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Abstract: Large numbers of images are produced in many fields every day. The content security of
digital images becomes an important issue for scientists and engineers. Inspired by the magic cube
game, a three-dimensional (3D) permutation model is established to permute images, which includes
three permutation modes, i.e., internal-row mode, internal-column mode, and external mode.
To protect the image content on the Internet, a novel multiple-image encryption symmetric algorithm
(block cipher) with the 3D permutation model and the chaotic system is proposed. First, the chaotic
sequences and chaotic images are generated by chaotic systems. Second, the sender permutes the
plain images by the 3D permutation model. Lastly, the sender performs the exclusive OR operation
on permuted images. The simulation and algorithm comparisons display that the proposed algorithm
possesses desirable encryption images, high security, and efficiency.

Keywords: image encryption; multiple image encryption (MIE); three-dimensional (3D) permutation
model; chaotic system

1. Introduction

Massive electronic shooting devices can generate a huge mass of images in many fields every
day, such as vehicular traffic, medical care, and commerce. According to a statistics report, millions of
video monitors were installed for the Chinese sky net project. These electronic shooting devices can
generate billions of traffic images every day. In the hospital, X-ray, CT, or MRI examinations for patients
generate many medical images. The famous retail platform—Taobao website—possesses billions of
commodity images. These massive images are always related to the business secrets and even national
security. How to protect these images attracts the attention of many scientists and engineers.

To protect image security, the experts of multimedia security have presented a variety of
image encryption algorithms. Wang et al. proposed an image encryption algorithm with mixed
hash functions [1]. Chai et al. presented an image encryption algorithm using a chaotic system
and compressive sensing [2]. Wu et al. presented a color image DNA encryption with an
NCA map-based CML [3]. Gan et al. proposed an image encryption algorithm using S-boxes
and a chaotic system [4]. Ahmad et al. presented an image encryption algorithm using
SHA-512 and hyper-chaos [5]. Bashir et al. presented an image encryption algorithm with Lv’s
hyper-chaotic system [6]. Hua et al. presented an image encryption algorithm with two-dimensional
Logistic-Sine-coupling map (2D-LSCM) [7]. Wu et al. presented an image encryption algorithm with
two-dimensional Henon-Sine map (2D-HSM) [8]. Nevertheless, these algorithms are single-image
encryption algorithms, which cannot make full use of the features of massive images.

The experts of multimedia security have paid more attention to the multiple-image encryption
(MIE) technology in recent years. To protect the optical images, they have designed some MIE
algorithms. Liu et al. presented an MIE algorithm with an asymmetric cryptosystem [9]. Di et al.
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proposed an MIE algorithm by the phase retrieval [10]. Xiong et al. presented an MIE algorithm in
the Fourier domain [11]. Zhang et al. presented an MIE algorithm with compressive sensing [12].
Li et al. designed an MIE algorithm with the lifting wavelet transform [13]. Deng et al. presented
an MIE algorithm with the Fourier transform [14]. Yuan et al. proposed an MIE algorithm with a
single-pixel detector [15]. However, these MIE algorithms are designed with the features of optical
images, which are not suitable for encrypting the digital images. Therefore, they have also presented
some MIE algorithms to protect digital images. Li et al. proposed an MIE algorithm in the wavelet
transform domain [16]. However, the decryption image is lossy and only contains the low-frequency
coefficients of the plain images. Zhang et al. proposed two MIE algorithms by scrambling mixed image
elements [17,18]. These algorithms are very efficient, but they stimulate the block effect especially for
the large size of the image blocks. Meanwhile, Zhang et al. proposed an MIE algorithm with DNA
encoding [19]. This algorithm is secure, but it is a little complex for the DNA encoding and decoding
operations. Suri et al. presented an MIE algorithm with Cramer’s rule [20]. Das et al. presented an
MIE algorithm with genetic operators [21]. However, these two algorithms can only encrypt two plain
images at once.

To simultaneously protect multiple images, this paper establishes a three-dimensional (3D)
permutation model and then designs a novel MIE algorithm with the 3D permutation model.
Simulation results display the superiority of the proposed algorithm.

The main contributions of this manuscript include the following. (1) Inspired by the magic
cube game, we establish a 3D permutation model, which includes three permutation modes, i.e.,
internal-row mode, internal-column mode, and external mode. (2) We propose an MIE algorithm
based on the 3D permutation model and chaotic system. (3) We compare the proposed algorithm with
eight similar algorithms, i.e., Hua’s Algorithm, Wu’s Algorithm, Li’s algorithm, Zhang’s Algorithms 1,
2, and 3, Suri’s algorithm, and Das’s Algorithm. (4) Simulation results and algorithm analyses show
the superiority of the proposed algorithm in terms of the security and efficiency.

The paper is organized as: Section 2 establishes a 3D permutation model and introduces the chaotic
systems. Section 3 proposes a novel MIE algorithm. Section 4 describes eight existing algorithms.
Section 5 is the experiment. The performance of the proposed algorithm are discussed in Section 6.
Section 7 concludes the whole paper.

2. Theoretical Principle

2.1. 3D Permutation Model

Rubik’s cube is a famous 3D intelligence game, which was invented by a Hungarian professor
named Rubik in 1974 [22]. It is also called the magic cube. Figure 1a–c show the magic cubes with
three, four, and five orders, respectively. For the three-order magic cube, the blocks can be rotated in
three different directions, as shown in Figure 2, and the number of its variation cases is 43,252,003,
274,489,856,000 in total. With the increase of the order, the difficult degree increases exponentially.
Therefore, it is very difficult to successfully combine a magic cube for a layman.

Symmetry 2018, 10, x FOR PEER REVIEW  2 of 31 

 

algorithms. Liu et al. presented an MIE algorithm with an asymmetric cryptosystem [9]. Di et al. 

proposed an MIE algorithm by the phase retrieval [10]. Xiong et al. presented an MIE algorithm in 

the Fourier domain [11]. Zhang et al. presented an MIE algorithm with compressive sensing [12]. Li 

et al. designed an MIE algorithm with the lifting wavelet transform [13]. Deng et al. presented an MIE 

algorithm with the Fourier transform [14]. Yuan et al. proposed an MIE algorithm with a single-pixel 

detector [15]. However, these MIE algorithms are designed with the features of optical images, which 

are not suitable for encrypting the digital images. Therefore, they have also presented some MIE 

algorithms to protect digital images. Li et al. proposed an MIE algorithm in the wavelet transform 

domain [16]. However, the decryption image is lossy and only contains the low-frequency coefficients 

of the plain images. Zhang et al. proposed two MIE algorithms by scrambling mixed image elements 

[17,18]. These algorithms are very efficient, but they stimulate the block effect especially for the large 

size of the image blocks. Meanwhile, Zhang et al. proposed an MIE algorithm with DNA encoding 

[19]. This algorithm is secure, but it is a little complex for the DNA encoding and decoding operations. 

