the ETL (Extract, Transform and Load) methodology [31] is used. The data transformation
module is shown in Figure 9.

Symmetry 2018, 10, x FOR PEER REVIEW 10 of 20

this purpose, the ETL (Extract, Transform and Load) methodology [31] is used. The data
transformation module is shown in Figure 9.

Figure 9. Data transformation module.

JSON format is a light weight, data interchange format, and is easy to understand. JSON is used
in Oracle NoSQL database as a data type and also as a schema; the schema created through JSON is
called Avro Schema. Before inserting data into a key value store, it is necessary to create an Avro
schema for the record which defines the structure of the data.

In the first step, the required table is selected, from which data will be extracted. The next step
is to convert data of the table row by row from MySQL database and store it in a text file; when all
the data of the table is transformed, then this text file is called by another module that stores it into
the Oracle NoSQL database. For data transformation, we need to know about some data types used
in MySQL database to compare it with data types of the Oracle NoSQL database as shown in Table
4.

Table 4. Data type comparison.

MySQL Oracle NoSQL
int, bigint Integer

Long Long

Array Array

Bolean Bolean
Float Float
Double Double
String String, Java String
BLOB Binary

In the data transformation process, every column data type of the MySQL database table is
compared with the Oracle NoSQL data types. Such a comparison helps in finding the exact match of
MySQL data type. Figure 10 shows the mapping of category table from RDBs to Oracle NoSQL.

Figure 10. Mapping of relational table to Oracle NoSQL table.

The designed software prototype transforms all data of the required table into JSON format and
temporarily stores this data into a text file. After converting data into JSON format, the next step is
to insert data into Oracle NoSQL destination schema table. Finally, put() function is called to read
JSON data from the file and store it into an Oracle NoSQL schema table.

{"id":1, “S-name”: “james”, "Class": "ist year",

"Subject": “OOP”, "Marks": 84}

{"id":2, “S-name”: “jane”, "Class": "2nd year", "Subject":

“Java”, "marks": 70}

ID S_Name Class Subject Marks

1 James 1st year OOP 84

2 Jane 2nd year Java 70

Figure 9. Data transformation module.

JSON format is a light weight, data interchange format, and is easy to understand. JSON is used
in Oracle NoSQL database as a data type and also as a schema; the schema created through JSON

Symmetry 2018, 10, 698 10 of 20

is called Avro Schema. Before inserting data into a key value store, it is necessary to create an Avro
schema for the record which defines the structure of the data.

In the first step, the required table is selected, from which data will be extracted. The next step is
to convert data of the table row by row from MySQL database and store it in a text file; when all the
data of the table is transformed, then this text file is called by another module that stores it into the
Oracle NoSQL database. For data transformation, we need to know about some data types used in
MySQL database to compare it with data types of the Oracle NoSQL database as shown in Table 4.

Table 4. Data type comparison.

MySQL Oracle NoSQL

int, bigint Integer
Long Long
Array Array
Bolean Bolean
Float Float
Double Double
String String, Java String
BLOB Binary

In the data transformation process, every column data type of the MySQL database table is
compared with the Oracle NoSQL data types. Such a comparison helps in finding the exact match of
MySQL data type. Figure 10 shows the mapping of category table from RDBs to Oracle NoSQL.

Symmetry 2018, 10, x FOR PEER REVIEW 10 of 20

this purpose, the ETL (Extract, Transform and Load) methodology [31] is used. The data
transformation module is shown in Figure 9.

Figure 9. Data transformation module.

JSON format is a light weight, data interchange format, and is easy to understand. JSON is used
in Oracle NoSQL database as a data type and also as a schema; the schema created through JSON is
called Avro Schema. Before inserting data into a key value store, it is necessary to create an Avro
schema for the record which defines the structure of the data.

In the first step, the required table is selected, from which data will be extracted. The next step
is to convert data of the table row by row from MySQL database and store it in a text file; when all
the data of the table is transformed, then this text file is called by another module that stores it into
the Oracle NoSQL database. For data transformation, we need to know about some data types used
in MySQL database to compare it with data types of the Oracle NoSQL database as shown in Table
4.

Table 4. Data type comparison.

MySQL Oracle NoSQL
int, bigint Integer

Long Long

Array Array

Bolean Bolean
Float Float
Double Double
String String, Java String
BLOB Binary

In the data transformation process, every column data type of the MySQL database table is
compared with the Oracle NoSQL data types. Such a comparison helps in finding the exact match of
MySQL data type. Figure 10 shows the mapping of category table from RDBs to Oracle NoSQL.

Figure 10. Mapping of relational table to Oracle NoSQL table.

The designed software prototype transforms all data of the required table into JSON format and
temporarily stores this data into a text file. After converting data into JSON format, the next step is
to insert data into Oracle NoSQL destination schema table. Finally, put() function is called to read
JSON data from the file and store it into an Oracle NoSQL schema table.

