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Abstract: The existing construction methods of granularity importance degree only consider the
direct influence of single granularity on decision-making; however, they ignore the joint impact from
other granularities when carrying out granularity selection. In this regard, we have the following
improvements. First of all, we define a more reasonable granularity importance degree calculating
method among multiple granularities to deal with the above problem and give a granularity reduction
algorithm based on this method. Besides, this paper combines the reduction sets of optimistic and
pessimistic multi-granulation rough sets with intuitionistic fuzzy sets, respectively, and their related
properties are shown synchronously. Based on this, to further reduce the redundant objects in each
granularity of reduction sets, four novel kinds of three-way decisions models with multi-granulation
rough intuitionistic fuzzy sets are developed. Moreover, a series of concrete examples can demonstrate
that these joint models not only can remove the redundant objects inside each granularity of the
reduction sets, but also can generate much suitable granularity selection results using the designed
comprehensive score function and comprehensive accuracy function of granularities.

Keywords: three-way decisions; intuitionistic fuzzy sets; multi-granulation rough intuitionistic fuzzy
sets; granularity importance degree

1. Introduction

Pawlak [1,2] proposed rough sets theory in 1982 as a method of dealing with inaccuracy
and uncertainty, and it has been developed into a variety of theories [3–6]. For example,
the multi-granulation rough sets (MRS) model is one of the important developments [7,8]. The MRS
can also be regarded as a mathematical framework to handle granular computing, which is proposed
by Qian et al. [9]. Thereinto, the problem of granularity reduction is a vital research aspect of MRS.
Considering the test cost problem of granularity structure selection in data mining and machine
learning, Yang et al. constructed two reduction algorithms of cost-sensitive multi-granulation
decision-making system based on the definition of approximate quality [10]. Through introducing
the concept of distribution reduction [11] and taking the quality of approximate distribution as
the measure in the multi-granulation decision rough sets model, Sang et al. proposed an α-lower
approximate distribution reduction algorithm based on multi-granulation decision rough sets, however,
the interactions among multiple granularities were not considered [12]. In order to overcome the
problem of updating reduction, when the large-scale data vary dynamically, Jing et al. developed an
incremental attribute reduction approach based on knowledge granularity with a multi-granulation
view [13]. Then other multi-granulation reduction methods have been put forward one after
another [14–17].
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The notion of intuitionistic fuzzy sets (IFS), proposed by Atanassov [18,19], was initially developed
in the framework of fuzzy sets [20,21]. Within the previous literature, how to get reasonable
membership and non-membership functions is a key issue. In the interest of dealing with fuzzy
information better, many experts and scholars have expanded the IFS model. Huang et al. combined
IFS with MRS to obtain intuitionistic fuzzy MRS [22]. On the basis of fuzzy rough sets, Liu et al.
constructed covering-based multi-granulation fuzzy rough sets [23]. Moreover, multi-granulation
rough intuitionistic fuzzy cut sets model was structured by Xue et al. [24]. In order to reduce the
classification errors and the limitation of ordering by single theory, they further combined IFS with
graded rough sets theory based on dominance relation and extended them to a multi-granulation
perspective. [25]. Under the optimistic multi-granulation intuitionistic fuzzy rough sets, Wang et al.
proposed a novel method to solve multiple criteria group decision-making problems [26]. However,
the above studies rarely deal with the optimal granularity selection problem in intuitionistic fuzzy
environments. The measure of similarity between intuitionistic fuzzy sets is also one of the hot areas
of research for experts, and some similarity measures about IFS are summarized in references [27–29],
whereas these metric formulas cannot measure the importance degree of multiple granularities in the
same IFS.

For further explaining the semantics of decision-theoretic rough sets (DTRS), Yao proposed
a three-way decisions theory [30,31], which vastly pushed the development of rough sets. As a
risk decision-making method, the key strategy of three-way decisions is to divide the domain
into acceptance, rejection, and non-commitment. Up to now, researchers have accumulated a vast
literature on its theory and application. For instance, in order to narrow the applications limits of
three-way decisions model in uncertainty environment, Zhai et al. extended the three-way decisions
models to tolerance rough fuzzy sets and rough fuzzy sets, respectively, the target concepts are
relatively extended to tolerance rough fuzzy sets and rough fuzzy sets [32,33]. To accommodate
the situation where the objects or attributes in a multi-scale decision table are sequentially updated,
Hao et al. used sequential three-way decisions to investigate the optimal scale selection problem [34].
Subsequently, Luo et al. applied three-way decisions theory to incomplete multi-scale information
systems [35]. With respect to multiple attribute decision-making, Zhang et al. study the inclusion
relations of neutrosophic sets in their case in reference [36]. For improving the classification correct
rate of three-way decisions, Zhang et al. proposed a novel three-way decisions model with DTRS by
considering the new risk measurement functions through the utility theory [37]. Yang et al. combined
three-way decisions theory with IFS to obtain novel three-way decision rules [38]. At the same time,
Liu et al. explored the intuitionistic fuzzy three-way decision theory based on intuitionistic fuzzy
decision systems [39]. Nevertheless, Yang et al. [38] and Liu et al. [39] only considered the case of a
single granularity, and did not analyze the decision-making situation of multiple granularities in an
intuitionistic fuzzy environment. The DTRS and three-way decisions theory are both used to deal
with decision-making problems, so it is also enlightening for us to study three-way decisions theory
through DTRS. An extension version that can be used to multi-periods scenarios has been introduced by
Liang et al. using intuitionistic fuzzy decision- theoretic rough sets [40]. Furthermore, they introduced
the intuitionistic fuzzy point operator into DTRS [41]. The three-way decisions are also applied in
multiple attribute group decision making [42], supplier selection problem [43], clustering analysis [44],
cognitive computer [45], and so on. However, they have not applied the three-way decisions theory to
the optimal granularity selection problem. To solve this problem, we have expanded the three-way
decisions models.

The main contributions of this paper include four points:
(1) The new granularity importance degree calculating methods among multiple granularities

(i.e., sig′,∆in (Ai, A′, D) and sig′,∆out(Ai, A′, D)) are given respectively, which can generate more
discriminative granularities.

(2) Optimistic optimistic multi-granulation rough intuitionistic fuzzy sets (OOMRIFS)
model, optimistic pessimistic multi-granulation rough intuitionistic fuzzy sets (OIMRIFS) model,
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pessimistic optimistic multi-granulation rough intuitionistic fuzzy sets (IOMRIFS) model and
pessimistic pessimistic multi-granulation rough intuitionistic fuzzy sets (IIMRIFS) model are
constructed by combining intuitionistic fuzzy sets with the reduction of the optimistic and pessimistic
multi-granulation rough sets. These four models can reduce the subjective errors caused by a single
intuitionistic fuzzy set.

(3) We put forward four kinds of three-way decisions models based on the proposed four
multi-granulation rough intuitionistic fuzzy sets (MRIFS), which can further reduce the redundant
objects in each granularity of reduction sets.

(4) Comprehensive score function and comprehensive accuracy function based on MRIFS are
constructed. Based on this, we can obtain the optimal granularity selection results.

The rest of this paper is organized as follows. In Section 2, some basic concepts of MRS, IFS,
and three-way decisions are briefly reviewed. In Section 3, we propose two new granularity importance
degree calculating methods and a granularity reduction Algorithm 1. At the same time, a comparative
example is given. Four novel MRIFS models are constructed in Section 4, and the properties of the
four models are verified by Example 2. Section 5 proposes some novel three-way decisions models
based on above four new MRIFS, and the comprehensive score function and comprehensive accuracy
function based on MRIFS are built. At the same time, through Algorithm 2, we make the optimal
granularity selection. In Section 6, we use Example 3 to study and illustrate the three-way decisions
models based on new MRIFS. Section 7 concludes this paper.

2. Preliminaries

The basic notions of MRS, IFS, and three-way decisions theory are briefly reviewed in this section.
Throughout the paper, we denote U as a nonempty object set, i.e., the universe of discourse and
A = {A1, A2, · · · , Am} is an attribute set.

Definition 1 ([9]). Suppose IS =< U, A, V, f > is a consistent information system,
A = {A1, A2, · · · , Am} is an attribute set. And RAi is an equivalence relation generated by A. [x]Ai

is
the equivalence class of RAi , ∀X ⊆ U, the lower and upper approximations of optimistic multi-granulation
rough sets (OMRS) of X are defined by the following two formulas:

m
∑

i=1
Ai

O
(X) = {x ∈ U|[x]A1

⊆ X ∨ [x]A2
⊆ X ∨ [x]A3

⊆ X . . . ∨ [x]Am
⊆ X};

m
∑

i=1
Ai

O

(X) = ∼ (
m
∑

i=1
Ai

O
( ∼ X)).

where ∨ is a disjunction operation, ∼ X is a complement of X, if
m
∑

i=1
Ai

O
(X) 6=

m
∑

i=1
Ai

O

(X), the pair

(
m
∑

i=1
Ai

O
(X),

m
∑

i=1
Ai

O

(X)) is referred to as an optimistic multi-granulation rough set of X.

Definition 2 ([9]). Let IS =< U, A, V, f > be an information system, where A = {A1, A2, · · · , Am} is an
attribute set, and RAi is an equivalence relation generated by A. [x]Ai

is the equivalence class of RAi , ∀X ⊆ U,
the pessimistic multi-granulation rough sets (IMRS) of X with respect to A are defined as follows:

m
∑

i=1
Ai

I
(X) = {x ∈ U|[x]A1

⊆ X ∧ [x]A2
⊆ X ∧ [x]A3

⊆ X ∧ . . . ∧ [x]Am
⊆ X};

m
∑

i=1
Ai

I

(X) = ∼ (
m
∑

i=1
Ai

I
( ∼ X)).



Symmetry 2018, 10, 662 4 of 25

where [x]Ai
(1 ≤ i ≤ m) is equivalence class of x for Ai, ∧ is a conjunction operation, if

m
∑

i=1
Ai

I
(X) 6=

m
∑

i=1
Ai

I

(X), the pair (
m
∑

i=1
Ai

I
(X),

m
∑

i=1
Ai

I

(X)) is referred to as a pessimistic multi-granulation rough set of X.