Suri et al. presented an MIE algorithm with Cramer’s rule [20]. Das et al. presented an MIE algorithm 

with genetic operators [21]. However, these two algorithms can only encrypt two plain images at 

once. 

To simultaneously protect multiple images, this paper establishes a three-dimensional (3D) 

permutation model and then designs a novel MIE algorithm with the 3D permutation model. 

Simulation results display the superiority of the proposed algorithm. 

The main contributions of this manuscript include the following. (1) Inspired by the magic cube 

game, we establish a 3D permutation model, which includes three permutation modes, i.e., internal-

row mode, internal-column mode, and external mode. (2) We propose an MIE algorithm based on 

the 3D permutation model and chaotic system. (3) We compare the proposed algorithm with eight 

similar algorithms, i.e., Hua’s Algorithm, Wu’s Algorithm, Li’s algorithm, Zhang’s Algorithms 1, 2, 

and 3, Suri’s algorithm, and Das’s Algorithm. (4) Simulation results and algorithm analyses show the 

superiority of the proposed algorithm in terms of the security and efficiency. 

The paper is organized as: Section 2 establishes a 3D permutation model and introduces the 

chaotic systems. Section 3 proposes a novel MIE algorithm. Section 4 describes eight existing 

algorithms. Section 5 is the experiment. The performance of the proposed algorithm are discussed in 

Section 6. Section 7 concludes the whole paper. 

2. Theoretical Principle 

2.1. 3D Permutation Model 

Rubik’s cube is a famous 3D intelligence game, which was invented by a Hungarian professor 

named Rubik in 1974 [22]. It is also called the magic cube. Figures 1a–c show the magic cubes with 

three, four, and five orders, respectively. For the three-order magic cube, the blocks can be rotated in 

three different directions, as shown in Figure 2, and the number of its variation cases is 43,252,003, 

274,489,856,000 in total. With the increase of the order, the difficult degree increases exponentially. 

Therefore, it is very difficult to successfully combine a magic cube for a layman. 

   
(a) (b) (c) 

Figure 1. Magic cubes: (a) Three orders. (b) Four orders. (c) Five orders. Figure 1. Magic cubes: (a) Three orders. (b) Four orders. (c) Five orders.



Symmetry 2018, 10, 660 3 of 30
Symmetry 2018, 10, x FOR PEER REVIEW  3 of 31 

 

 

Figure 2. Magic cube rotation. 

The image permutation and diffusion are two main means for the image encryption technology. 

The operation of image permutation only changes pixel positions. Conversely, the operation of image 

diffusion only changes pixel values. Inspired by the magic cube, we built a 3D permutation model 

for image encryption. For k  plain images with the same size m n , we can combine them into an 

image cube with the size m n k  , which is shown in Figure 3. The pixel in the image cube is the 

counterpart of the block in the magic cube. Similarly, three permutation modes are designed for 

image encryption, i.e., internal-row mode, internal-column mode, and external mode. The first two 

modes permute pixel positions in one plain image. The last mode permutes pixel positions among all 

the plain images. These modes are described in detail below. 

 

Figure 3. Image cube. 

(1) Internal-row mode: for a plain image 1

m nI  , its pixels are listed in m  rows. To permute its 

pixel positions, a random number {1,2, , }ir n , 1,2, ,i m  is chosen for every row. A random 

sequence  i m
r  can be generated by the chaotic system here. For the i th-row pixels, this mode 

performs the cyclic-shift operation with ir  pixel positions to the right or left directions. If the sender 

performs the cyclic-shift operation to the right direction at the encryption stage, then the recipient 

should carry out the same operation to the left direction at the decryption stage. Otherwise, the 

recipient should carry out the same operation to the right direction at the decryption stage. 

(2) Internal-column mode: for a plain image 1

m nI  , its pixels are listed in n  columns. Regarding 

its permute pixel positions, a random number {1,2, , }ir m , 1,2, ,i n  is chosen for every 

column. A random sequence  i n
r  can be generated by the chaotic system here. For the i th-columns 

pixels, this mode performs the cyclic-shift operation with ir  pixel positions to the up or down 

directions. If the sender performs the cyclic-shift operation to the up direction at the encryption stage, 

then the recipient should carry out the same operation to the down direction at the decryption stage. 

Otherwise, the recipient should carry out the same operation to the up direction at the decryption 

stage. 

(3) External mode: the size of plain images 1 2, , , kI I I  are m n . To permute their pixel 

positions, a random number  1,2, ,ijr k  is chosen for the pixel 1 1

ijI I . A random matrix 

Figure 2. Magic cube rotation.

The image permutation and diffusion are two main means for the image encryption technology.
The operation of image permutation only changes pixel positions. Conversely, the operation of image
diffusion only changes pixel values. Inspired by the magic cube, we built a 3D permutation model
for image encryption. For k plain images with the same size m× n, we can combine them into an
image cube with the size m× n× k, which is shown in Figure 3. The pixel in the image cube is the
counterpart of the block in the magic cube. Similarly, three permutation modes are designed for image
encryption, i.e., internal-row mode, internal-column mode, and external mode. The first two modes
permute pixel positions in one plain image. The last mode permutes pixel positions among all the
plain images. These modes are described in detail below.
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Figure 3. Image cube.

(1) Internal-row mode: for a plain image I1
m×n, its pixels are listed in m rows. To permute its pixel

positions, a random number ri ∈ {1, 2, · · · , n}, i = 1, 2, · · · , m is chosen for every row. A random
sequence {ri}m can be generated by the chaotic system here. For the ith-row pixels, this mode performs
the cyclic-shift operation with ri pixel positions to the right or left directions. If the sender performs
the cyclic-shift operation to the right direction at the encryption stage, then the recipient should carry
out the same operation to the left direction at the decryption stage. Otherwise, the recipient should
carry out the same operation to the right direction at the decryption stage.

(2) Internal-column mode: for a plain image I1
m×n, its pixels are listed in n columns. Regarding

its permute pixel positions, a random number ri ∈ {1, 2, · · · , m}, i = 1, 2, · · · , n is chosen for every
column. A random sequence {ri}n can be generated by the chaotic system here. For the ith-columns
pixels, this mode performs the cyclic-shift operation with ri pixel positions to the up or down directions.
If the sender performs the cyclic-shift operation to the up direction at the encryption stage, then the
recipient should carry out the same operation to the down direction at the decryption stage. Otherwise,
the recipient should carry out the same operation to the up direction at the decryption stage.