{"id":1, “S-name”: “james”, "Class": "ist year",

"Subject": “OOP”, "Marks": 84}

{"id":2, “S-name”: “jane”, "Class": "2nd year", "Subject":

“Java”, "marks": 70}

ID S_Name Class Subject Marks

1 James 1st year OOP 84

2 Jane 2nd year Java 70

Figure 10. Mapping of relational table to Oracle NoSQL table.

The designed software prototype transforms all data of the required table into JSON format and
temporarily stores this data into a text file. After converting data into JSON format, the next step is to
insert data into Oracle NoSQL destination schema table. Finally, put() function is called to read JSON
data from the file and store it into an Oracle NoSQL schema table.

4. Implementation Details

The approach discussed in the previous section is implemented in Java as Eclipse plugin.
The implemented system starts working with the connectivity with a source relational database.
After connectivity, two options will be displayed for conversion/transformation process. One is
Schema Conversion and the other is Data Conversion. Which option is used depends on the user or
administrator. If the user selects schema conversion, then the first step is to select the required database
to transform into the Oracle NoSQL database. The next step is hidden from the user, which actually
maps the databases and makes a conversion. In the last step, the transformed database schema will be
displayed on the form. After creating schema from the relational to NoSQL database, a user can also
transform data from MySQL to NoSQL. The second option is Data Conversion, if the user goes for this
option, firstly, he will select the database and the required table from the database afterwards. The next
step is to transform the data from the relational database to the Oracle NoSQL database. Consequently,
a stored procedure is designed which transforms relational database data into Avro schema base JSON
data. The entire working of the proposed system is shown in Figure 11.

Symmetry 2018, 10, 698 11 of 20

Symmetry 2018, 10, x FOR PEER REVIEW 11 of 20

4. Implementation Details

The approach discussed in the previous section is implemented in Java as Eclipse plugin. The
implemented system starts working with the connectivity with a source relational database. After
connectivity, two options will be displayed for conversion/transformation process. One is Schema
Conversion and the other is Data Conversion. Which option is used depends on the user or
administrator. If the user selects schema conversion, then the first step is to select the required
database to transform into the Oracle NoSQL database. The next step is hidden from the user, which
actually maps the databases and makes a conversion. In the last step, the transformed database
schema will be displayed on the form. After creating schema from the relational to NoSQL database,
a user can also transform data from MySQL to NoSQL. The second option is Data Conversion, if the
user goes for this option, firstly, he will select the database and the required table from the database
afterwards. The next step is to transform the data from the relational database to the Oracle NoSQL
database. Consequently, a stored procedure is designed which transforms relational database data
into Avro schema base JSON data. The entire working of the proposed system is shown in Figure 11.

Figure 11. Framework of the proposed approach.

4.1. Module A. Creating Schema of Mysql Table and Store It in the File

The function is used, which transforms the MySQL database tables into Avro Schema as shown
in Figure 7. This function has the following steps.

1. Get metadata of MySQL database tables:

Create function of NoSQL schema to text
file

Create Avro schema

Insert data NoSQL text file

Store data Into Oracle NoSQL

Select database for schema
conversion

Enter user
choice

Select tables from database for data
conversion

Database connectivity form

schema conversion data conversion

Data
conversion

End

Figure 11. Framework of the proposed approach.

4.1. Module A. Creating Schema of Mysql Table and Store It in the File

The function is used, which transforms the MySQL database tables into Avro Schema as shown in
Figure 7. This function has the following steps.

1. Get metadata of MySQL database tables:

In this step, after database connectivity, MySQL tables are selected one by one and a function of
Java metadatabase class library is called, which selects the table and its attributes.

2. Create a file:

For this step, a function of file Java class library is used, and to write data to this file
PrintWriterfunction or PrintWriter Java class library are used.

3. Get keys from metadata:

In this part, the primary and foreign keys of are table are used for primary and foreign key
mapping with NoSQL Avro Schema.

4. Map the data types of both databases and create fields in avro style:

In this step, the mapping process is defined, col.next() built-in function is used to select the
column names of the tables one by one and compare the data type of MySQL table with Oracle NoSQL
data types.

5. Create JOIN like parent-child relationship:

Symmetry 2018, 10, 698 12 of 20

The fk.next() is a result set which hold the foreign key details and its corresponding tables.
The table name of the foreign key is selected as a parent table name for the under-process table.

According to Oracle NoSQL, a parent-child relationship is like:
Parenttable.childtable (attributes with data types and primary keys of both tables).

4.2. Module B. Schema from File to NoSQL

In this module, the file is called, which has temporarily stores the schema of tables; after that,
an object of Oracle NoSQL key-value store is created to access the NoSQL database. In the next step,
an object of Table API is created for new table creation. Now the function runs while looped and
gets data from files and sends it to KVstoreexecuteSync() function for table creation in the Oracle
NoSQL store.

4.3. Module C. Transform Mysql Data into Oracle NoSQL Data

This module performs two tasks:

1. Create procedure: A procedure is created in a generalize format to get data from the database
and create its JSON schema.

2. Call procedure to Transform data into JSON: The above function is called and executed, and then
it gets data from the database and creates its JSON values row by row. Completing this task,
the data that comes in the procedure is stored in a file and the data of this file will be sent to
NoSQL database to store data in the database.