Definition 3 ([18,19]). Let U be a finite non-empty universe set, then the IFS E in U are denoted by:

E = {< x, µE(x), νE(x) > |x ∈ U},

where µE(x) : U → [0, 1] and νE(x) : U → [0, 1] . µE(x) and νE(x) are called membership and non-mem-
bership functions of the element x in E with 0 ≤ µE(x)+ νE(x) ≤ 1. For ∀ x ∈ U, the hesitancy degree function
is defined as πE(x) = 1− µE(x)− νE(x), obviously, πE(x) : U → [0, 1] . Suppose ∀ E1, E2 ∈ IFS(U),
the basic operations of E1 and E2 are given as follows:

(1) E1 ⊆ E2 ⇔ µE1(x) ≤ µE2(x), νE1(x) ≥ νE2(x), ∀x ∈ U;
(2) A = B⇔ µA(x) = µB(x), νA(x) = νB(x), ∀x ∈ U;
(3) E1 ∪ E2 = {< x, max{µE1(x), µE2(x)}, min{νE1(x), νE2(x)} > |x ∈ U};
(4) (4) E1 ∩ E2 = {< x, min{µE1(x), µE2(x)}, max{νE1(x), νE2(x)} > |x ∈ U};
(5) (5) ∼ E1 = {< x, νE1(x), µE1(x) > |x ∈ U}.

Definition 4 ([30,31]). Let U = {x1, x2, · · · , xn} be a universe of discourse, ξ = {ωP, ωN , ωB} represents
the decisions of dividing an object x into receptive POS(X), rejective NEG(X), and boundary regions BND(X),
respectively. The cost functions λPP, λNP and λBP are used to represent the three decision- making costs of
∀x ∈ U, and the cost functions λPN , λNN and λBN are used to represent the three decision-making costs of
∀x /∈ U, as shown in Table 1.

Table 1. Cost matrix of decision actions.

Decision Actions
Decision Functions

X ∼X

ωP λPP λPN
ωB λBP λBN
ωN λNP λNN

According to the minimum-risk principle of Bayesian decision procedure, three-way decisions
rules can be obtained as follows:

(P): If P(X|[x]) ≥ α, then x ∈ POS(X);
(N): If P(X|[x]) ≤ β, then x ∈ NEG(X);
(B): If β < P(X|[x]) < α, then x ∈ BND(X).
Here α, β and γ represent respectively:

α =
λPN − λBN

(λPN − λBN) + (λBP − λPP)
;

β =
λBN − λNN

(λBN − λNN) + (λNP − λBP)
;

γ =
λPN − λNN

(λPN − λNN) + (λNP − λPP)
.
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3. Granularity Reduction Algorithm Derives from Granularity Importance Degree

Definition 5 ([10,12]). Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2,
· · · , Am} are m sub-attributes of condition attributes C. U/D = {X1, X2, · · · , Xs} is the partition induced
by the decision attributes D, then approximation quality of U/D about granularity set A is defined as:

γ(A, D) =

∣∣∣∣∣∪
{

m
∑

i=1
Ai

∆
(Xt)|1 ≤ t ≤ s

}∣∣∣∣∣
|U| .

where |X| denotes the cardinal number of set X. ∆ ∈ {O, I} represents two cases of optimistic and pessimistic
multi-granulation rough sets, the same as the following.

Definition 6 ([12]). Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am}
are m sub-attributes of C, A′ ⊆ A, X ∈ U/D,

(1) If
m
∑

i=1,Ai∈A
Ai

∆
(X) 6=

m
∑

i=1,Ai∈A−A′
Ai

∆
(X), then A′ is important in A for X;

(2) If
m
∑

i=1,Ai∈A
Ai

∆
(X) =

m
∑

i=1,Ai∈A−A′
Ai

∆
(X), then A′ is not important in A for X.

Definition 7 ([10,12]). Suppose DIS = (U, C∪D, V, f ) is a decision information system, A = {A1, A2, · · · ,
Am} are m sub-attributes of C, A′ ⊆ A. ∀Ai ∈ A′, on the granularity sets A′, the internal importance degree
of Ai for D can be defined as follows:

sig∆
in(Ai, A′, D) = |γ(A′, D)− γ(A′ − {Ai}, D)|.

Definition 8 ([10,12]). Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · ,
Am} are m sub-attributes of C, A′ ⊆ A. ∀Ai ∈ A− A′, on the granularity sets A′, the external importance
degree of Ai for D can be defined as follows:

sig∆
out(Ai, A′, D) = |γ(Ai ∪ A′, D)− γ(A′, D)|.

Theorem 1. Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am} are m
sub-attributes of C, A′ ⊆ A.

(1) For ∀Ai ∈ A′, on the basis of attribute subset family A′, the granularity importance degree of Ai in A′
with respect to D is expressed as follows:

sig∆
in(Ai, A′, D) =

1
m− 1∑ |sig∆

in({Ak, Ai}, A′, D)− sig∆
in(Ak, A′ − {Ai}, D)|.

where 1 ≤ k ≤ m, k 6= i, the same as the following.
(2) For ∀Ai ∈ A− A′, on the basis of attribute subset family A′, the granularity importance degree of Ai

in A− A′ with respect to D, we have:

sig∆
out(Ai, A′, D) =

1
m− 1∑ |sig∆

out({Ak, Ai}, {Ai} ∪ A′, D)− sig∆
out(Ak, A′, D)|.
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Proof. (1) According to Definition 7, then

sig
∆

in(Ai, A′, D) = |γ(A′, D)− γ(A′ − {Ai}, D)|
= m−1

m−1 |γ(A′, D)− γ(A′ − {Ai}, D)|+ ∑ |γ(A′ − {Ak, Ai}, D)− γ(A′ − {Ak, Ai}, D)|
= 1

m−1 ∑ (|γ(A′, D)− γ(A′ − {Ak, Ai}, D)− (γ(A′ − {Ai}, D)− γ(A′ − {Ak, Ai}, D)|)
= 1

m−1 ∑ |sig
∆

in({Ak, Ai}, A′, D)− sig
∆

in(Ak, A′ − {Ai}, D)|.

(2) According to Definition 8, we can get:

sig
∆

out(Ai, A′, D) = |γ({Ai} ∪ A′, D)− γ(A′, D)|
= m−1

m−1 |γ({Ai} ∪ A′, D)− γ(A′, D)| −∑ |γ(A′ − {Ak}, D)− γ(A′ − {Ak}, D)|
= 1

m−1 ∑ (|γ({Ai} ∪ A′, D)− γ(A′ − {Ak}, D)| − |(γ(A′ − {Ak}, D)− γ(A′, D)|)
= 1

m−1 ∑ |sig
∆

out({Ak, Ai}, {Ai} ∪ A′, D)− sig
∆

out(Ak, A′, D)|.

�

In Definitions 7 and 8, only the direct effect of a single granularity on the whole granularity sets
is given, without considering the indirect effect of the remaining granularities on decision-making.
The following Definitions 9 and 10 synthetically analyze the interdependence between multiple
granularities and present two new methods for calculating granularity importance degree.

Definition 9. Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am} are
m sub-attributes of C, A′ ⊆ A. ∀Ai, Ak ∈ A′, on the attribute subset family, A, the new internal importance
degree of Ai relative to D is defined as follows:

sig′,∆in (Ai, A′, D) = sig∆
in(Ai, A′, D) +

1
m− 1∑ |sig∆

in(Ak, A′ − {Ai}, D)− sig∆
in(Ak, A′, D)|.

sig∆
in(Ai, A′, D) and 1

m−1 ∑ |sig∆
in(Ak, A′ − {Ai}, D)− sig∆

in(Ak, A′, D)| respectively indicate the direct

and indirect effects of granularity Ai on decision-making. When |sig
∆

in(Ak, A′ − {Ai}, D)− sig
∆

in(Ak, A′, D)|
> 0 is satisfied, it is shown that the granularity importance degree of Ak is increased by the addition of Ai
in attribute subset A′ − {Ai}, so the granularity importance degree of Ak should be added to Ai. Therefore,
when there are m sub-attributes, we should add 1

m−1 ∑ |sig∆
in(Ak, A′ − {Ai}, D)− sig∆

in(Ak, A′, D)| to the
granularity importance degree of Ai.

If |sig
∆

in(Ak, A′ − {Ai}, D)− sig
∆

in(Ak, A′, D)| = 0 and k 6= i, then it shows that there is no interaction
between granularity Ai and other granularities, which means sig′,∆in (Ai, A′, D) = sig

∆

in(Ai, A′, D).

Definition 10. Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am} be m
sub-attributes of C, A′ ⊆ A. ∀Ai ∈ A− A′, the new external importance degree of Ai relative to D is defined
as follows:

sig′,∆out(Ai, A′, D) = sig∆
out(Ai, A′, D) +

1
m− 1∑ |sig∆

out(Ak, A′, D)− sig∆
out(Ak, {Ai} ∪ A′, D)|.

Similarly, the new external importance degree calculation formula has a similar effect.

Theorem 2. Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am} be m
sub-attributes of C, A′ ⊆ A, ∀Ai ∈ A′. The improved internal importance can be rewritten as:

sig′,∆in (Ai, A′, D) =
1

m− 1∑ sig
∆

in(Ai, A′ − {Ak}, D).
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Proof.

sig′,∆in (Ai, A′, D) = sig
∆

in(Ai, A′, D) + 1
m−1 ∑ |sig

∆

in(Ak, A′ − {Ai}, D)− sig
∆

in(Ak, A′, D)|
= m−1

m−1 |γ(A′, D)− γ(A′ − {Ai}, D)|+ 1
m−1 ∑ ||γ(A′ − {Ai}, D)−

γ(A′ − {Ak, Ai}, D)| − |γ(A′, D)− γ(A′ − {Ak}, D)||
= 1

m−1 ∑ |γ(A′ − {Ak}, D)− γ(A′ − {Ak, Ai}, D)|
= 1

m−1 ∑ sig
∆

in(Ai, A′ − {Ak}, D).