(3) External mode: the size of plain images I1, I2, · · · , Ik are m × n. To permute their pixel
positions, a random number rij ∈ {1, 2, · · · , k} is chosen for the pixel I1

ij ∈ I1. A random matrix

R =
{

rij
}

m×n can be obtained by the chaotic system in this case. For the pixel I1
ij, this mode performs
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the cyclic-shift operation with rij pixel positions to the front or back directions. If the sender performs
the cyclic-shift operation to the front direction at the encryption stage, then the recipient should carry
out the same operation to the back direction at the decryption stage. Otherwise, the recipient should
carry out the same operation to the front direction at the decryption stage.

2.2. Chaotic Systems

The two-dimensional (2D) Logistic map and the Piece-Wise Linear Chaotic Map (PWLCM) are
two commonly used chaotic systems. They can generate chaotic sequences to encrypt images. In this
paper, two chaotic sequences generated by two PWLCM systems are used to permute pixel positions
with the internal-row and internal-column modes, respectively. At the same time, the 2D Logistic map
can generate two chaotic sequences. One is used to permute pixel positions with the external mode.
The other is used to diffuse the pixel values.

(1) The 2D Logistic map is defined by Equation (1) below [23].{
xn+1 = r1xn(1− xn) + s1y2

n

yn+1 = r2yn(1− yn) + s2
(
x2

n + xnyn
) , (1)

where r1, r2, s1, and s2 are parameters to control the chaotic behavior. When 2.75 < r1 ≤ 3.4,
2.75 < r2 ≤ 3.45, 0.15 < s1 ≤ 0.21, and 0.13 < s2 ≤ 0.15, Equation (1) can generate two chaotic
sequences. Its initial values x0, y0 and r1, r2, s1, s2 are keys for the proposed algorithm.

(2) PWLCM is defined by Equation (2) below [24].

zi+1 = Fp(zi) =



zi
p

0 ≤ zi < p

zi − p
0.5− p

p ≤ zi < 0.5

Fp(1− zi) 0.5 ≤ zi < 1

, (2)

where zi ∈ [0, 1) and p ∈ (0, 0.5). Its initial value z0 and p are keys for the proposed algorithm.

3. Proposed MIE Algorithm

3.1. Key Generation

Secure hash algorithm (SHA) is a type of hash functions. SHA is primarily designed for the
integrity services [25]. SHA-256 is widely used and its output is a 256-bit hash value. The proposed
algorithm uses SHA-256 to generate keys as follows. To further improve the efficiency, users can use
other much faster hash functions (such as Message Digest Algorithm-5, MD5) to substitute for SHA-256.

The proposed algorithm uses SHA-256 to generate the 256-bit hash value K of k plain images.

K = k1k2 · · · ki · · · k32, (3)

where ki, i = 1, 2, · · · , 32 are 8-bit blocks.
One 2D Logistic map and two PWLCM systems are used in the proposed algorithm. The initial

values x0, y0 and control parameters r1, r2, s1, s2 of the 2D Logistic map are calculated by using the
equations below.

x0 =
k1 ⊕ k2 ⊕ k3

255
, (4)

y0 =
k4 ⊕ k5 ⊕ k6

255
, (5)

r1 = 2.75 +
k7 ⊕ k8 ⊕ k9

255
× 0.65, (6)



Symmetry 2018, 10, 660 5 of 30

r2 = 2.75 +
k10 ⊕ k11 ⊕ k12

255
× 0.7, (7)

s1 = 0.15 +
k13 ⊕ k14 ⊕ k15

255
× 0.06, (8)

s2 = 0.13 +
k16 ⊕ k17 ⊕ k18

255
× 0.02, (9)

where ⊕ denotes the exclusive OR (XOR) operation in the binary system. The initial values z1
0, z2

0 and
control parameters p1, p2 of two PWLCM systems are calculated by using the formulas below.

z1
0 =

k19 ⊕ k20 ⊕ k21 ⊕ k22

255
, (10)

z2
0 =

k23 ⊕ k24 ⊕ k25 ⊕ k26

255
, (11)

p1 =
k27 ⊕ k28 ⊕ k29

255
× 0.5, (12)

p2 =
k30 ⊕ k31 ⊕ k32

255
× 0.5. (13)

3.2. Alice’s Encryption Process

Figure 4 is the encryption flowchart. First, k plain images are scrambled with the 3D permutation
model. Second, k permuted images are diffused with the XOR operation. For an easy description,
the sender and recipient are named as Alice and Bob, respectively. The encryption steps are described
in detail as follows.
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Step 1: Generating the Key
k plain images are I1, I2, · · · , Ik, whose sizes are m × n. She computes the variables

x0, y0, r1, r2, s1, s2 of the 2D Logistic map and the variables z1
0, z2

0, p1, p2 of two PWLCM systems with
the method described in Section 3.1.

Step 2: Generating the Chaotic Sequence
The sender iterates PWLCM m times with z1

0 and p1 and then obtains a chaotic sequence
Z1 =

{
z1

i
}

m. She computes

r1
i = mod

(
f loor

(
z1

i × 1016
)

, m
)

, (14)

where z1
i ∈ Z1, R1 =

{
r1

i
}

m, f loor(•) is the rounded-down function, and mod(•) is the modulo
operation. Similarly, she iterates PWLCM n times with z2

0 and p2 and then obtains a chaotic sequence
Z2 =

{
z2

i
}

n. She computes

r2
i = mod

(
f loor

(
z2

i × 1016
)

, n
)

, (15)

where z2
i ∈ Z2 and R2 =

{
r2

i
}

n.
Step 3: Generating the Chaotic Image
Alice iterates the 2D Logistic map m× n times with x0, y0, r1, r2, s1, s2 and then obtains two chaotic

sequences X = {xi}mn and Y = {yi}mn. After that, she computes the following equations.

c1
i = mod

(
f loor

(
xi × 1016

)
, k
)

, (16)

c2
i = mod

(
f loor

(
yi × 1016

)
, 256

)
, (17)

where xi ∈ X and yi ∈ Y. Alice converts
{

c1
i
}

mn,
{

c2
i
}

mn into two m × n chaotic matrices
C1, C2 respectively.

Step 4: Permutation with the Internal-Row Mode
Alice performs the permutation with the internal-row mode on the plain image I1 with the

chaotic sequence R1. For the ith-row pixels, she performs the cyclic-shift operation with ri ∈ R1 pixel
positions to the right direction. Similarly, she performs the permutation with the internal-row mode
on I2, I3, · · · , Ik with R1. The permuted results are I1r, I2r, · · · , Ikr. In addition, Alice can enhance the
algorithm security by a different chaotic sequence for a different plain image.

Step 5: Permutation with the Internal-Column Mode
Alice performs the permutation with the internal-column mode on I1r with the chaotic sequence

R2. For the ith-column pixels, she performs the cyclic-shift operation with ri ∈ R2 pixel positions
to the up direction. Similarly, she performs the permutation with the internal-column mode on
I2r, I3r, · · · , Ikr with R2. The permuted results are I1c, I2c, · · · , Ikc. In addition, Alice can enhance the
algorithm security by a different chaotic sequence for different I1r, I2r, · · · , Ikr.