5. Results and Discussion

The implemented system was tested with a number of examples to verify the working of the tool
and the accuracy of the transformation output. Here, MySQL is used as a source database and Oracle
NoSQL is used as a target database. The experiment is performed on different datasets of databases.
Our developed system has two parts, one is schema conversion, and the other is data transformation.
In the Schema Conversion part, the software will work according to these steps:

1. In this step, Oracle NoSQL is started by running a set of commands in the CLI interface.
2. When designed software starts running, the user connects to a MySQL database through

the software.
3. After MySQL connectivity, the next step is to select the required database from the connected

databases of MySQL for conversion into the NoSQL database.
4. When a database is selected, then the software will give two options, one schema conversion and

the other is data conversion; when the user clicks on the Schema Conversion button, then software
will automatically create the schema of database tables. If there is a relationship between tables,
then all tables linked with one another will be selected. The software will automatically convert
this relationship into a parent-child relationship of Oracle NoSQL database. This parent-child
relationship is an alternative for JOINs.

5. For schema conversion, a function is called, which get the table schema from a MySQL database
and then stores it in a text file in the application. After completing this function, another function
is executed; it gets data from the file and starts mapping the MySQL table schema, its attributes
and data type with oracle NoSQL attribute style and data type. Later on, this table schema
converted into Avro Schema and is stored into the Oracle NoSQL database. Avro schema is used
in the Oracle NoSQL database for creating a record or table schema in which the data will be
stored. Details of converted tables will be displayed in the form as shown in Figure 12, if any
error is found in the conversion process, it will also be displayed in the form.

Symmetry 2018, 10, 698 13 of 20

Symmetry 2018, 10, x FOR PEER REVIEW 13 of 20

software will automatically create the schema of database tables. If there is a relationship
between tables, then all tables linked with one another will be selected. The software will
automatically convert this relationship into a parent-child relationship of Oracle NoSQL
database. This parent-child relationship is an alternative for JOINs.

5. For schema conversion, a function is called, which get the table schema from a MySQL database
and then stores it in a text file in the application. After completing this function, another function
is executed; it gets data from the file and starts mapping the MySQL table schema, its attributes
and data type with oracle NoSQL attribute style and data type. Later on, this table schema
converted into Avro Schema and is stored into the Oracle NoSQL database. Avro schema is used
in the Oracle NoSQL database for creating a record or table schema in which the data will be
stored. Details of converted tables will be displayed in the form as shown in Figure 12, if any
error is found in the conversion process, it will also be displayed in the form.

Figure 12. Schema conversion details.

In the data transformation part, all steps are the same except for Step.5. The Step.5 of data
transmission is started when a table is selected from the given tables. After selecting the table, and
clicking on the Data transformation button, a function is called to get the data of the table from
MySQL database and store it in a text file. After that, another function is called which gets data from
a text file and stores it in specific schema table of the Oracle NoSQL database. The form will display
the details of the converted table. The conversion detail of the city table is shown in Figure 13.

The proposed system is tested on a Ci5 2.4 Ghz processor with 4GB RAM with Ubuntu 14 OS on
VM; five different databases are tested in the proposed system to check the effectiveness of the
proposed system. The databases used for the evaluation of our proposed methodology are given
below:

• World: This database has three tables (Country, City, Language) [size: 1.2 GB]
• OnlineQuiz: This database has five tables (Category, SubCategory, Quiz, Users, TestDetails..

[size: 2.3 GB]
• Accounts and products: This database has six tables (User, Accounts, Transactions, redemption,

ebaycard, products). [size: 3.2 GB]
• Employees: This database contains five tables (Emp, Dept, Products, Sale, Accounts). [size: 1.4

GB]
• Classicmodels: This database has eight tables (customers, offices, emp, orderdet, order,

payments, productline, products). [size: 1.1 GB]
• Denny Enterprises: This database has seven tables (Customer, Transactions, City, Products,

Payment, Stock, Order). [size: 1.78 GB]

Figure 12. Schema conversion details.

In the data transformation part, all steps are the same except for Step.5. The Step.5 of data
transmission is started when a table is selected from the given tables. After selecting the table,
and clicking on the Data transformation button, a function is called to get the data of the table from
MySQL database and store it in a text file. After that, another function is called which gets data from a
text file and stores it in specific schema table of the Oracle NoSQL database. The form will display the
details of the converted table. The conversion detail of the city table is shown in Figure 13.

The proposed system is tested on a Ci5 2.4 Ghz processor with 4GB RAM with Ubuntu 14 OS
on VM; five different databases are tested in the proposed system to check the effectiveness of the
proposed system. The databases used for the evaluation of our proposed methodology are given
below:

• World: This database has three tables (Country, City, Language) [size: 1.2 GB]
• OnlineQuiz: This database has five tables (Category, SubCategory, Quiz, Users, TestDetails.. [size:

2.3 GB]
• Accounts and products: This database has six tables (User, Accounts, Transactions, redemption,

ebaycard, products). [size: 3.2 GB]
• Employees: This database contains five tables (Emp, Dept, Products, Sale, Accounts). [size: 1.4 GB]
• Classicmodels: This database has eight tables (customers, offices, emp, orderdet, order, payments,

productline, products). [size: 1.1 GB]
• Denny Enterprises: This database has seven tables (Customer, Transactions, City, Products,

Payment, Stock, Order). [size: 1.78 GB]

Symmetry 2018, 10, 698 14 of 20

Symmetry 2018, 10, x FOR PEER REVIEW 14 of 20

Figure 13. Data conversion details.