�

Theorem 3. Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am} are m
sub-attributes of C, A′ ⊆ A. The improved external importance can be expressed as follows:

sig′,∆out(Ai, A′, D) =
1

m− 1∑ sig
∆

out(Ai, {Ak} ∪ A′, D).

Proof.

sig′,∆out(Ai, A′, D) = sig
∆

out(Ai, A′, D) + 1
m−1 ∑ |(sig

∆

out(Ak, A′, D)− sig
∆

out(Ak, {Ai} ∪ A′, D))|
= m−1

m−1 |γ({Ai} ∪ A′, D)− γ(A′, D)|+ 1
m−1 ∑ ||γ(A′, D)− γ({Ak} ∪ A′, D)|−

|γ({Ai} ∪ A′, D)||
= 1

m−1 ∑ |γ({Ai, Ak} ∪ A′, D)− γ({Ai} ∪ A′, D)|
= 1

m−1 ∑ sig
∆

out(Ai, {Ak} ∪ A′, D).

�

Theorems 2 and 3 show that when sig∆
in(Ai, A′ − {Ak}, D) = 0 (sig

∆

out(Ai, {Ak} ∪ A′, D) = 0)
is satisfied, having sig′,∆in (Ai, A′, D) = 0 (sig′,∆out(Ai, A′, D) = 0). And each granularity importance
degree is calculated on the basis of removing Ak from A′, which makes it more convenient for us to
choose the required granularity.

According to [10,12], we can get optimistic and pessimistic multi-granulation lower
approximations LO and LI . The granularity reduction algorithm based on improved granularity
importance degree is derived from Theorems 2 and 3, as shown in Algorithm 1.
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Algorithm 1. Granularity reduction algorithm derives from granularity importance degree

Input: DIS = (U, C ∪ D, V, f ), A = {A1, A2, · · · , Am} are m sub-attributes of C, A′ ⊆ A, ∀Ai ∈ A′,
U/D = {X1, X2, · · · , Xs};
Output: A granularity reduction set A

∆

i of this information system.
1: set up A

∆

i ← φ , 1 ≤ h ≤ m;
2: compute U/D, optimistic and pessimistic multi-granulation lower approximations L∆;
3: for ∀Ai ∈ A
4: compute sig′,∆in (Ai, A′, D) via Definition 9;
5: if (sig′,∆in (Ai, A′, D) > 0) then A

∆

i = A
∆

i ∪ Ai;
6: end
7: for ∀Ai ∈ A− A

∆

i
8: if γ(A

∆

i , D) = γ(A, D) then compute sig′,∆out(Ai, A′, D) via Definition 10;
9: end
10: if sig′,∆out(Ah, A′, D) = max{sig′,∆out(Ah, A′, D)} then A

∆

i = A
∆

i ∪ Ah;
11: end
12: end
13: for ∀Ai ∈ A

∆

i ,
14: if γ(A

∆

i − Ai, D) = γ(A, D) then A
∆

i = A
∆

i − Ai;
15: end
16: end
17: return granularity reduction set A

∆

i ;
18: end

Therefore, we can obtain two reductions by utilizing Algorithm 1.

Example 1. This paper calculates the granularity importance of 10 on-line investment schemes given in
Reference [12]. After comparing and analyzing the obtained granularity importance degree, we can obtain the
reduction results of 5 evaluation sites through Algorithm 1, and the detailed calculation steps are as follows.

According to [12], we can get A = {A1, A2, A3, A4, A5}, A′ ⊆ A, U/D =

{{x1, x2, x4, x6, x8}, {x3, x5, x7, x9, x10}}.

(1) Reduction set of OMRS

First of all, we can calculate the internal importance degree of OMRS by Theorem 2 as shown in
Table 2.

Table 2. Internal importance degree of optimistic multi-granulation rough sets (OMRS).

A1 A2 A3 A4 A5

sigO
in(Ai, A′, D) 0 0.15 0.05 0 0.05

sig′,Oin (Ai, A′, D) 0.025 0.375 0.225 0 0

Then, according to Algorithm 1, we can deduce the initial granularity set is {A1, A2, A3}.
Inspired by Definition 5, we obtain rO({A2, A3}, D) = rO(A, D) = 1. So, the reduction set of the
OMRS is AO

i = {A2, A3}.
As shown in Table 2, when using the new method to calculate internal importance degree,

more discriminative granularities can be generated, which are more convenient for screening out the
required granularities. In literature [12], the approximate quality of granularity A2 in the reduction set
is different from that of the whole granularity set, so it is necessary to calculate the external importance
degree again. When calculating the internal and external importance degree, References [10,12] only
considered the direct influence of the single granularity on the granularity A2, so the influence of the
granularity A2 on the overall decision-making can’t be fully reflected.
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(2) Reduction set of IMRS

Similarly, by using Theorem 2, we can get the internal importance degree of each site under IMRS,
as shown in Table 3.

Table 3. Internal importance degree of pessimistic multi-granulation rough sets (IMRS).

A1 A2 A3 A4 A5

sigI
in(Ai, A′, D) 0 0.05 0 0 0

sig′,Iin(Ai, A′, D) 0 0.025 0 0.025 0.025

According to Algorithm 1, the sites 2, 4, and 5 with internal importance degrees greater than 0,
which are added to the granularity reduction set as the initial granularity set, and then the approximate
quality of it can be calculated as follows:

rI({A2, A4}, D) = rI({A4, A5}, D) = rI(A, D) = 0.2.

Namely, the reduction set of IMRS is AI
i = {A2, A4} or AI

i = {A4, A5} without calculating the
external importance degree.

In this paper, when calculating the internal and external importance degree of each granularity,
the influence of removing other granularities on decision-making is also considered. According to
Theorem 2, after calculating the internal importance degree of OMRS and IMRS, if the approximate
quality of each granularity in the reduction sets are the same as the overall granularities, it is
not necessary to calculate the external importance degree again, which can reduce the amount
of computation.

4. Novel Multi-Granulation Rough Intuitionistic Fuzzy Sets Models

In Example 1, two reduction sets are obtained under IMRS, so we need a novel method to obtain
more accurate granularity reduction results by calculating granularity reduction.

In order to obtain the optimal determined site selection result, we combine the optimistic and
pessimistic multi-granulation reduction sets based on Algorithm 1 with IFS, respectively, and construct
the following four new MRIFS models.

Definition 11 ([22,25]). Suppose IS = (U, A, V, f ) is an information system, A = {A1, A2, · · · , Am}.
∀E ⊆ U, E are IFS. Then the lower and upper approximations of optimistic MRIFS of Ai are respectively
defined by:

m
∑

i=1
RAi

O
(E) = {< x, µ m

∑
i=1

RAi

O
(E)

(x), ν m
∑

i=1
RAi

O
(E)

(x) > |x ∈ U};

m
∑

i=1
RAi

O

(E) = {< x, µ m
∑

i=1
RAi

O

(E)
(x), ν m

∑
i=1

RAi

O

(E)
(x) > |x ∈ U}.

where
µ m

∑
i=1

RAi

O
(E)

(x) =
m
∨

i=1
inf

y∈[x]Ai

µE(y), ν m
∑

i=1
RAi

O
(E)

(x) =
m
∧

i=1
sup

y∈[x]Ai

νE(y);

µ m
∑

i=1
RAi

O

(E)
(x) =

m
∧

i=1
sup

y∈[x]Ai

µE(y), ν m
∑

i=1
RAi

O

(E)
(x) =

m
∨

i=1
inf

y∈[x]Ai

νE(y).

where RAi is an equivalence relation of x in A, [x]Ai
is the equivalence class of RAi ,and ∨ is a

disjunction operation.
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Definition 12 ([22,25]). Suppose IS =< U, A, V, f > is an information system, A = {A1, A2, · · · , Am}.
∀E ⊆ U, E are IFS. Then the lower and upper approximations of pessimistic MRIFS of Ai can be described
as follows:

m
∑

i=1
RAi

I
(E) = {< x, µ m

∑
i=1

RAi

I
(E)

(x), ν m
∑

i=1
RAi

I
(E))

(x) > |x ∈ U};

m
∑

i=1
RAi

I

(E) = {< x, µ m
∑

i=1
RAi

I

(E)
(x), ν m

∑
i=1

RAi

I

(E)
(x) > |x ∈ U}.

where
µ m

∑
i=1

RAi

I
(E)

(x) =
m
∧

i=1
inf

y∈[x]Ai

µE(y), ν m
∑

i=1
RAi

I
(E)

(x) =
m
∨

i=1
sup

y∈[x]Ai

νE(y);

µ m
∑

i=1
RAi

I

(E)
(x) =

m
∨

i=1
sup

y∈[x]Ai

µE(y), ν m
∑

i=1
RAi

I

(E)
(x) =

m
∧

i=1
inf

y∈[x]Ai

νE(y).

where [x]Ai
is the equivalence class of x about the equivalence relation RAi , and ∧ is a conjunction operation.

Definition 13. Suppose IS =< U, A, V, f > is an information system, AO
i = {A1, A2, · · · , Ar} ⊆ A,

A = {A1, A2, · · · , Am}. And RAi
O is an equivalence relation of x with respect to the attribute reduction set

AO
i under OMRS, [x]Ai

O is the equivalence class of RAi
O . Let E be IFS of U and they can be characterized by a

pair of lower and upper approximations:

r
∑

i=1
RAO

i

O
(E) = {< x, µ r

∑
i=1

R
AO

i

O
(E)

(x), ν r
∑

i=1
R

AO
i

O
(E)

(x) > |x ∈ U};

r
∑

i=1
RAO

i

O

(E) = {< x, µ r
∑

i=1
R

AO
i

O

(E)
(x), ν r

∑
i=1

R
AO

i

O

(E)
(x) > |x ∈ U}.

where
µ r

∑
i=1

R
AO

i

O
(E)

(x) =
r
∨

i=1
inf

y∈[x]Ai
O

µE(y), ν r
∑

i=1
R

AO
i

O
(E)

(x) =
r
∧

i=1
sup

y∈[x]Ai
O

νE(y);

µ r
∑

i=1
R

AO
i

O

(E)
(x) =

r
∧

i=1
sup

y∈[x]Ai
O

µE(y), ν r
∑

i=1
R

AO
i

O

(E)
(x) =

r
∨

i=1
inf

y∈[x]Ai
O

νE(y).