Step 6: Permutation with the External Mode
Alice performs the permutation with the external mode on I1c, I2c, · · · , Ikc with the chaotic matrix

C1. For the pixel I1c
ij ∈ I1c, she performs the cyclic-shift operation with cij ∈ C1 pixel positions to the

front direction among I1c, I2c, · · · , Ikc. The permuted images are I1e, I2e, · · · , Ike.
Step 7: Image Diffusion
To diffuse the images, Alice performs the XOR operation between I1e, I2e, · · · , Ike and C2,

Ji = Iie ⊕ C2, i = 1, 2, · · · , k. (18)

The diffused results J1, J2, · · · , Jk are the final encryption images.

3.3. Bob’s Decryption Process

Figure 5 is the image decryption flowchart. First, Bob performs the XOR operation on k encrypted
images. Second, he performs the inverse process of the 3D permutation model to recover the pixel
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positions. After Bob receives the keys x0, y0, r1, r2, s1, s2, z1
0, z2

0, p1, p2, he can decrypt J1, J2, · · · , Jk with
the following steps.

Step 1: Generating the Chaotic Sequence
Bob iterates PWLCM m times with z1

0 and p1 and then obtains a chaotic sequence Z1 =
{

z1
i
}

m.
R1 =

{
r1

i
}

m can be calculated with Equation (14). Similarly, he iterates PWLCM n times with z2
0 and p2

and then obtains a chaotic sequence Z2 =
{

z2
i
}

n. R2 =
{

r2
i
}

n that can be calculated with Equation (15).
Step 2: Generating the Chaotic Image
Bob iterates the 2D Logistic map m× n times with x0, y0, r1, r2, s1, s2 and then obtains two chaotic

sequences X = {xi}mn and Y = {yi}mn. According to the element positions and Equations (16) and
(17), he can convert

{
c1

i
}

mn into a chaotic matrix C1
m×n and

{
c2

i
}

mn into a chaotic image C2
m×n.
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Step 3: Image Diffusion
Bob performs the XOR operation between J1, J2, · · · , Jk and C2,

Iie = Ji ⊕ C2, i = 1, 2, · · · , k. (19)

The diffused results I1e, I2e, · · · , Ike are the permuted images.
Step 4: Permutation with the External Mode
Bob performs the permutation with the external mode on I1e, I2e, · · · , Ike with the chaotic matrix

C1. For the pixel I1e
ij ∈ I1e, he performs the cyclic-shift operation with cij ∈ C1 pixel positions to the

back direction among I1e, I2e, · · · , Ike. The permuted results are I1c, I2c, · · · , Ikc.
Step 5: Permutation with the Internal-Column Mode
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Bob performs the permutation with the internal-column mode on I1c and with the chaotic
sequence R2. For the ith-column pixels, he performs the cyclic-shift operation with ri ∈ R2 pixel
positions to the down direction. Similarly, he performs the permutation with the internal-column
mode on I2c, I3c, · · · , Ikc with R2. The permuted results are I1r, I2r, · · · , Ikr.

Step 6: Permutation with the Internal-Row Mode
Bob performs the permutation with the internal-row mode on the image I1r with the chaotic

sequence R1. For the ith-row pixels, he performs the cyclic-shift operation with ri ∈ R1 pixel positions
to the left direction. Similarly, he performs the permutation with the internal-row mode on other
images I2r, I3r, · · · , Ikr with R1. The permuted results are the decryption images I1, I2, · · · , Ik.

4. Existing Similar Algorithms

In the Introduction, References [1–21] are related to image encryption. However, the algorithms
in References [1–8] are single-image encryption algorithms, which cannot encrypt multiple images
at once. However, References [7,8] adopt the classical substitution-permutation network, which are
similar to the proposed algorithm. Although the algorithms in References [9–15] are MIE algorithms,
these MIE algorithms are designed with the features of optical images, which are not suitable for
encrypting digital images. Therefore, this paper compares the proposed algorithm with the algorithms
in References [7,8,16–21].

4.1. Hua’s Algorithm

Hua et al. proposed an image algorithm (short for Hua’s algorithm) [7]. The encryption steps are
described as follows.

Step 1: Alice generates two chaotic matrices SM×N and RM×N with the 2D-LSCM.
Step 2: Alice simultaneously permutes the row and column positions of the plain image PM×N in

one operation and the permuted result is T.
Step 3: Alice diffuses T by

Ci =


[
T1 + TG + TG−1 + f loor(Ri × 232)

]
mod256 i f i = 1[

T2 + C1 + TG + f loor(Ri × 232)
]
mod256 i f i = 2[

T1 + Ci−1 + Ci−2 + f loor(Ri × 232)
]
mod256 i f i ∈ [3, G]

, (20)

where C is the encrypted image, G = N for the row diffusion, and G = M for the column diffusion.
Step 4: Alice repeated Steps 2 and 3 with 4 rounds.

4.2. Wu’s Algorithm

Wu et al. proposed an image algorithm (short for Wu’s algorithm) [8]. The encryption steps are
described below.

Step 1: the plain image is Pm×n and Alice computes temp =
(
∑i Pi)mod256.

Step 2: Alice generates the chaotic sequences x1, y1, x2, y2 with the 2D-HSM and computes

Rx = round(xi
1 × 1010)mod8 + 1, (21)

Ry = round(yi
1 × 1010)mod8 + 1, (22)

Rz = round(xi
2 × 1010)mod8 + 1, (23)

R = round(yi
2 × 1010)mod256, (24)

where round(•) is the function to obtain the nearest decimal or integer.
Step 3: Alice encodes R, P with the rules Rz, Ry, respectively, and the encoded results are

DNAR, DNAP.



Symmetry 2018, 10, 660 9 of 30

Step 4: Alice computes
DNAP1 = DNAP ⊗ DNAR, (25)

where ⊗ denotes the DNA XOR operation.
Step 5: Alice decodes DNAP1 with the rule Rx, and the encoded result is New_P.
Step 6: Alice computes

D = New_P⊕ temp, (26)

where D is the diffused result.
Step 7: Alice permutes D with x1 to get the encrypted image Cm×n.

4.3. Li’s Algorithm

Li et al. proposed an MIE algorithm (short for Li’s algorithm) [16]. The encryption steps are
described as follows.

Step 1: Alice performs the Discrete Wavelet Transform (DWT) for k plain images and combines
low-frequency coefficients into the reassembled image.

Step 2: Alice scrambles the reassembled image with the Arnold cat map to get the confused image.
Step 3: Alice segments the confused image into k image blocks with an equal size.
Step 4: Alice scrambles, rotates, and diffuses these k image blocks with the chaotic map.
Step 5: Alice reassembles the result of Step 4 into the encryption image.