Figure 13 shows the screenshot of the data conversion module that allows the user to select a
table name of the source database and it converts it into the Oracle NoSQL database table. Here, for
the conversion, the approach discussed in Section 3.2 is applied and the results of the conversion are
also shown in Figure 13.

5.1. Evaluation Methodology

The working, and the results, of the presented approach have been discussed in the previous
section. To evaluate the performance of our approach, an evaluation methodology was designed to
find how accurately the relational database schema and data is transformed into Key-value NoSQL
format. An evaluation methodology, for the performance evaluation of intelligent tools, is used, and
was originally proposed by Hirschman, L., Thompson in 1995. The following section describes the
evaluation methodology used to evaluate the performance of our approach.

5.1.1. Criterion for Evaluation

A criterion was defined for the quantitative evaluation of the designed approach to find how
accurately it transforms the source database to the target database. Accuracy of the transformation is
measured by finding how close the output is of our approach to the opinion of a human expert
(named total results). In this study, the opinion of a human expert for the target input was taken and
used as a total result for the sake of evaluation.

5.1.2. Method of Evaluation

For the quantitative evaluation of the results of the used approach, each correct transformation
(tables, fields, views, keys, etc.) was matched with the expert’s opinion (Ntotal_transformations). The results
of all transformations were matched as all the transformations that matched the expert’s opinion were
declared correct (Ncorrect_transformations), and otherwise, were considered incorrect (Nincorrect_transforamtions).

5.1.3. Measures of Evaluation
A set of evaluation measures used in our evaluation methodology are: recall, precision, and F-

Measure. The details of these three evaluation measures are given below:

Figure 13. Data conversion details.

Figure 13 shows the screenshot of the data conversion module that allows the user to select a table
name of the source database and it converts it into the Oracle NoSQL database table. Here, for the
conversion, the approach discussed in Section 3.2 is applied and the results of the conversion are also
shown in Figure 13.

5.1. Evaluation Methodology

The working, and the results, of the presented approach have been discussed in the previous
section. To evaluate the performance of our approach, an evaluation methodology was designed to find
how accurately the relational database schema and data is transformed into Key-value NoSQL format.
An evaluation methodology, for the performance evaluation of intelligent tools, is used, and was
originally proposed by Hirschman, L., Thompson in 1995 [36]. The following section describes the
evaluation methodology used to evaluate the performance of our approach.

5.1.1. Criterion for Evaluation

A criterion was defined for the quantitative evaluation of the designed approach to find how
accurately it transforms the source database to the target database. Accuracy of the transformation is
measured by finding how close the output is of our approach to the opinion of a human expert (named
total results). In this study, the opinion of a human expert for the target input was taken and used as a
total result for the sake of evaluation.

5.1.2. Method of Evaluation

For the quantitative evaluation of the results of the used approach, each correct transformation
(tables, fields, views, keys, etc.) was matched with the expert’s opinion (Ntotal_transformations). The results
of all transformations were matched as all the transformations that matched the expert’s opinion were
declared correct (Ncorrect_transformations), and otherwise, were considered incorrect (Nincorrect_transforamtions).

Symmetry 2018, 10, 698 15 of 20

5.1.3. Measures of Evaluation

A set of evaluation measures used in our evaluation methodology are: recall, precision,
and F-Measure. The details of these three evaluation measures are given below:

Recall. The recall can be attributed as the completeness of the results produced by system.
In our methodology, Recall (R) is calculated by finding the number of correct transformation
from the total number of transformations. In Equation (1), Ncorrect_transformations is the number of
correct transformations generated by the approach and Ntotal_transformations is the number of total
correct transformations.

R =
Ncorrect_trans f ormations

Ntotal_trans f ormations
(1)

Precision. The precision can be attributed to as the accuracy of the designed system. Precision is
measured by comparing the designed system’s number of correct results by all (incorrect and correct)
results produced by the system, calculated as: In Equation (2), Ncorrect_transformations is the number of
correct transformations generated by the approach and Nincorrect_transformations is the number of total
incorrect transformations.

P =
Ncorrect_trans f ormations

Ncorrect_trans f ormations + Nincorrect_trans f ormations
(2)

F-measure: The F-measure can be attributed as a harmonic mean of Precision and Recall.
F-measure is the harmonic mean or the “standard” average of total, correct, and incorrect results. By
using harmonic mean, Sasaki (2007) [24] calculated F-measure using the following formula:

F =
2(P)(R)

P + R
(3)

5.2. Quantitate Evaluation

A set of five cases were selected to test the accuracy of the transformation. The selected cases have
a set of MySQL databases with different numbers of respective tables in each database. All these five
cases were processed with our tool for schema transformation and then data transformation. Table 5
shows the results of schema transformation whereas, each metadata element was considered on the
transformation element.