If
r
∑

i=1
RAO

i

O
(E) 6=

r
∑

i=1
RAO

i

O

(E), then E can be called OOMRIFS.

Definition 14. Suppose IS =< U, A, V, f > is an information system, ∀E ⊆ U, E are IFS. AO
i =

{A1, A2, · · · , Ar} ⊆ A, A = {A1, A2, · · · , Am}. where AO
i is an optimistic multi-granulation

attribute reduction set. Then the lower and upper approximations of pessimistic MRIFS under optimistic
multi-granulation environment can be defined as follows:

r
∑

i=1
RAO

i

I
(E) = {< x, µ r

∑
i=1

R
AO

i

I
(E)

(x), ν r
∑

i=1
R

AO
i

I
(E)

(x) > |x ∈ U};

r
∑

i=1
RAO

i

I

(E) = {< x, µ r
∑

i=1
R

AO
i

I

(E)
(x), ν r

∑
i=1

R
AO

i

I

(E)
(x) > |x ∈ U}.
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where
µ r

∑
i=1

R
AO

i

I
(E)

(x) =
r
∧

i=1
inf

y∈[x]Ai
O

µE(y), ν r
∑

i=1
R

AO
i

I
(E)

(x) =
r
∨

i=1
sup

y∈[x]Ai
O

νE(y);

µ r
∑

i=1
R

AO
i

I

(E)
(x) =

r
∨

i=1
sup

y∈[x]Ai
O

µE(y), ν r
∑

i=1
R

AO
i

I

(E)
(x) =

r
∧

i=1
inf

y∈[x]Ai
O

νE(y).

The pair (
r
∑

i=1
RAO

i

I
(E),

r
∑

i=1
RAO

i

I

(E)) are called OIMRIFS, if
r
∑

i=1
RAO

i

I
(E) 6=

r
∑

i=1
RAO

i

I

(E).

According to Definitions 13 and 14, the following theorem can be obtained.

Theorem 4. Let IS =< U, A, V, f > be an information system, AO
i = {A1, A2, · · · , Ar} ⊆ A, A =

{A1, A2, · · · , Am}, and E1, E2 be IFS on U. Comparing with Definitions 13 and 14, the following proposition
is obtained.

(1)
r
∑

i=1
RAO

i

O
(E1) =

r
∪

i=1
RAO

i

O(E1);

(2)
r
∑

i=1
RAO

i

O

(E1) =
r
∩

i=1
RAO

i

O
(E1);

(3)
r
∑

i=1
RAO

i

I
(E1) =

r
∩

i=1
RAO

i

I(E1);

(4)
r
∑

i=1
RAO

i

I
(E1) =

r
∪

i=1
RAO

i

I(E1);

(5)
r
∑

i=1
RAO

i

I
(E1) ⊆

r
∑

i=1
RAO

i

O
(E1);

(6)
r
∑

i=1
RAO

i

O

(E1) ⊆
r
∑

i=1
RAO

i

I

(E1);

(7)
r
∑

i=1
RAO

i

O
(E1 ∩ E2) =

r
∑

i=1
RAO

i

O
(E1) ∩

r
∑

i=1
RAO

i

O
(E2),

r
∑

i=1
RAO

i

I
(E1 ∩ E2) =

r
∑

i=1
RAO

i

I
(E1) ∩

r
∑

i=1
RAO

i

I
(E2);

(8)
r
∑

i=1
RAO

i

O

(E1 ∪ E2) =
r
∑

i=1
RAO

i

O

(E1) ∪
r
∑

i=1
RAO

i

O

(E2),
r
∑

i=1
RAO

i

I

(E1 ∪ E2) =
r
∑

i=1
RAO

i

I

(E1) ∪
r
∑

i=1
RAO

i

I

(E2);

(9)
r
∑

i=1
RAO

i

O
(E1 ∪ E2) ⊇

r
∑

i=1
RAO

i

O
(E1) ∪

r
∑

i=1
RAO

i

O
(E2),

r
∑

i=1
RAO

i

I
(E1 ∪ E2) ⊇

r
∑

i=1
RAO

i

I
(E1) ∪

r
∑

i=1
RAO

i

I
(E2);

(10)
r
∑

i=1
RAO

i

O

(E1 ∩ E2) ⊆
r
∑

i=1
RAO

i

O

(E1) ∩
r
∑

i=1
RAO

i

O

(E2),
r
∑

i=1
RAO

i

I

(E1 ∩ E2) ⊆
r
∑

i=1
RAO

i

I

(E1) ∩
r
∑

i=1
RAO

i

I

(E2).

Proof. It is easy to prove by the Definitions 13 and 14. �

Definition 15. Let IS =< U, A, V, f > be an information system, and E be IFS on U. AI
i = {A1, A2, · · · ,

Ar} ⊆ A, A = {A1, A2, · · · , Am}, where AI
i is a pessimistic multi-granulation attribute reduction set. Then,

the pessimistic optimistic lower and upper approximations of E with respect to equivalence relation RAi
I are

defined by the following formulas:

r
∑

i=1
RAI

i

O
(E) = {< x, µ r

∑
i=1

RAI
i

O
(E)

(x), ν r
∑

i=1
RAI

i

O
(E)

(x) > |x ∈ U};

r
∑

i=1
RAI

i

O

(E) = {< x, µ r
∑

i=1
RAI

i

O

(E)
(x), ν r

∑
i=1

RAI
i

O

(E)
(x) > |x ∈ U}.
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where
µ r

∑
i=1

RAI
i

O
(E)

(x) =
r
∨

i=1
inf

y∈[x]Ai
I
µE(y), ν r

∑
i=1

RAI
i

O
(E)

(x) =
r
∧

i=1
sup

y∈[x]Ai
I

νE(y);

µ r
∑

i=1
RAI

i

O

(E)
(x) =

r
∧

i=1
sup

y∈[x]Ai
I

µE(y), ν r
∑

i=1
RAI

i

O

(E)
(x) =

r
∨

i=1
inf

y∈[x]Ai
I
νE(y).

If
r
∑

i=1
RAI

i

O
(E) 6=

r
∑

i=1
RAI

i

O

(E), then E can be called IOMRIFS.

Definition 16. Let IS =< U, A, V, f > be an information system, and E be IFS on U. AI
i = {A1, A2, · · · ,

Ar} ⊆ A, A = {A1, A2, · · · , Am}, where AI
i is a pessimistic multi-granulation attribute reduction set. Then,

the pessimistic lower and upper approximations of E under IMRS are defined by the following formulas:

r
∑

i=1
RAI

i

I
(E) = {< x, µ r

∑
i=1

RAI
i

I
(E)

(x), ν r
∑

i=1
RAI

i

I
(E)

(x) > |x ∈ U};

r
∑

i=1
RAI

i

I

(E) = {< x, µ r
∑

i=1
RAI

i

I

(E)
(x), ν r

∑
i=1

RAI
i

I

(E)
(x) > |x ∈ U}.

where
µ r

∑
i=1

RAI
i

I
(E)

(x) =
r
∧

i=1
inf

y∈[x]Ai
I
µE(y), ν r

∑
i=1

RAI
i

I
(E)

(x) =
r
∨

i=1
sup

y∈[x]Ai
I

νE(y);

µ r
∑

i=1
RAI

i

I

(E)
(x) =

r
∨

i=1
sup

y∈[x]Ai
I

µE(y), ν r
∑

i=1
RAI

i

I

(E)
(x) =

r
∧

i=1
inf

y∈[x]Ai
I
νE(y).

where RAi
I is an equivalence relation of x about the attribute reduction set AI

i under IMRS, [x]Ai
O is the

equivalence class of RAi
I .

If
r
∑

i=1
RAI

i

I
(E) 6=

r
∑

i=1
RAI

i

I

(E), then the pair (
r
∑

i=1
RAI

i

I
(E),

r
∑

i=1
RAI

i

I

(E)) is said to be IIMRIFS.

According to Definitions 15 and 16, the following theorem can be captured.

Theorem 5. Let IS =< U, A, V, f > be an information system, AI
i = {A1, A2, · · · , Ar} ⊆ A, A = {A1,

A2, · · · , Am}, and E1, E2 be IFS on U. Then IOMRIFS and IIOMRIFS models have the following properties:

(1)
r
∑

i=1
RAI

i

O
(E1) =

r
∪

i=1
RAI

i

O(E1);

(2)
r
∑

i=1
RAI

i

O

(E1) =
r
∩

i=1
RAI

i

O
(E1);

(3)
r
∑

i=1
RAI

i

I
(E1) =

r
∪

i=1
RAI

i

I(E1);

(4)
r
∑

i=1
RAI

i

I
(E1) =

r
∪

i=1
RAI

i

I(E1);

(5)
r
∑

i=1
RAI

i

I
(E1) ⊆

r
∑

i=1
RAI

i

O
(E1);

(6)
r
∑

i=1
RAI

i

O

(E1) ⊆
r
∑

i=1
RAI

i

I

(E1).