4.4. Zhang’s Algorithm 1

Zhang et al. proposed an MIE algorithm (short for Zhang’s Algorithm 1) [17]. The encryption
steps are described as follows.

Step 1: according to the given rule, Alice combines k plain images into a big image. After that,
she segments the big image into image blocks, i.e., pure image elements.

Step 2: Alice scrambles pure image elements with PWLCM to obtain the mixed image elements.
Step 3: Alice generates the big-scrambled image with the mixed image elements.
Step 4: Alice segments the big-scrambled image into k encrypted images whose filenames are

generated by PWLCM.

4.5. Zhang’s Algorithm 2

Zhang et al. proposed an MIE algorithm (short for Zhang’s Algorithm 2) [18]. The encryption
steps are described below.

Step 1: Alice generates pure image elements.
Step 2: Alice scrambles pure image elements with PWLCM and then obtains the mixed

image elements.
Step 3: Alice generates k scrambled images with mixed image elements.
Step 4: to get the encryption images, Alice performs the XOR operation on k scrambled images.

4.6. Zhang’s Algorithm 3

Zhang et al. proposed an MIE algorithm (short for Zhang’s Algorithm 3) [19]. The encryption
steps are described below.

Step 1: according to the given rule, Alice encodes k plain images with the DNA codes.
Step 2: Alice scrambles the DNA sequences of plain images with PWLCM.
Step 3: Alice segments the scrambled DNA sequence into k parts and converts them into k

scrambled DNA matrices.
Step 4: Alice performs the DNA XOR operation between k scrambled DNA matrices and the DNA

matrix of the chaotic image generated by PWLCM and then obtains k diffused DNA matrices.
Step 5: Alice decodes k diffused DNA matrices to get the encryption images.
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4.7. Suri’s Algorithm

Suri et al. proposed an MIE algorithm (short for Suri’s algorithm) [20]. The encryption steps are
described as follows.

Step 1: Alice encrypts two plain images with two different methods. Image 1 is encrypted by AES
and Image 2 is encrypted by a chaotic-based image encryption algorithm. Encrypted images 1 and 2
can be obtained.

In this paper, the size of two plain images is m × n. For the chaotic-based image encryption
algorithm, PWLCM is used to generate a chaotic sequence X = {xi}m×n. The integer chaotic sequence
Y = {yi}m×n can be calculated by yi = mod

(
f loor

(
xi × 1016), 256

)
. Alice performs the XOR operation

on Image 2 and Y. For the AES-based image encryption algorithm, Alice combines 16 pixel values to
constitute the 128-bit data block and then uses AES-128 to encrypt the data block.

Step 2: inspired by the Cramer’s rule, Alice combines two encrypted images by using the
formulas below.

I1[i, j] = w11 × I′[i, j] + w12 × I ′′ [i, j], (27)

I2[i, j] = w21 × I′[i, j] + w22 × I ′′ [i, j], (28)

where w11, w12, w21, w22 are weights, I′, I ′′ are the encrypted images in Step 1, and I1, I2 are the final
encrypted images. In this paper, the weights are w11 = 0.63, w12 = 0.37, w21 = 0.32, w22 = 0.68.

4.8. Das’s Algorithm

Das et al. proposed an MIE algorithm (short for Das’s algorithm) [21]. The encryption steps are
described as follows.

Step 1: the pixel values of two plain images A = [aij]m×n and B = [bij]m×n can be expressed with
8 bits in the binary form, i.e., aij = a1

ija
2
ij · · · a8

ij and bij = b1
ijb

2
ij · · · b8

ij;
Step 2: Alice performs the crossover operation (i.e., exchanging bits between the pixel values

aij and bij) and mutation operation (i.e., complementing bits for pixel values aij and bij). The pixel
values of diffused images C1 = [c1ij]m×n and C2 = [c2ij]m×n are c1ij = a1

ija
2
ija

r
ijb

r+1
ij br+2

ij · · · ∼ b8
ij and

c2ij = b1
ijb

2
ijb

r
ija

r+1
ij ar+2

ij · · · ∼ a8
ij where r ∈ {1, 2, · · · , 8} and ∼ denotes the complement operation.

In this paper, r is simulated with the element of the integer chaotic sequence Y = {yi}m×n where
yi = mod

(
f loor

(
xi × 1016), 8

)
+ 1, xi ∈ X and X is a chaotic sequence generated by PWLCM.

Step 3: Alice performs the XOR operation on the diffused images C1 and C2 pixel-by-pixel with a
random set Ek to get encrypted images. In this paper, Ek is simulated by a chaotic image generated
by PWLCM.

5. Experiments

The experimental purpose is to encrypt nine plain images with the same size 512× 512, as shown
in Figure 6a–i, respectively. We developed the proposed algorithm, Hua’s algorithm, Wu’s algorithm,
Li’s algorithm, Zhang’s Algorithms 1–3, Suri’s algorithm, and Das’s algorithm with Matlab R2016a.
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Figure 6. Plain images: (a) Tree. (b) Tiger. (c) House. (d) Flower. (e) Building. (f) Road. (g) Ship.
(h) Boy. (i) Machine.

For the proposed algorithm, the big image is in Figure 7. Figure 6a–i constitute the first-row,
second-row, and third-row image blocks of the big image, respectively. Therefore, the size of the big
image is 1536× 1536. K = 0x 36fad8690b3812a24c2fa1e50a9d727c74a1e a2a48bca87f7fa20f543a8b8fc5.
With Equations (3)–(13), the variable values are x0 = 0.07843137254902, y0 = 0.352941176470588,
r1 = 3.392352941176471, r2 = 3.043725490196079, s1 = 0.203882352941176, s2 = 0.143254901960784,
z1

0 = 0.203921568627451, z2
0 = 0.039215686274510, p1 = 0.190196078431373, and p2 = 0.378431372549020.

For the proposed algorithm, the encryption images are shown in Figure 8a–i. The recipient can
decrypt them with the decryption keys. The decrypted images are lossless, which means they are the
same as plain images.

To encrypt the plain images in Figure 6 with Hua’s algorithm, we repeatedly performed the
encryption process nine times. The encryption images are shown in Figure 9.

To encrypt the plain images in Figure 6 with Wu’s algorithm, we repeatedly performed the
encryption process nine times. The encryption images are shown in Figure 10.

To encrypt the plain images in Figure 6 with Li’s algorithm, Figure 11 is the reassembled image,
which only contains the low-frequency coefficients of the plain images. Figure 12 is the encryption
image. The decryption image is the same as Figure 11.
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To encrypt the plain images in Figure 6 with Zhang’s Algorithm 2, the encryption images are
shown in Figure 14a–i.
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To encrypt the plain images in Figure 6 with Zhang’s Algorithm 3, the encryption images are
shown in Figure 15a–i.