Table 5. Calculate the values of P, R and F-measure.

Case Total
Transforma-tions

Correct
Transforma-tions

Incorrect
Transforma-tions

Missed
Transforma-tions

Precision (P)
%

Recall (R)
%

F-Measure (F)
%

1 24 21 2 1 87.50 91.30 89.35
2 37 33 3 1 89.18 91.66 90.40
3 20 18 1 1 90.00 94.73 92.30
4 26 23 1 2 88.46 95.83 91.99
5 19 16 2 1 84.21 88.89 86.48

Table 5 shows that in all five experiments of RDB to NoSQL migration, the rate of success of
transformation in terms of Recall was as high as 88 to 96%. There were rare incorrect transformations
as well. In our approach, the conversion rules are supporting the maximum type of conversions from
RDB to NoSQL.

Figure 14 shows the results of recall, precision and F-measure of all five different case studies.
The results of these measurements show the accuracy and performance of the system under the different
database loads. The results shown in Figure 14 depict that the schema to schema transformation and
data to data transformation are carried out successfully.

Symmetry 2018, 10, 698 16 of 20

Symmetry 2018, 10, x FOR PEER REVIEW 16 of 20

Figure 14. Evaluation results from Relational to NoSQL key-value store.

5.2. Qualitative Evaluation

These databases first tested on schema conversion and the details of this conversion are shown
as a graph in Figure 15. In this graph, the world database has three tables, onlineQuiz has five tables
and accounts has six tables; however, the conversion time taken for OnlineQuiz accounts for more
than double the world class because the OnlineQuiz and accounts database have multi parent child
relationship, and therefore, it takes the max time.

Figure 15. Schema Conversion time in microseconds.

The data conversion time of databases is shown in Figure 16. The single table data conversion
time is the same, in the parent-child relationship there is a minor difference in time, but in the multi
parent-child relationship, the time is double the parent-child relationship. This is because in the
proposed software prototype, the process of mapping parent-child relationship is time consuming.
In this process phase, the system finds all foreign keys which are linked with the child table then it
creates NoSQL key value store (JSON) storage schema of data and sends it to databases.

82

84

86

88

90

92

94

96

98

0 1 2 3 4 5 6

Accuracy of tranformation

Precision Recall F-measure

0

0.2

0.4

0.6

0.8

1

1.2

World OnlineQuiz Accounts Employees ClassicModel

Schema Conversion Timein Microseconds With Ci5 2.4ghz and 4GB RAM

Conversion
Time in
microsecond
s with Ci5
2.4Ghz and
4GB RAM

Figure 14. Evaluation results from Relational to NoSQL key-value store.

5.3. Qualitative Evaluation

These databases first tested on schema conversion and the details of this conversion are shown
as a graph in Figure 15. In this graph, the world database has three tables, onlineQuiz has five tables
and accounts has six tables; however, the conversion time taken for OnlineQuiz accounts for more
than double the world class because the OnlineQuiz and accounts database have multi parent child
relationship, and therefore, it takes the max time.

Symmetry 2018, 10, x FOR PEER REVIEW 16 of 20

Figure 14. Evaluation results from Relational to NoSQL key-value store.

5.2. Qualitative Evaluation

These databases first tested on schema conversion and the details of this conversion are shown
as a graph in Figure 15. In this graph, the world database has three tables, onlineQuiz has five tables
and accounts has six tables; however, the conversion time taken for OnlineQuiz accounts for more
than double the world class because the OnlineQuiz and accounts database have multi parent child
relationship, and therefore, it takes the max time.

Figure 15. Schema Conversion time in microseconds.

The data conversion time of databases is shown in Figure 16. The single table data conversion
time is the same, in the parent-child relationship there is a minor difference in time, but in the multi
parent-child relationship, the time is double the parent-child relationship. This is because in the
proposed software prototype, the process of mapping parent-child relationship is time consuming.
In this process phase, the system finds all foreign keys which are linked with the child table then it
creates NoSQL key value store (JSON) storage schema of data and sends it to databases.

82

84

86

88

90

92

94

96

98

0 1 2 3 4 5 6

Accuracy of tranformation

Precision Recall F-measure

0

0.2

0.4

0.6

0.8

1

1.2

World OnlineQuiz Accounts Employees ClassicModel

Schema Conversion Timein Microseconds With Ci5 2.4ghz and 4GB RAM

Conversion
Time in
microsecond
s with Ci5
2.4Ghz and
4GB RAM

Figure 15. Schema Conversion time in microseconds.

The data conversion time of databases is shown in Figure 16. The single table data conversion
time is the same, in the parent-child relationship there is a minor difference in time, but in the multi
parent-child relationship, the time is double the parent-child relationship. This is because in the
proposed software prototype, the process of mapping parent-child relationship is time consuming.
In this process phase, the system finds all foreign keys which are linked with the child table then it
creates NoSQL key value store (JSON) storage schema of data and sends it to databases.