(7)
r
∑

i=1
RAI

i

O
(E1 ∩ E2) =

r
∑

i=1
RAI

i

O
(E1) ∩

r
∑

i=1
RAI

i

O
(E2),

r
∑

i=1
RAI

i

I
(E1 ∩ E2) =

r
∑

i=1
RAI

i

I
(E1) ∩

r
∑

i=1
RAI

i

I
(E2);

(8)
r
∑

i=1
RAI

i

O

(E1 ∪ E2) =
r
∑

i=1
RAI

i

O

(E1) ∪
r
∑

i=1
RAI

i

O

(E2),
r
∑

i=1
RAI

i

I

(E1 ∪ E2) =
r
∑

i=1
RAI

i

I

(E1) ∪
r
∑

i=1
RAI

i

I

(E2);
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(9)
r
∑

i=1
RAI

i

O
(E1 ∪ E2) ⊇

r
∑

i=1
RAI

i

O
(E1) ∪

r
∑

i=1
RAI

i

O
(E2),

r
∑

i=1
RAI

i

I
(E1 ∪ E2) ⊇

r
∑

i=1
RAI

i

I
(E1) ∪

r
∑

i=1
RAI

i

I
(E2);

(10)
r
∑

i=1
RAI

i

O

(E1 ∩ E2) ⊆
r
∑

i=1
RAI

i

O

(E1) ∩
r
∑

i=1
RAI

i

O

(E2),
r
∑

i=1
RAI

i

I

(E1 ∩ E2) ⊆
r
∑

i=1
RAI

i

I

(E1) ∩
r
∑

i=1
RAI

i

I

(E2).

Proof. It can be derived directly from Definitions 15 and 16. �

The characteristics of the proposed four models are further verified by Example 2 below.

Example 2. (Continued with Example 1). From Example 1, we know that these 5 sites are evaluated by
10 investment schemes respectively. Suppose they have the following IFS with respect to 10 investment schemes

E =
{

[0.25,0.43]
x1

, [0.51,0.28]
x2

, [0.54,0.38]
x3

, [0.37,0.59]
x4

, [0.49,0.35]
x5

, [0.92,0.04]
x6

, [0.09,0.86]
x7

, [0.15,0.46]
x8

,

[0.72,0.12]
x9

, [0.67,0.23]
x10

}
.

(1) In OOMRIFS, the lower and upper approximations of OOMRIFS can be calculated as follows:

r
∑

i=1
RAO

i

O
(E) =

{
[0.25,0.59]

x1
, [0.49,0.38]

x2
, [0.49,0.38]

x3
, [0.25,0.59]

x4
, [0.49,0.38]

x5
, [0.25,0.46]

x6
, [0.09,0.86]

x7
,

[0.15,0.46]
x8

, [0.15,0.46]
x9

, [0.67,0.23]
x10

}
,

r
∑

i=1
RAO

i

O

(E) =
{

[0.51,0.28]
x1

, [0.51,0.28]
x2

, [0.54,0.35]
x3

, [0.51,0.28]
x4

, [0.54,0.35]
x5

, [0.92,0.04]
x6

, [0.54,0.35]
x7

,

[0.15,0.46]
x8

, [0.72,0.12]
x9

, [0.67,0.23]
x10

}
.

(2) Similarly, in OIMRIFS, we have:

r
∑

i=1
RAO

i

I
(E) =

{
[0.25,0.59]

x1
, [0.25,0.59]

x2
, [0.09,0.86]

x3
, [0.25,0.59]

x4
, [0.09,0.86]

x5
, [0.15,0.59]

x6
, [0.09,0.86]

x7
,

[0.15,0.46]
x8

, [0.09,0.86]
x9

, [0.09,0.86]
x10

}
,

r
∑

i=1
RAO

i

I

(E) =
{

[0.92,0.04]
x1

, [0.54,0.28]
x2

, [0.54,0.28]
x3

, [0.92,0.04]
x4

, [0.54,0.28]
x5

, [0.92,0.04]
x6

, [0.72,0.12]
x7

,

[0.92,0.04]
x8

, [0.92,0.04]
x9

, [0.72,0.12]
x10

}
.

From the above results, Figure 1 can be drawn as follows:
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Figure 1. The lower and upper approximations of OOMRIFS and OIMRIFS.

Note that
µ1 = µOO(xj) and ν1 = νOO(xj) represent the lower approximation of OOMRIFS;

µ2 = µOO(xj) and ν2 = νOO(xj) represent the upper approximation of OOMRIFS;
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µ3 = µOI(xj) and ν3 = νOI(xj) represent the lower approximation of OIMRIFS;

µ4 = µOI(xj) and ν4 = νOI(xj) represent the upper approximation of OIMRIFS.
Regarding Figure 1, we can get,

µOI(xj) ≥ µOO(xj) ≥ µOO(xj) ≥ µOI(xj); νOI(xj) ≥ νOO(xj) ≥ νOO(xj) ≥ νOI(xj).

As shown in Figure 1, the rules of Theorem 4 are satisfied. By constructing the OOMRIFS and OIMRIFS
models, we can reduce the subjective scoring errors of experts under intuitionistic fuzzy conditions.

(3) Similar to (1), in IOMRIFS, we have:

r
∑

i=1
RAI

i

O
(E) =

{
[0.25,0.43]

x1
, [0.25,0.43]

x2
, [0.25,0.43]

x3
, [0.37,0.59]

x4
, [0.25,0.43]

x5
, [0.25,0.46]

x6
, [0.09,0.86]

x7
,

[0.15,0.46]
x8

, [0.67,0.23]
x9

, [0.67,0.23]
x10

}
,

r
∑

i=1
RAI

i

O

(E) =
{

[0.51,0.28]
x1

, [0.51,0.28]
x2

, [0.54,0.35]
x3

, [0.37,0.59]
x4

, [0.49,0.35]
x5

, [0.92,0.04]
x6

, [0.51,0.35]
x7

,

[0.49,0.35]
x8

, [0.72,0.12]
x9

, [0.67,0.23]
x10

}
.

(4) The same as (1), in IIMRIFS, we can get:

r
∑

i=1
RAI

i

I
(E) =

{
[0.25,0.59]

x1
, [0.09,0.86]

x2
, [0.09,0.86]

x3
, [0.25,0.59]

x4
, [0.09,0.86]

x5
, [0.09,0.86]

x6
, [0.09,0.86]

x7
,

[0.09,0.86]
x8

, [0.15,0.46]
x9

, [0.67,0.23]
x10

}
,

r
∑

i=1
RAI

i

I

(E) =
{

[0.92,0.04]
x1

, [0.54,0.28]
x2

, [0.92,0.04]
x3

, [0.92,0.04]
x4

, [0.54,0.28]
x5

, [0.92,0.04]
x6

, [0.92,0.04]
x7

,

[0.92,0.04]
x8

, [0.92,0.04]
x9

, [0.72,0.12]
x10

}
.

From (3) and (4), we can obtain Figure 2 as shown:
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As shown in Figure 2, the rules of Theorem 5 are satisfied.  

Through the Example 2, we can obtain four relatively more objective MRIFS models, which are 
beneficial to reduce subjective errors. 

5. Three-Way Decisions Models Based on MRIFS and Optimal Granularity Selection 

In order to obtain the optimal granularity selection results in the case of optimistic and 
pessimistic multi-granulation sets, it is necessary to further distinguish the importance degree of 
each granularity in the reduction sets. We respectively combine the four MRIFS models mentioned 
above with three-way decisions theory to get four new three-way decisions models. By extracting 
the rules, the redundant objects in the reduction sets are removed, and the decision error is further 
reduced. Then the optimal granularity selection results in two cases are obtained respectively by 
constructing the comprehensive score function and comprehensive accuracy function measurement 
formulas of each granularity of the reduction sets. 

5.1. Three-Way Decisions Model Based on OOMRIFS 

Suppose O
iA  is the reduction set under OMRS. According to reference [46], the expected loss 

Figure 2. The lower and upper approximations of IOMRIFS and IIMRIFS.

Note that
µ5 = µIO(xj) and ν5 = νIO(xj) represent the lower approximation of IOMRIFS;

µ6 = µIO(xj) and ν6 = νIO(xj) represent the upper approximation of IOMRIFS;
µ7 = µI I(xj) and ν7 = νI I(xj) represent the lower approximation of IIMRIFS;

µ8 = µI I(xj) and ν8 = νI I(xj) represent the upper approximation of IIMRIFS.
For Figure 2, we can get,

µI I(xj) ≥ µIO(xj) ≥ µIO(xj) ≥ µI I(xj); νI I(xj) ≥ νIO(xj) ≥ νIO(xj) ≥ νI I(xj).
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As shown in Figure 2, the rules of Theorem 5 are satisfied.

Through the Example 2, we can obtain four relatively more objective MRIFS models, which are
beneficial to reduce subjective errors.

5. Three-Way Decisions Models Based on MRIFS and Optimal Granularity Selection

In order to obtain the optimal granularity selection results in the case of optimistic and pessimistic
multi-granulation sets, it is necessary to further distinguish the importance degree of each granularity
in the reduction sets. We respectively combine the four MRIFS models mentioned above with three-way
decisions theory to get four new three-way decisions models. By extracting the rules, the redundant
objects in the reduction sets are removed, and the decision error is further reduced. Then the optimal
granularity selection results in two cases are obtained respectively by constructing the comprehensive
score function and comprehensive accuracy function measurement formulas of each granularity of the
reduction sets.

5.1. Three-Way Decisions Model Based on OOMRIFS

Suppose AO
i is the reduction set under OMRS. According to reference [46], the expected loss

function ROO(ω∗|[x]AO
i
)(∗ = P, B, N) of object x can be obtained:

ROO(ωP|[x]AO
i
) = λPP · µOO(x) + λPN · νOO(x) + λPB · πOO(x);

ROO(ωN |[x]AO
i
) = λNP · µOO(x) + λNN · νOO(x) + λNB · πOO(x);

ROO(ωB|[x]AO
i
) = λBP · µOO(x) + λBN · νOO(x) + λBB · πOO(x).

where
µOO(x) = µ r

∑
i=1

R
AO

i

O
(E)

(x) =
r
∨

i=1
inf

y∈[x]
Ai

O
µE(y), νOO(x) = ν r

∑
i=1

R
AO

i

O
(E)

(x) =
r
∧

i=1
sup

y∈[x]
Ai

O

νE(y), πOO(x) = 1− µ r
∑

i=1
R

AO
i

O
(E)

(x)− ν r
∑

i=1
R

AO
i

O
(E)

(x);

or
µOO(x) = µ

r
∑

i=1
R

AO
i

O
(E)

(x) =
r
∧

i=1
sup

y∈[x]
Ai

O

µE(y), νOO(x) = ν
r
∑

i=1
R

AO
i

O
(E)

(x) =
r
∨

i=1
inf

y∈[x]
Ai

O
νE(y), πOO(x) = 1− µ

r
∑

i=1
R

AO
i

O
(E)

(x)− ν
r
∑

i=1
R

AO
i

O
(E)

(x).