To encrypt the plain images in Figure 6a,b with Suri’s algorithm, the encryption images are shown
in Figure 16a,b.

To encrypt the plain images in Figure 6a,b with Das’s algorithm, the encryption images are shown
in Figure 17a,b.

Therefore, the encryption images of Zhang’s Algorithm 1 stimulate the block effect for the
large size of image blocks. The encryption image of Li’s algorithm is lossy and Bob can only
recover the low-frequency coefficients of the plain images. However, the encryption images of the
proposed algorithm, Hua’s algorithm, Wu’s algorithm, Li’s algorithm, Zhang’s Algorithms 2 and 3,
Suri’s algorithm, and Das’s algorithm are very chaotic and have excellent encryption effects.
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6. Algorithm Analyses

A desirable image encryption algorithm can resist several commonly used attacks. This paper
discusses the performance of the proposed algorithm in detail.
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6.1. Key Space Analysis

For the proposed algorithm, the keys are the variables x0, y0, r1, r2, s1, s2 of 2D Logistic map and
the variables z1

0, z2
0, p1, p2 of two PWLCM systems. If the calculating precision is 10−16, the key space

is 10160. For Hua’s algorithm, its key space is 2256 ≈ 1.16× 1077. For Wu’s algorithm, its key space
is 10128. Nevertheless, for Zhang’s Algorithms 1–3, Suri’s algorithm, and Das’s algorithm, their key
spaces are 1016×4 = 1064. Lastly, the key spaces of all these algorithm are very large, but the proposed
algorithm has the largest key space.

6.2. Histogram Analysis

Figure 18a–i are the histograms of plain images, respectively. They are different from each other
and these histograms concentrate on some gray levels.
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For the proposed algorithm, Figure 19a–i are the histograms of nine encryption images,
respectively. They are similar to each other and the pixel number for the different gray levels is
almost equal.
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Figure 19. Histograms of encryption images of the proposed algorithm: (a) Image 1. (b) Image 2.
(c) Image 3. (d) Image 4. (e) Image 5. (f) Image 6. (g) Image 7. (h) Image 8. (i) Image 9.

For Hua’s algorithm, Figure 20a–i are the histograms of nine encryption images, respectively.
Hua’s algorithm not only scrambles the pixel positions but also changes the pixel values. Therefore,
the histograms of encryption images are desirable.
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For Zhang’s Algorithm 1, Figures 22a–i are the histograms of nine encryption images, 
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Figure 20. Histograms of encryption images of Hua’s algorithm: (a) Image 1. (b) Image 2. (c) Image 3.
(d) Image 4. (e) Image 5. (f) Image 6. (g) Image 7. (h) Image 8. (i) Image 9.

For Wu’s algorithm, Figure 21a–i are the histograms of nine encryption images, respectively.
Wu’s algorithm not only scrambles the pixel positions but also changes the pixel values. Therefore,
the histograms of encryption images are desirable.
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Figure 21. Histograms of encryption images of Wu’s algorithm: (a) Image 1. (b) Image 2. (c) Image 3.
(d) Image 4. (e) Image 5. (f) Image 6. (g) Image 7. (h) Image 8. (i) Image 9.

For Zhang’s Algorithm 1, Figure 22a–i are the histograms of nine encryption images, respectively.
Zhang’s Algorithm 1 only scrambles the pixel block positions. Therefore, the histograms of encryption
images are undesirable.
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Figure 22. Histograms of encryption images of Zhang’s Algorithm 1: (a) Image 1. (b) Image 2.
(c) Image 3. (d) Image 4. (e) Image 5. (f) Image 6. (g) Image 7. (h) Image 8. (i) Image 9.

For Zhang’s Algorithms 2 and 3 and Das’s algorithm, Figure 23a–i, Figure 24a–i, and Figure 25a,b
are the histograms of their encryption images, respectively. These algorithms not only scramble the
pixel positions but also change the pixel values. Therefore, these histograms are very uniform.
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Figure 23. Histograms of encryption images of Zhang’s Algorithm 2: (a) Image 1. (b) Image 2.
(c) Image 3. (d) Image 4. (e) Image 5. (f) Image 6. (g) Image 7. (h) Image 8. (i) Image 9.
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Figure 25. Histograms of encryption images of Das’s algorithm: (a) Image 1. (b) Image 2.

For Suri’s algorithm, Figure 26a,b are the histograms of encryption images, respectively.
Equations (27) and (28) obviously reduce the pixel numbers for the lower gray levels and higher
gray levels. Therefore, these histograms are not uniform.
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Therefore, for Zhang’s Algorithm 1 and Suri’s algorithm, the histograms of their encryption
images are not uniform. However, for the proposed algorithm, Hua’s algorithm, Wu’s algorithm,
Zhang’s Algorithms 2 and 3, and Das’s algorithm, the histograms of their encryption images are
desirable, which are very different from the histograms in Figure 18.

6.3. Correlation Analysis

The correlation coefficient of adjacent pixels is defined by the equations below.

rx,y =
E((x− E(x))(y− E(y)))√

D(x)D(y)
, (29)

E(x) =
1
N
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∑
i=1

xi, (30)

D(x) =
1
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∑
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(xi − E(x))2, (31)

where E(•), D(•) denote the expectation and variance, respectively.
For the proposed algorithm, we take the first plain image and encryption image as examples to

evaluate the performance of pixel correlation. We select randomly 5000 pixels from them and obtain
their adjacent pixels. Figures 27 and 28 reflect their correlation. From Figure 27, we can see that the
pixel correlation of the plain image is very strong. Figure 28 is very chaotic and shows that the pixel
correlation of the encryption image is very weak.
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Figure 28. Adjacent pixel correlation of the first encryption image: (a) Horizontal direction. (b) Vertical
direction. (c) Diagonal direction.

Table 1 shows the correlation coefficients of plain images. For the proposed algorithm, Hua’s
algorithm, Wu’s algorithm, Li’s algorithm, and Zhang’s Algorithms 1–3, Suri’s algorithm, and Das’s
algorithm, the correlation coefficients are listed in Table 2. The data in Table 1 display that the
correlation coefficients are very large. However, the data in Table 2 display that the correlation
coefficients are very small for the proposed algorithm, Hua’s algorithm, Wu’s algorithm, Zhang’s
Algorithms 2 and 3, Suri’s algorithm, and Das’s algorithm. However, for Zhang’s Algorithm 1,
the correlation coefficients in Table 2 are very large. Therefore, the proposed algorithm destroys the
pixel correlation well.

Table 1. Correlation coefficients of plain images.

Directions Horizontal Vertical Diagonal

Plain image 1 0.8788 0.8733 0.8256
Plain image 2 0.9239 0.9170 0.8779
Plain image 3 0.9395 0.9131 0.8820
Plain image 4 0.9440 0.9353 0.9032
Plain image 5 0.8841 0.8178 0.7632
Plain image 6 0.9504 0.9422 0.9165
Plain image 7 0.9896 0.9848 0.9751
Plain image 8 0.9812 0.9666 0.9528
Plain image 9 0.9603 0.9579 0.9265

Table 2. Correlation coefficients of encryption images.