Symmetry 2018, 10, 698 17 of 20Symmetry 2018, 10, x FOR PEER REVIEW 18 of 21

Figure 16. Data conversion time in microseconds.

We could not compare the results of our prototype tool to other tools as no other tool is available

that can generate Oracle NoSQL database from the relational database. However, we have compared

the results of our prototype tool to a few tools that migrate the relational database to different types

of NoSQL databases. Table 6 shows a comparison of performance with the previous approaches:

Table 6. Comparison of our approach with previous approaches.

 Source Database Target Database Time Dataset Size

NoSQLayer [35] MySQL MongoDB 1.66 min 50 K records

DigiBrowser [37] MySQL NoSQL 10 min 1.5 million records [4.2 GB]

ODBAPI [38] MySQL CouchDB - -

Kuderu, et al. [39] RDB NoSQL 13 min 5000 Transactions

Our Approach MySQL Oracle NoSQL 3.5 min 3.2 GB

In this paper, the used approach is novel and automatically transforms the existing database in

MySQL to Oracle NoSQL database and provides a highly accurate transformation. The used

approach uses a rule-based system to perform transformation at the schema level as well as at the

data level. A software prototype for this transformation is also developed as a proof of concept. The

results of the experiments show the correctness of our transformations, and outperforms the other

similar approaches.

6. Conclusions and Future Work

This study has presented a system to automatically transform relational database into a NoSQL

key-value store. The developed system does conversion at the schema level as well as at the data

level. The user chooses the type of conversion one wants to perform. In the schema conversion part,

the structure of the whole database tables with relationships will be converted to the Oracle NoSQL

schema. In the data conversion part, the data of the required tables are converted to Oracle NoSQL

supported data types. JSON schema is used for this conversion methodology. The software prototype

is developed in Java language. The system has been implemented and evaluated on different sample

databases. The results show that the transformation process is very efficient and accurate.

As a future direction, our approach will be able to enhance advance technologies to support all

other relational databases and NoSQL databases. The transformation time can be further reduced by

using direct entry method (from MySQL to Oracle NoSQL without using middle storage medium).

1 1 1 1 1

1.7 1.7
1.5 1.5 1.6

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

4

World OnlineQuiz Accounts Employees ClassicModel

D a t a C o n v e r s i o n T i m e I n M i c r o s e c o n d s , C i 5 2 . 4 g h z , 4 G B R A M

Single table

Parent-Child

Multi Parent-

child

Figure 16. Data conversion time in microseconds.

We could not compare the results of our prototype tool to other tools as no other tool is available
that can generate Oracle NoSQL database from the relational database. However, we have compared
the results of our prototype tool to a few tools that migrate the relational database to different types of
NoSQL databases. Table 6 shows a comparison of performance with the previous approaches:

Table 6. Comparison of our approach with previous approaches.

Source Database Target Database Time Dataset Size

NoSQLayer [35] MySQL MongoDB 1.66 min 50 K records
DigiBrowser [37] MySQL NoSQL 10 min 1.5 million records [4.2 GB]

ODBAPI [38] MySQL CouchDB - -
Kuderu, et al. [39] RDB NoSQL 13 min 5000 Transactions

Our Approach MySQL Oracle NoSQL 3.5 min 3.2 GB

In this paper, the used approach is novel and automatically transforms the existing database
in MySQL to Oracle NoSQL database and provides a highly accurate transformation. The used
approach uses a rule-based system to perform transformation at the schema level as well as at the
data level. A software prototype for this transformation is also developed as a proof of concept.
The results of the experiments show the correctness of our transformations, and outperforms the other
similar approaches.

6. Conclusions and Future Work

This study has presented a system to automatically transform relational database into a NoSQL
key-value store. The developed system does conversion at the schema level as well as at the data
level. The user chooses the type of conversion one wants to perform. In the schema conversion part,
the structure of the whole database tables with relationships will be converted to the Oracle NoSQL
schema. In the data conversion part, the data of the required tables are converted to Oracle NoSQL
supported data types. JSON schema is used for this conversion methodology. The software prototype
is developed in Java language. The system has been implemented and evaluated on different sample
databases. The results show that the transformation process is very efficient and accurate.

As a future direction, our approach will be able to enhance advance technologies to support all
other relational databases and NoSQL databases. The transformation time can be further reduced by
using direct entry method (from MySQL to Oracle NoSQL without using middle storage medium).

Symmetry 2018, 10, 698 18 of 20

Here, a model transformation to map RDB elements to NoSQL elements can also improve the accuracy
and efficiency of the said migration.

Author Contributions: S.R. contributed in design, implementation, and experimentation of this research and
writing this manuscript. I.S.B. supervised this work and also edited this manuscript. R.K. contributed in
experiments and evaluation of this research.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Codd, E.F. Relational database: A practical foundation for productivity. In Readings in artificial Intelligence
and Databases; Elsevier: Heidelberg, Germany, 1988; pp. 60–68.