The minimum-risk decision rules derived from the Bayesian decision process are as follows:(
P′
)
: If R′(ωP|[x]AO

i
) ≤ R′(ωB|[x]AO

i
) and R′(ωP|[x]AO

i
) ≤ R′(ωN |[x]AO

i
), then x ∈ POS(X);

(N′): If R′(ωN |[x]AO
i
) ≤ R′(ωP|[x]AO

i
) and R′(ωN |[x]AO

i
) ≤ R′(ωB|[x]AO

i
), then x ∈ NEG(X);

(B′): If R′(ωB|[x]AO
i
) ≤ R′(ωN |[x]AO

i
) and R′(ωB|[x]AO

i
) ≤ R′(ωP|[x]AO

i
), then x ∈ BND(X).

Thus, the decision rules (P′)-(B′) can be re-expressed concisely as:
(P′) rule satisfies:

(µOO(x) ≤ (1− πOO(x)) · λNN − λPN

(λPP − λNP) + (λPN − λNN)
) ∧ (µOO(x) ≤ (1− πOO(x)) · λBN − λPN

(λPP − λBP) + (λPN − λBN)
);

(N′) rule satisfies:

(µOO(x) < (1− πOO(x)) · λPN − λNN

(λNP − λPP) + (λPN − λNN)
) ∧ (µOO(x) < (1− πOO(x)) · λBN − λNN

(λNP − λBP) + (λBN − λNN)
);

(B′) rule satisfies:

(µOO(x) > (1− πOO(x)) · λBN − λPN

(λPN − λBN) + (λBP − λPP)
) ∧ (µOO(x) ≥ (1− πOO(x)) · λBN − λNN

(λBN − λNN) + (λNP − λBP)
).

Therefore, the three-way decisions rules based on OOMRIFS are as follows:
(P1): If µOO(x) ≥ (1− πOO(x)) · α, then x ∈ POS(X);
(N1): If µOO(x) ≤ (1− πOO(x)) · β, then x ∈ NEG(X);
(B1): If (1− πOO(x)) · β ≤ µOO(x) and µOO(x) ≤ (1− πOO(x)) · α, then x ∈ BND(X).
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5.2. Three-Way Decisions Model Based on OIMRIFS

Suppose AO
i is the reduction set under OMRS. According to reference [46], the expected loss

functions ROO(ω∗|[x]AO
i
)(∗ = P, B, N) of an object x are presented as follows:

ROI(ωP|[x]AO
i
) = λPP · µOI(x) + λPN · νOI(x) + λPB · πOI(x);

ROI(ωN |[x]AO
i
) = λNP · µOI(x) + λNN · νOI(x) + λNB · πOI(x);

ROI(ωB|[x]AO
i
) = λBP · µOI(x) + λBN · νOI(x) + λBB · πOI(x).

where
µOI (x) = µ r

∑
i=1

R
AO

i

I
(E)

(x) =
r
∧

i=1
inf

y∈[x]
Ai

O
µE(y), νOI (x) = v r

∑
i=1

R
AO

i

I
(E)

(x) =
r
∨

i=1
sup

y∈[x]
Ai

O

vE(y), πOI (x) = 1− µ r
∑

i=1
R

AO
i

I
(E)

(x)− v r
∑

i=1
R

AO
i

I
(E)

(x);

or
µOI (x) = µ r

∑
i=1

R
AO

i

I
(E)

(x) =
r
∨

i=1
sup

y∈[x]
Ai

O

µE(y), νOI (x) = ν r
∑

i=1
R

AO
i

I
(E)

(x) =
r
∧

i=1
inf

y∈[x]
Ai

O
νE(y), πOI (x) = 1− µ r

∑
i=1

R
AO

i

I
(E)

(x)− ν r
∑

i=1
R

AO
i

I
(E)

(x).

Therefore, the three-way decisions rules based on OIMRIFS are as follows:
(P2): If µOI(x) ≥ (1− πOI(x)) · α, then x ∈ POS(X);
(N2): If µOI(x) ≤ (1− πOI(x)) · β, then x ∈ NEG(X);
(B2): If (1− πOI(x)) · β ≤ µOI(x) and µOI(x) ≤ (1− πOI(x)) · α, then x ∈ BND(X).

5.3. Three-Way Decisions Model Based on IOMRIFS

Suppose AI
i is the reduction set under IMRS. According to reference [46], the expected loss

functions RIO(ω∗|[x]AI
i
)(∗ = P, B, N) of an object x are as follows:

RIO(ωP|[x]AI
i
) = λPP · µIO(x) + λPN · νIO(x) + λPB · π IO(x);

RIO(ωN |[x]AI
i
) = λNP · µIO(x) + λNN · νIO(x) + λNB · π IO(x);

RIO(ωB|[x]AI
i
) = λBP · µIO(x) + λBN · νIO(x) + λBB · π IO(x).

where
µIO(x) = µ r

∑
i=1

R
AI

i

O
(E)

(x) =
r
∨

i=1
inf

y∈[x]
Ai

I
µE(y), νIO(x) = ν r

∑
i=1

R
AI

i

O
(E)

(x) =
r
∧

i=1
sup

y∈[x]
Ai

I

νE(y), π IO(x) = 1− µ r
∑

i=1
R

AI
i

O
(E)

(x)− ν r
∑

i=1
R

AI
i

O
(E)

(x);

or
µIO(x) = µ r

∑
i=1

R
AI

i

O
(E)

(x) =
r
∧

i=1
sup

y∈[x]
Ai

I

µE(y), νIO(x) = ν r
∑

i=1
R

AI
i

O
(E)

(x) =
r
∨

i=1
inf

y∈[x]
Ai

I
νE(y), π IO(x) = 1− µ r

∑
i=1

R
AI

i

O
(E)

(x)− ν r
∑

i=1
R

AI
i

O
(E)

(x).

Therefore, the three-way decisions rules based on IOMRIFS are as follows:
(P3): If µIO(x) ≥ (1− π IO(x)) · α, then x ∈ POS(X);
(N3): If µIO(x) ≤ (1− π IO(x)) · β, then x ∈ NEG(X);
(B3): If (1− π IO(x)) · β ≤ µIO(x) and µIO(x) ≤ (1− π IO(x)) · α, then x ∈ BND(X).

5.4. Three-Way Decisions Model Based on IIMRIFS

Suppose AI
i is the reduction set under IMRS. Like Section 5.1, the expected loss functions

RI I(ω∗|[x]AI
i
)(∗ = P, B, N) of an object x are as follows:

RI I(ωP|[x]AI
i
) = λPP · µI I(x) + λPN · νI I(x) + λPB · π I I(x);

RI I(ωN |[x]AI
i
) = λNP · µI I(x) + λNN · νI I(x) + λNB · π I I(x);

RI I(ωB|[x]AI
i
) = λBP · µI I(x) + λBN · νI I(x) + λBB · π I I(x).

where
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µI I (x) = µ r
∑

i=1
R

AI
i

I
(E)

(x) =
r
∧

i=1
inf

y∈[x]
Ai

I
µE(y), νI I (x) = ν r

∑
i=1

R
AI

i

I
(E)

(x) =
r
∨

i=1
sup

y∈[x]
Ai

I

νE(y), π I I (x) = 1− µ r
∑

i=1
R

AI
i

I
(E)

(x)− ν r
∑

i=1
R

AI
i

I
(E)

(x);

or
µI I (x) = µ r

∑
i=1

R
AI

i

I
(E)

(x) =
r
∨

i=1
sup

y∈[x]
Ai

I

µE(y), νI I (x) = ν r
∑

i=1
R

AI
i

I
(E)

(x) =
r
∧

i=1
inf

y∈[x]
Ai

I
νE(y), π I I (x) = 1− µ r

∑
i=1

R
AI

i

I
(E)

(x)− ν r
∑

i=1
R

AI
i

I
(E)

(x).

Therefore, the three-way decisions rules based on IIMRIFS are captured as follows:
(P4): If µI I(x) ≥ (1− π I I(x)) · α, then x ∈ POS(X);
(N4): If µI I(x) ≤ (1− π I I(x)) · β, then x ∈ NEG(X);
(B4): If (1− π I I(x)) · β ≤ µI I(x) and µI I(x) ≤ (1− π I I(x)) · α, then x ∈ BND(X).
By constructing the above three decision models, the redundant objects in the reduction sets can

be removed, which is beneficial to the optimal granular selection.

5.5. Comprehensive Measuring Methods of Granularity

Definition 17 ([40]). Let an intuitionistic fuzzy number Ẽ( f1) = (µẼ( f1), νẼ( f1)), f1 ∈ U, then the score
function of Ẽ( f1) is calculated as:

S(Ẽ( f1)) = µẼ( f1)− νẼ( f1).

The accuracy function of Ẽ( f1) is defined as:

H(Ẽ( f1)) = µẼ( f1) + νẼ( f1).

where −1 ≤ S(Ẽ( f1)) ≤ 1 and 0 ≤ H(Ẽ( f1)) ≤ 1.

Definition 18. Let DIS = (U, C ∪ D) be a decision information system, A = {A1, A2, · · · , Am} are m
sub-attributes of C. Suppose E are IFS on the universe U = {x1, x2, · · · , xn}, defined by µAi (xj) and νAi (xj),
where µAi (xj) and νAi (xj) are their membership and non-membership functions respectively. |[xj]Ai

| is the
number of equivalence classes of xj on granularity Ai, U/D = {X1, X2, · · · , Xs} is the partition induced by
the decision attributes D. Then, the comprehensive score function of granularity Ai is captured as:

CSFAi (E) =
1
s
×

n

∑
j=1,n∈[xj ]Ai

|µAi (xj)− νAi (xj)|
|[xj]Ai

| .