Algorithms Names Horizontal Vertical Diagonal

Hua’s algorithm

Encryption image 1 0.0011 −0.0019 −0.0084
Encryption image 2 −0.0012 0.0013 0.0016
Encryption image 3 0.0019 0.0044 0.0020
Encryption image 4 0.0016 0.0039 −0.0022
Encryption image 5 −0.0056 −0.0013 −0.0033
Encryption image 6 −0.0063 −0.0007 −0.0006
Encryption image 7 0.0006 −0.0004 −0.0002
Encryption image 8 −0.0010 0.0007 0.0001
Encryption image 9 0.0012 −0.0011 −0.0015

Wu’s algorithm

Encryption image 1 0.0034 −0.0022 0.0014
Encryption image 2 0.0011 −0.0037 0.0014
Encryption image 3 0.0024 0.0002 0.0017
Encryption image 4 0.0012 0.0012 −0.0059
Encryption image 5 0.0007 0.0049 −0.0035
Encryption image 6 0.0014 0.0015 −0.0023
Encryption image 7 0.0007 0.0034 0.0017
Encryption image 8 0.0009 0.0025 −0.0027
Encryption image 9 0.0025 −0.0026 −0.0007
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Table 2. Cont.

Algorithms Names Horizontal Vertical Diagonal

The proposed algorithm

Encryption image 1 0.0021 0.0013 −0.0024
Encryption image 2 −0.0047 0.0147 0.0014
Encryption image 3 0.0016 0.0026 0.0001
Encryption image 4 0.0012 −0.0001 0.0033
Encryption image 5 −0.0022 0.0018 0.0021
Encryption image 6 −0.0021 −0.0026 0.0018
Encryption image 7 −0.0043 −0.0034 0.0030
Encryption image 8 −0.0020 0.0026 −0.0001
Encryption image 9 0.0024 0.0001 −0.0028

Zhang’s Algorithm 1

Encryption image 1 0.9463 0.9356 0.8806
Encryption image 2 0.9469 0.9345 0.8803
Encryption image 3 0.9454 0.9283 0.8745
Encryption image 4 0.9422 0.9251 0.8695
Encryption image 5 0.9367 0.9209 0.8607
Encryption image 6 0.9395 0.9275 0.8701
Encryption image 7 0.9408 0.9236 0.8643
Encryption image 8 0.9492 0.9409 0.8875
Encryption image 9 0.9491 0.9367 0.8849

Zhang’s Algorithm 2

Encryption image 1 −0.0045 −0.0001 −0.0047
Encryption image 2 −0.0090 −0.0039 0.0005
Encryption image 3 −0.0070 −0.0003 −0.0006
Encryption image 4 −0.0046 0.0001 −0.0023
Encryption image 5 −0.0092 0.0005 −0.0024
Encryption image 6 −0.0099 0.0010 −0.0047
Encryption image 7 −0.0051 −0.0007 −0.0030
Encryption image 8 −0.0109 −0.0009 −0.0042
Encryption image 9 −0.0099 −0.0010 0.0020

Zhang’s Algorithm 3

Encryption image 1 −0.0004 −0.0001 0.0006
Encryption image 2 −0.0004 −0.0002 −0.0027
Encryption image 3 0.0012 0 0.0020
Encryption image 4 −0.0048 −0.0020 0.0027
Encryption image 5 0.0006 0.0011 −0.0069
Encryption image 6 −0.0016 0.0019 −0.0006
Encryption image 7 −0.0002 0.0014 0.0003
Encryption image 8 −0.0012 0.0018 0.0018
Encryption image 9 0.0037 −0.0012 0.0011

Suri’s algorithm Encryption image 1 0 −0.0015 −0.0023
Encryption image 2 −0.0044 −0.0025 0.0005

Das’s algorithm Encryption image 1 −0.0037 −0.0015 0.0041
Encryption image 2 −0.0059 −0.0022 −0.0011

6.4. Differential Attack Analysis

The differential attack can check the plaintext sensitivity for an image encryption algorithm [26].
Therefore, for a little change to the plain image, an excellent image encryption algorithm can spread
this influence over the whole encryption process. The Number of Pixels Change Rate (NPCR) is
shown below.

f (i, j) =

{
0 I′(i, j) = I ′′ (i, j)
1 I′(i, j) 6= I ′′ (i, j)

, (32)

NPCR =

m
∑

i=1

n
∑

j=1
f (i, j)

m× n
× 100%, (33)
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where I′(i, j) and I ′′ (i, j) denote two encrypted images. One corresponds to the plain image while the
other corresponds to the changed plain image.

The Unified Average Changing Intensity (UACI) is shown in the equation below.

UACI =

m
∑

i=1

n
∑

j=1
|I′(i, j)− I ′′ (i, j)|

255×m× n
× 100%. (34)

Even if two images are very similar, their hash values of SHA-256 are completely different [27].
We changed the gray value of I1(1, 1) from the original value 59 into 200. For the proposed algorithm,
Hua’s algorithm, Wu’s algorithm, Zhang’s Algorithms 1–3, Suri’s algorithm, and Das’s algorithm,
experimental data are shown in Table 3. For Hua’s algorithm and Wu’s algorithm, we list the NPCR and
UACI values of the plain image 1. For the proposed algorithm, Hua’s algorithm, Wu’s algorithm, and
Zhang’s Algorithms 2 and 3, the NPCR and UACI values are very large. For Suri’s algorithm, the UACI
values are a little smaller. However, the NPCR and UACI values are zero for Zhang’s Algorithm 1 and
Das’s algorithm. Therefore, the proposed algorithm is strong for the differential attack.

Table 3. NPCR and UACI values.

Algorithms Name NPCR UACI

Hua’s algorithm Plain image 1 99.60% 33.43%

Wu’s algorithm Plain image 1 99.99% 33.61%

The proposed algorithm

Plain image 1 99.64% 33.55%
Plain image 2 99.63% 33.61%
Plain image 3 99.68% 33.72%
Plain image 4 99.68% 33.71%
Plain image 5 99.63% 33.70%
Plain image 6 99.67% 33.60%
Plain image 7 99.67% 33.63%
Plain image 8 99.65% 33.65%
Plain image 9 99.65% 33.71%

Zhang’s Algorithm 1

Plain image 1 0 0
Plain image 2 0 0
Plain image 3 0 0
Plain image 4 0 0
Plain image 5 0 0
Plain image 6 0 0
Plain image 7 0 0
Plain image 8 0 0
Plain image 9 0 0

Zhang’s Algorithm 2

Plain image 1 99.64% 33.55%
Plain image 2 99.63% 33.61%
Plain image 3 99.68% 33.72%
Plain image 4 99.68% 33.71%
Plain image 5 99.63% 33.70%
Plain image 6 99.67% 33.60%
Plain image 7 99.67% 33.63%
Plain image 8 99.65% 33.65%
Plain image 9 99.65% 33.71%
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Table 3. Cont.