2. Gantz, J.; Reinsel, D. Extracting value from chaos. IDC Iview 2011, 1142, 1–12.
3. Hecht, R.; Jablonski, S. Nosql evaluation: A use case oriented survey. In Proceedings of the 2011 International

Conference on Cloud and Service Computing (CSC), Hong Kong, China, 12–14 December 2011; pp. 336–341.
4. Han, J.; Haihong, E.; Le, G.; Du, J. Survey on NoSQL database. In Proceedings of the 2011 6th International

Conference on Pervasive Computing and Applications (ICPCA), Port Elizabeth, South Africa, 26–28 October
2011; pp. 363–366.

5. Sadalage, P.J.; Fowler, M. Nosql Distilled: A Brief Guide to the Emerging World of Polyglot Persistence; Pearson
Education: Upper Saddle River, NJ, USA, 2012.

6. Strozzi, C. Nosql-a relational database management system. Lainattu 1998, 5, 2014.
7. Iwazume, M.; Iwase, T.; Tanaka, K.; Fujii, H.; Hijiya, M.; Haraguchi, H. Big data in memory: Benchimarking

in memory database using the distributed key-value store for machine to machine communication.
In Proceedings of the 2014 15th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), Las Vegas, NV, USA, 30 June–2 July
2014; pp. 1–7.

8. Mohamed, M.A.; Altrafi, O.G.; Ismail, M.O. Relational vs. NoSQL databases: A survey. Int. J. Comput. Inf.
Technol. 2014, 3, 598–601.

9. Scherzinger, S.; Klettke, M.; Störl, U. Managing schema evolution in NoSQL data stores. arXiv 2013,
arXiv:1308.0514.

10. DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Lakshman, A.; Pilchin, A.; Sivasubramanian, S.;
Vosshall, P.; Vogels, W. Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Oper. Syst. Rev.
2007, 41, 205–220. [CrossRef]

11. Davoudian, A.; Chen, L.; Liu, M. A survey on NoSQL stores. ACM Comput. Surv. 2018, 51, 40. [CrossRef]
12. O’Neil, P.; Cheng, E.; Gawlick, D.; O’Neil, E. The log-structured merge-tree (LSM-tree). Acta Inform. 1996, 33,

351–385. [CrossRef]
13. Chang, F.; Dean, J.; Ghemawat, S.; Hsieh, W.C.; Wallach, D.A.; Burrows, M.; Chandra, T.; Fikes, A.;

Gruber, R.E. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. 2008, 26, 4.
[CrossRef]

14. Li, N.; Xu, B.; Zhao, X.; Deng, Z. Database conversion based on relationship schema mapping.
In Proceedings of the 2011 International Conference on Internet Technology and Applications (iTAP),
Wuhan, China, 16–18 August 2011; pp. 1–5.

15. Vora, M.N. Hadoop-HBASE for large-scale data. In Proceedings of the 2011 International Conference on
Computer Science and Network Technology (ICCSNT), Harbin, China, 24–26 December 2011; pp. 601–605.

16. Yoo, J.; Lee, K.-H.; Jeon, Y.-H. Migration from RDBMS to NoSQL using column-level denormalization and
atomic aggregates. J. Inf. Sci. Eng. 2018, 34, 1–17.

17. Liao, Y.-T.; Zhou, J.; Lu, C.-H.; Chen, S.-C.; Hsu, C.-H.; Chen, W.; Jiang, M.-F.; Chung, Y.-C. Data adapter
for querying and transformation between SQL and NoSQL database. Future Gen. Comput. Syst. 2016, 65,
111–121. [CrossRef]

18. Lakshman, A.; Malik, P. Cassandra: A decentralized structured storage system. ACM SIGOPS Oper. Syst. Rev.
2010, 44, 35–40. [CrossRef]

http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1145/3158661
http://dx.doi.org/10.1007/s002360050048
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1016/j.future.2016.02.002
http://dx.doi.org/10.1145/1773912.1773922

Symmetry 2018, 10, 698 19 of 20

19. Chodorow, K. Mongodb: The Definitive Guide: Powerful and Scalable Data Storage; O’Reilly Media, Inc.:
Sebastopol, CA, USA, 2013.

20. Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Byers, A.H. Big Data: The Next Frontier
for Innovation, Competition, and Productivity; McKinsey Global Institute: San Francisco, CA, USA, 2011.

21. Zhao, G.; Lin, Q.; Li, L.; Li, Z. Schema conversion model of SQL database to NoSQL. In Proceedings of
the 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),
Krakow, Poland, 4–6 November 2014; pp. 355–362.

22. Lee, C.-H.; Zheng, Y.-L. Automatic SQL-to-NoSQL schema transformation over the MYSQL and HBASE
databases. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics-Taiwan
(ICCE-TW), Taipei City, Taiwan, 6–8 June 2015; pp. 426–427.

23. Lee, C.-H.; Zheng, Y.-L. SQL-to-NoSQL schema denormalization and migration: A study on content
management systems. In Proceedings of the 2015 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Hong Kong, China, 9–12 October 2015; pp. 2022–2026.