The comprehensive accuracy function of granularity Ai is captured as:

CAFAi (E) =
1
s
×

n

∑
j=1,n∈[xj ]Ai

|µAi (xj) + νAi (xj)|
|[xj]Ai

| .

where −1 ≤ CSFAi (E) ≤ 1 and 0 ≤ CAFAi (E) ≤ 1.

With respect to Definition 19, according to references [27,39], we can deduce the following rules.

Definition 19. Let two granularities A1, A2, then we have:

(1) If CSFA1(E) > CSFA2(E), then A2 is smaller than A1, expressed as A1 > A2;
(2) If CSFA1(E) < CSFA2(E), then A1 is smaller than A2, expressed as A1 < A2;
(3) If CSFA1(E) = CSFA2(E), then

(i) If CSFA1(E) = CSFA2(E), then A2 is equal to A1, expressed as A1 = A2;
(ii) If CSFA1(E) > CSFA2(E), then A2 is smaller than A1, expressed as A1 > A2;
(iii) If CSFA1(E) < CSFA2(E), then A1 is smaller than A2, expressed as A1 < A2.
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5.6. Optimal Granularity Selection Algorithm to Derive Three-Way Decisions from MRIFS

Suppose the reduction sets of optimistic and IMRS are AO
i and AI

i respectively. In this
section, we take the reduction set under OMRS as an example to make the result AO

i
′ of optimal

granularity selection.

Algorithm 2. Optimal granularity selection algorithm to derive three-way decisions from MRIFS

Input: DIS = (U, C ∪ D, V, f ), A = {A1, A2, · · · , Am} be m sub-attributes of condition attributes C, ∀Ai ∈ A′,
U/D = {X1, X2, · · · , Xs}, IFS E;
Output: Optimal granularity selection result AO

i
′.

1: compute via Algorithm 1;
2: if |AO

i | > 1
3: for ∀Ai ∈ AO

i
4: compute µ r

∑
i=1

RAO
i

∆
(E)

(xj), ν r
∑

i=1
RAO

i

∆
(E)

(xj), µ r
∑

i=1
RAO

i

∆

(E)
(xj) and ν r

∑
i=1

RAO
i

∆

(E)
(xj);

5: according (P1)-(B1) and (P2)-(B2), compute POS(XO∆), NEG(XO∆), BND(XO∆), POS(XO∆),
NEG(XO∆), BND(XO∆);
6: if NEG(XO∆) 6= U or NEG(XO∆) 6= U

7: compute U/AO∆
i , CSFAO∆

i
(E), CAFAO∆

i
(E) or (U/AO∆

i ), (CSFAO∆
i
(E), CAFAO∆

i
(E);

8: according to Definition 19 to get AO
i
′;

9: return AO
i
′ = Ai;

10: end
11: else
12: return NULL;
13: end
14: end
15: end
16: else
17: return AO

i
′ = AO

i ;
18: end

6. Example Analysis 3 (Continued with Example 2)

In Example 1, only site 1 can be ignored under optimistic and pessimistic multi-granulation
conditions, so it can be determined that site 1 does not need to be evaluated, while sites 2 and 3 need
to be further investigated under the environment of optimistic multi-granulation. At the same time,
with respect to the environment of pessimistic multi-granulation, comprehensive considera- tion site
3 can ignore the assessment and sites 2, 4 and 5 need to be further investigated.

According to Example 1, we can get that the reduction set of OMRS is {A2, A3}, but in the case of
IMRS, there are two reduction sets, which are contradictory. Therefore, two reduction sets should be
reconsidered simultaneously, so the joint reduction set under IMRS is {A2, A4, A5}.

Where the corresponding granularity structures of sites 2, 3, 4 and 5 are divided as follows:

U/A2 = {{x1, x2, x4}, {x3, x5, x7}, {x6, x8, x9}, {x10}},
U/A3 = {{x1, x4, x6}, {x2, x3, x5}, {x8}, {x7, x9, x10}},
U/A4 = {{x1, x2, x3, x5}, {x4}, {x6, x7, x8}, {x9, x10}},
U/A5 = {{x1, x3, x4, x6}, {x2, x7}, {x5, x8}, {x9, x10}}.

According to reference [11], we can get:
α = 8−2

(8−2)+(2−0) = 0.75; β = 2−0
(2−0)+(6−2) = 0.33.

The optimal site selection process under optimistic and IMRS is as follows:

(1) Optimal site selection based on OOMRIFS
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According to the Example 2, we can get the values of evaluation functions µOO(xj), (1−πOO(xj)) ·
α, (1−πOO(xj)) · β, µOO(xj), (1−πOO(xj)) · α and (1−πOO(xj)) · β of OOMRIFS, as shown in Table 4.

Table 4. The values of evaluation functions for OOMRIFS.

µOO(xj) (1−πOO(xj))·α (1−πOO(xj))·β µOO(xj) (1−πOO(xj))·α (1−πOO(xj))·β

x1 0.25 0.63 0.2772 0.51 0.5925 0.2607
x2 0.49 0.6525 0.2871 0.51 0.5925 0.2607
x3 0.49 0.6525 0.2871 0.54 0.6675 0.2937
x4 0.25 0.63 0.2772 0.51 0.5925 0.2607
x5 0.49 0.6525 0.2871 0.54 0.6675 0.2937
x6 0.25 0.5325 0.2343 0.92 0.72 0.3168
x7 0.09 0.7125 0.3135 0.54 0.6675 0.2937
x8 0.15 0.4575 0.2013 0.15 0.4575 0.2013
x9 0.15 0.4575 0.2013 0.72 0.63 0.2772
x10 0.67 0.675 0.297 0.67 0.675 0.297

We can get decision results of the lower and upper approximations of OOMRIFS by three-way
decisions of the Section 5.1, as follows:

POS(XOO) = φ,
NEG(XOO) = {x1, x4, x7, x8, x9},
BND(XOO) = {x2, x3, x5, x6, x10};
POS(XOO) = {x6, x9},
NEG(XOO) = {x8},
BND(XOO) = {x2, x3, x5}.
In the light of three-way decisions rules based on OOMRIFS, after getting rid of the objects in

the rejection domain, we choose to fuse the objects in the delay domain with those in the acceptance
domain for the optimal granularity selection. Therefore, the new granularities A2, A3 are as follows:

U/AOI
2 = {{x2}, {x3, x5}, {x6}, {x10}},

U/AOI
3 = {{x2, x3, x5}, {x6}, {x10}};

U/AOI
2 = {{x1, x2, x4}, {x3, x5, x7}, {x6, x9}, {x10}},

U/AOI
3 = {{x1, x4, x6}, {x2, x3, x5}, {x7, x9, x10}}.

Then, according to Definition 18, we can get:

CSFAOO
2

(E) = 1
s ×

n
∑

j=1,n∈[xj ]Ai

|µAi
(xj)−νAi

(xj)|
|[xj ]Ai

|

= 1
4 ×

10
∑

j=1,n∈[xj ]AOO
2

|µ
AOO

2
(xj)−ν

AOO
2

(xj)|

|[xj ]AOO
2
|

= 1
4 × ((0.49− 0.38) + (0.49−0.38)+(0.49−0.38)

2 + (0.25− 0.46) + (0.67− 0.23))

= 0.1125,

CSFAOO
3

(E) = 1
s ×

n
∑

j=1,n∈[xj ]Ai

|µAi
(xj)−νAi

(xj)|
|[xj ]Ai

|

= 1
3 ×

10
∑

j=1,n∈[xj ]AOO
3

|µ
AOO

3
(xj)−ν

AOO
3

(xj)|

|[xj ]AOO
3
|

= 1
3 × ((0.25− 0.46) + (0.49−0.38)+(0.49−0.38)+(0.49−0.38)

3 + (0.81− 0.14))

= 0.1133;

Similarly, we have:
CSF

AOO
2

(E) = 0.4, CSF
AOO

3
(E) = 0.3533.
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From the above results, in OOMRIFS, we can see that we can’t get the selection result of sites
2 and 3 only according to the comprehensive score function of granularities A2 and A3. Therefore,
we need to further calculate the comprehensive accuracies to get the results as follows:

CAFAOO
2

(E) = 1
s ×

n
∑

j=1,n∈[xj ]Ai

|µAi
(xj)+νAi

(xj)|
|[xj ]Ai

|

= 1
4 ×

10
∑

j=1,n∈[xj ]AOO
2

|µ
AOO

2
(xj)+ν

AOO
2

(xj)|

|[xj ]AOO
2
|

= 1
4 × ((0.49 + 0.38) + (0.49+0.38)+(0.49+0.38)

2 + (0.25 + 0.46) + (0.67 + 0.23))

= 0.8375,

CAFAOO
3

(E) = 1
s ×

n
∑

j=1,n∈[xj ]Ai

|µAi
(xj)+νAi

(xj)|
|[xj ]Ai

|

= 1
3 ×

10
∑

j=1,n∈[xj ]AOO
3

|µ
AOO

3
(xj)+ν

AOO
3

(xj)|

|[xj ]AOO
3
|

= 1
3 × ((0.25 + 0.46) + (0.49+0.38)+(0.49+0.38)+(0.49+0.38)

3 + (0.81 + 0.14))

= 0.8267;

Analogously, we have:
CAF

AOO
2

(E) = 0.87, CAF
AOO

3
(E) = 0.86.

Through calculation above, we know that the comprehensive accuracy of the granularity A3 is
higher, so the site 3 is selected as the selection result.

(2) Optimal site selection based on OIMRIFS

The same as (1), we can get the values of evaluation functions µOI(xj), (1− πOI(xj)) · α, (1−
πOI(xj)) · β, µOI(xj), (1− πOI(xj)) · α and (1− πOI(xj)) · β of OIMRIFS listed in Table 5.

Table 5. The values of evaluation functions for OIMRIFS.

µOI(xj) (1−πOI(xj))·α (1−πOI(xj))·β µOI(xj) (1−πOI(xj))·α (1−πOI(xj))·β

x1 0.25 0.63 0.2772 0.92 0.72 0.3168
x2 0.25 0.63 0.2772 0.54 0.615 0.2706
x3 0.09 0.7125 0.3135 0.54 0.615 0.2706
x4 0.25 0.63 0.2772 0.92 0.72 0.3168
x5 0.09 0.7125 0.3135 0.54 0.615 0.2706
x6 0.15 0.555 0.2442 0.92 0.72 0.3168
x7 0.09 0.7125 0.3135 0.72 0.63 0.2772
x8 0.15 0.4575 0.2013 0.92 0.72 0.3168
x9 0.09 0.7125 0.3135 0.92 0.72 0.3168
x10 0.09 0.7125 0.3135 0.72 0.63 0.2772

We can get decision results of the lower and upper approximations of OIMRIFS by three-way
decisions in the Section 5.2, as follows:

POS(XOI) = φ,
NEG(XOI) = U,
BND(XOI) = φ;
POS(XOI) = {x1, x4, x6, x7, x8, x9, x10},
NEG(XOI) = φ,
BND(XOI) = {x2, x3, x5}.
Hence, in the upper approximations of OIMRIFS, the new granularities A2, A3 are as follows:
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U/AOI
2 = {{x1, x2, x4}, {x3, x5, x7}, {x6, x8, x9}, {x10}},

U/AOI
3 = {{x1, x4, x6}, {x2, x3, x5}, {x8}, {x7, x9, x10}}.

According to Definition 18, we can calculate that
CSFAOI

2
(E) = CSFAOI

3
(E) = 0;

CAFAOI
2
(E) = CAFAOI

3
(E) = 0;

CSF
AOI

2
(E) = 0.6317, CSF

AOI
3
(E) = 0.6783;

CAF
AOI

2
(E) = 0.885, CAF

AOI
3
(E) = 0.905.

In OIMRIFS, the comprehensive score and comprehensive accuracy of the granularity A3 are both
higher than the granularity A2. So, we choose site 3 as the evaluation site.

In reality, we are more inclined to select the optimal granularity in the case of more stringent
requirements. According to (1) and (2), we can find that the granularity A3 is a better choice when
the requirements are stricter in four cases of OMRS. Therefore, we choose site 3 as the optimal
evaluation site.

(3) Optimal site selection based on IOMRIFS

Similar to (1), we can obtain the values of evaluation functions µIO(xj), (1 − π IO(xj)) · α,

(1− π IO(xj)) · β, µIO(xj), (1− π IO(xj)) · α and (1− π IO(xj)) · β of IOMRIFS, as described in Table 6.

Table 6. The values of evaluation functions for IOMRIFS.

µIO(xj) (1−πIO(xj))·α (1−πIO(xj))·β µIO(xj) (1−πIO(xj))·α (1−πIO(xj))·β

x1 0.25 0.51 0.2244 0.51 0.5925 0.2607
x2 0.25 0.51 0.2244 0.51 0.5925 0.2607
x3 0.25 0.51 0.2244 0.54 0.6675 0.2937
x4 0.37 0.72 0.3168 0.37 0.72 0.3168
x5 0.25 0.51 0.2244 0.49 0.63 0.2772
x6 0.25 0.5325 0.2343 0.92 0.72 0.3168
x7 0.09 0.7125 0.3135 0.51 0.645 0.2838
x8 0.15 0.4575 0.2013 0.49 0.63 0.2772
x9 0.67 0.675 0.297 0.72 0.63 0.2772
x10 0.67 0.675 0.297 0.67 0.675 0.297

We can get decision results of the lower and upper approximations of IOMRIFS by three-way
decisions in the Section 5.3, as follows:

POS(X IO) = φ,
NEG(X IO) = {x7, x8},
BND(X IO) = {x1, x2, x3, x4, x5, x6, x9, x10};
POS(X IO) = {x6, x9},
NEG(X IO) = φ,
BND(X IO) = {x1, x2, x3, x4, x5, x7, x8, x10}.
Therefore, the granularities A2, A4, A5 can be rewritten as follows:
U/AIO

2 = {{x1, x2, x4}, {x3, x5}, {x6, x9}, {x10}},
U/AIO

4 = {{x1, x2, x3, x5}, {x4}, {x6}, {x9, x10}},
U/AIO

5 = {{x1, x3, x4, x6}, {x2}, {x5}, {x9, x10}};
U/AIO

2 = {{x1, x2, x4}, {x3, x5, x7}, {x6, x8, x9}, {x10}},
U/AIO

4 = {{x1, x2, x3, x5}, {x4}, {x6, x7, x8}, {x9, x10}},
U/AIO

5 = {{x1, x3, x4, x6}, {x2, x7}, {x5, x8}, {x9, x10}}.
According to Definition 18, one can see that the results are captured as follows:
CSFAIO

2
(E) = 0.0454, CSFAIO

4
(E) = −0.0567, CSFAIO

5
(E) = −0.0294;

CSF
AIO

2
(E) = 0.3058, CSF

AIO
4
(E) = 0.2227, CSF

AIO
5
(E) = 0.2813.
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In summary, the comprehensive score function of the granularity A2 is higher than the granularity
A3 in IOMRIFS, so we choose site 2 as the result of granularity selection.

(4) Optimal site selection based on IIMRIFS

In the same way as (1), we can get the values of evaluation functions µI I(xj), (1− π I I(xj)) · α,

(1− π I I(xj)) · β, µI I(xj), (1− π I I(xj)) · α and (1− π I I(xj)) · β of IIMRIFS, as shown in Table 7.

Table 7. The values of evaluation functions for IIMRIFS.

µII(xj) (1−πII(xj))·α (1−πII(xj))·β µII(xj) (1−πII(xj))·α (1−πII(xj))·β

x1 0.25 0.63 0.2772 0.92 0.72 0.3168
x2 0.09 0.7125 0.3135 0.54 0.615 0.2706
x3 0.09 0.7125 0.3135 0.92 0.72 0.3168
x4 0.25 0.63 0.2772 0.92 0.72 0.3168
x5 0.09 0.7125 0.3135 0.54 0.615 0.2706
x6 0.09 0.7125 0.3135 0.92 0.72 0.3168
x7 0.09 0.7125 0.3135 0.92 0.72 0.3168
x8 0.09 0.7125 0.3135 0.92 0.72 0.3168
x9 0.15 0.4575 0.2013 0.92 0.72 0.3168
x10 0.67 0.675 0.297 0.72 0.63 0.2772

We can get decision results of the lower and upper approximations of IIMRIFS by three-way
decisions in the Section 5.4, as follows:

POS(X I I) = φ,
NEG(X I I) = {x1, x2, x3, x4, x5, x6, x7, x8, x9},
BND(X I I) = {x10};
POS(X I I) = {x1, x3, x4, x6, x7, x8, x9, x10},
NEG(X I I) = φ,
BND(X I I) = {x2, x5}.
Therefore, the granularity structures of A2, A4, A5 can be rewritten as follows:
U/AI I

2 = U/AI I
4 = U/AI I

5 = {x10};
U/AI I

2 = {{x1, x2, x4}, {x3, x5, x7}, {x6, x8, x9}, {x10}},
U/AI I

4 = {{x1, x2, x3, x5}, {x4}, {x6, x7, x8}, {x9, x10}},
U/AI I

5 = {{x1, x3, x4, x6}, {x2, x7}, {x5, x8}, {x9, x10}}.
According to Definition 18, one can see that the results are captured as follows:
CSFAI I

2
(E) = CSFAI I

4
(E) = CSFAI I

5
(E) = 0.44;

CAFAI I
2
(E) = CAFAI I

4
(E) = CAFAI I

5
(E) = 0.9;

CSF
AI I

2
(E) = 0.7067, CSF

AI I
4
(E) = 0.7675, CSF

AI I
5
(E) = 0.69;

CAF
AI I

2
(E) = 0.9067, CAF

AI I
4
(E) = 0.9275, CAF

AI I
5
(E) = 0.91.

In IIMRIFS, the values of the comprehensive score and comprehensive accuracy of granularity A4

are higher than A2 and A5, so site 4 is chosen as the evaluation site.
Considering (3) and (4) synthetically, we find that the results of granularity selection in IOMRIFS

and IIMRIFS are inconsistent, so we need to further compute the comprehensive accuracies of IIMRIFS.
CAFAIO

2
(E) = 0.7896, CAFAIO

4
(E) = 0.8125, CAFAIO

5
(E) = 0.7544;

CAF
AIO

2
(E) = 0.8725, CAF

AIO
4
(E) = 0.886, CAF

AIO
5
(E) = 0.8588.

Through the above calculation results, we can see that the comprehensive score and
comprehensive accuracy of granularity A4 are higher than A2 and A5 in the case of pessimistic
multi- granulation when the requirements are stricter. Therefore, the site 4 is eventually chosen as the
optimal evaluation site.
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7. Conclusions

In this paper, we propose two new granularity importance degree calculating methods among
multiple granularities, and a granularity reduction algorithm is further developed. Subsequently,
we design four novel MRIFS models based on reduction sets under optimistic and IMRS, i.e., OOMRIFS,
OIMRIFS, IOMRIFS, and IIMRIFS, and further demonstrate their relevant properties. In addition,
four three-way decisions models with novel MRIFS for the issue of internal redundant objects
in reduction sets are constructed. Finally, we designe the comprehensive score function and the
comprehensive precision function for the optimal granularity selection results. Meanwhile, the validity
of the proposed models is verified by algorithms and examples. The works of this paper expand the
application scopes of MRIFS and three-way decisions theory, which can solve issues such as spam
e-mail filtering, risk decision, investment decisions, and so on. A question worth considering is how to
extend the methods of this article to fit the big data environment. Moreover, how to combine the fuzzy
methods based on triangular or trapezoidal fuzzy numbers with the methods proposed in this paper is
also a research problem. These issues will be investigated in our future work.
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