24. Sasaki, Y. The Truth of the F-Measure. University of Manchester, Technical Report, Version. Available online:
http://www.flowdx.com/F-measure-YS-26Oct07.pdf (accessed on 20 January 2018).

25. Hanine, M.; Bendarag, A.; Boutkhoum, O. Data migration methodology from relational to NoSQL databases.
Int. J. Comput. Electr. Autom. Control Inf. Eng. 2016, 9, 2566–2570.

26. Schreiner, G.A.; Duarte, D.; dos Santos Mello, R. Sqltokeynosql: A layer for relational to key-based NoSQL
database mapping. In Proceedings of the 17th International Conference on Information Integration and
Web-Based Applications & Services, Brussels, Belgium, 11–13 December 2015; p. 74.

27. Rith, J.; Lehmayr, P.S.; Meyer-Wegener, K. Speaking in tongues: SQL access to NoSQL systems. In Proceedings
of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Korea, 24–28 March 2014;
pp. 855–857.

28. Serrano, D.; Han, D.; Stroulia, E. From relations to multi-dimensional maps: Towards an SQL-to-hbase
transformation methodology. In Proceedings of the 2015 IEEE 8th International Conference on Cloud
Computing (CLOUD), New York, NY, USA, 27 June 27–2 July 2015; pp. 81–89.

29. Ouanouki, R.; April, A.; Abran, A.; Gomez, A.; Desharnais, J. Toward building rdb to hbase conversion rules.
J. Big Data 2017, 4, 10. [CrossRef]

30. Li, C. Transforming relational database into HBASE: A case study. In Proceedings of the 2010 IEEE
International Conference on Software Engineering and Service Sciences (ICSESS), Beijing, China, 16–18 July
2010; pp. 683–687.

31. Radonić, M.; Mekterović, I. Etlator-a scripting ETL framework. In Proceedings of the 2017 40th International
Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, 22–26 May 2017; pp. 1349–1354.

32. Yang, C.; Huang, Q.; Li, Z.; Liu, K.; Hu, F. Big Data and cloud computing: Innovation opportunities and
challenges. Int. J. Dig. Earth 2017, 10, 13–53. [CrossRef]

33. Suciu, G.; Dobre, C.; Suciu, V.; Todoran, G.; Vulpe, A.; Apostu, A. Cloud computing for extracting price
knowledge from big data. In Proceedings of the 2015 Ninth International Conference on Complex, Intelligent,
and Software Intensive Systems (CISIS), Santa Catarina, Brazil, 8–10 July 2015; pp. 314–317.

34. Storey, V.C.; Song, I.-Y. Big data technologies and management: What conceptual modeling can do.
Data Knowl. Eng. 2017, 108, 50–67. [CrossRef]

35. Rocha, L.; Vale, F.; Cirilo, E.; Barbosa, D.; Mourão, F. A framework for migrating relational datasets to
NoSQL1. Procedia Comput. Sci. 2015, 51, 2593–2602. [CrossRef]

36. Hirschman, L.; Thompson, H.S. Chapter 13 evaluation: Overview of evaluation in speech and natural
language processing. In Survey of the State of the Art in Human Language Technology; Cambridge University
Press: New York, NY, USA, 1995.

37. Karnitis, G.; Arnicans, G. Migration of relational database to document-oriented database: Structure
denormalization and data transformation. In Proceedings of the 2015 7th International Conference on
Computational Intelligence, Communication Systems and Networks (CICSyN), Riga, Latvia, 3–5 June 2015;
pp. 113–118.

http://www.flowdx.com/F-measure-YS-26Oct07.pdf
http://dx.doi.org/10.1186/s40537-017-0071-x
http://dx.doi.org/10.1080/17538947.2016.1239771
http://dx.doi.org/10.1016/j.datak.2017.01.001
http://dx.doi.org/10.1016/j.procs.2015.05.367

Symmetry 2018, 10, 698 20 of 20

38. Sellami, R.; Bhiri, S.; Defude, B. ODBAPI: A unified REST API for relational and NoSQL data stores.
In Proceedings of the 2014 IEEE International Congress on Big Data (BigData Congress), Anchorage, AK,
USA, 27 June–2 July 2014; pp. 653–660.

39. Kuderu, N.; Kumari, V. Relational Database to NoSQL Conversion by Schema Migration and Mapping. Int. J.
Comput. Eng. Res. Trends 2016, 3, 506–513. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.22362/ijcert/2016/v3/i9/48900
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Key-Value Stores
	Oracle NoSQL

	Related Work
	Used Approach for Handling Complexity of RDB to Big Data Conversion
	Schema Transformation
	Data Transformation

	Implementation Details
	Module A. Creating Schema of Mysql Table and Store It in the File
	Module B. Schema from File to NoSQL
	Module C. Transform Mysql Data into Oracle NoSQL Data

	Results and Discussion
	Evaluation Methodology
	Criterion for Evaluation
	Method of Evaluation
	Measures of Evaluation

	Quantitate Evaluation
	Qualitative Evaluation

	Conclusions and Future Work
	References