Algorithms Name NPCR UACI

Zhang’s Algorithm 3

Plain image 1 99.61% 33.51%
Plain image 2 99.62% 33.47%
Plain image 3 99.59% 33.47%
Plain image 4 99.61% 33.48%
Plain image 5 99.61% 33.47%
Plain image 6 99.62% 33.52%
Plain image 7 99.62% 33.48%
Plain image 8 99.62% 33.44%
Plain image 9 99.63% 33.51%

Suri’s algorithm Plain image 1 99.33% 21.066%
Plain image 2 98.79% 10.07%

Das’s algorithm Plain image 1 0 0
Plain image 2 0 0

6.5. Information Entropy Analysis

For the gray image I, we define the information entropy by the equation below.

H(I) = −
255

∑
i=0

P(mi) log2 P(mi), (35)

where mi, i = 0, 1, · · · , 255 represents the ith gray level and P(mi) denotes the emergence
probability. For the proposed algorithm, Hua’s algorithm, Wu’s algorithm, Zhang’s Algorithms 1–3,
Suri’s algorithm, and Das’s algorithm, the entropy values of encrypted images are shown in Table 4.
For Hua’s algorithm and Wu’s algorithm, we list the entropy values of the encryption image 1.
For Zhang’s Algorithm 1 and Suri’s algorithm, their values are smaller than the values of the
proposed algorithm. Nevertheless, for the proposed algorithm, Hua’s algorithm, Wu’s algorithm,
Zhang’s Algorithms 2 and 3, Suri’s algorithm, and Das’s algorithm, the entropy values are very large,
which means these algorithms are strong for the statistical attack.

Table 4. Information entropy values.

Algorithms Names Entropy

Hua’s algorithm Encryption image 1 7.9992

Wu’s algorithm Encryption image 1 7.9993

The proposed algorithm

Encryption image 1 7.9993
Encryption image 2 7.9993
Encryption image 3 7.9994
Encryption image 4 7.9992
Encryption image 5 7.9992
Encryption image 6 7.9992
Encryption image 7 7.9993
Encryption image 8 7.9993
Encryption image 9 7.9994



Symmetry 2018, 10, 660 27 of 30

Table 4. Cont.

Algorithms Names Entropy

Zhang’s Algorithm 1

Encryption image 1 7.8442
Encryption image 2 7.8339
Encryption image 3 7.8817
Encryption image 4 7.8827
Encryption image 5 7.8819
Encryption image 6 7.8951
Encryption image 7 7.8912
Encryption image 8 7.8534
Encryption image 9 7.8312

Zhang’s Algorithm 2

Encryption image 1 7.9993
Encryption image 2 7.9993
Encryption image 3 7.9994
Encryption image 4 7.9994
Encryption image 5 7.9993
Encryption image 6 7.9993
Encryption image 7 7.9993
Encryption image 8 7.9992
Encryption image 9 7.9992

Zhang’s Algorithm 3

Encryption image 1 7.9994
Encryption image 2 7.9992
Encryption image 3 7.9994
Encryption image 4 7.9992
Encryption image 5 7.9993
Encryption image 6 7.9992
Encryption image 7 7.9994
Encryption image 8 7.9994
Encryption image 9 7.9994

Suri’s algorithm Encryption image 1 7.7558
Encryption image 2 7.7825

Das’s algorithm Encryption image 1 7.9992
Encryption image 2 7.9992

6.6. Lossy Analysis

The lossless image encryption algorithm is expected in most cases. For Li’s algorithm,
the decryption image is lossy, which only contains the low-frequency coefficients of plain images.
For Suri’s algorithm, the weights in Equations (27) and (28) are decimals. Therefore, the decryption
images are slightly lossy. However, for the proposed algorithm, Hua’s algorithm, Wu’s algorithm,
Zhang’s Algorithms 1–3, and Das’s algorithm, the decryption images are lossless.

6.7. Input Image Number Analysis

As an MIE algorithm, the input image number is expected to be suitable for many cases. For Hua’s
algorithm and Wu’s algorithm, they can only encrypt one plain image at once. For Suri’s algorithm
and Das’s algorithm, they can only encrypt two plain images at once. However, for the proposed
algorithm, Li’s algorithm, and Zhang’s Algorithms 1–3, they can encrypt k plain images at once and
their input image number can be determined by the user. Therefore, the superiority of the proposed
algorithm is over both Suri’s algorithm and Das’s algorithm.
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6.8. Time Complexity Analysis

(1) Computation Complexity Analysis

The size of k plain images is m× n. The computation complexity for adjusting a pixel, a DNA
code, a bit, or an image block position, DNA coding a pixel, the decimal-binary conversion on a pixel,
and XOR or DNA XOR operation on a pixel value, DWT on a pixel, Arnold transformation on a pixel,
and AES encrypting a pixel is S, D, B, X, W, A, and E on average, respectively.

(1) For the proposed algorithm, the main time-consuming operations include scrambling the
pixel position with the 3D permutation model and the XOR operation for changing the pixel values.
For the permutation with the internal-row mode, all the pixel positions of k plain images are scrambled,
which means the computation complexity is k×m× n× S. Similarly, the computation complexity
of both the internal-column and external modes is k × m × n × S. For the image diffusion stage,
all the pixel values of k plain images are performed by the XOR with the chaotic image C2. Therefore,
the computation complexity is k×m× n× X. Lastly, the computation complexity for the proposed
algorithm is about kmn(3S + X) in total.

(2) For Hua’s algorithm, the main time-consuming operations include scrambling the pixel
positions and changing the pixel values. The computation complexity for changing a pixel value
is Q on average with Equation (20). To encrypt one plain image, we need to perform four rounds
of permutation and diffusion operations. Therefore, to encrypt k plain images, the computation
complexity for Hua’s algorithm is about 4kmn(S + Q).

(3) For Wu’s algorithm, the main time-consuming operations are the DNA coding, scrambling
DNA codes, XOR operation, and the DNA XOR operation. To encrypt one plain image, we need to
encode R, P and decode DNAP1 with the DNA coding theory. At the same time, we need to perform
the DNA XOR operation and XOR operation in Equations (25) and (26), respectively. Therefore,
to encrypt k plain images, the computation complexity for Wu’s algorithm is about kmn(3D + 2X).

(4) For Li’s algorithm, the main time-consuming operations are the DWT transformation,
the Arnold transformation, and the XOR operation. All the pixel values of k plain images are performed
by the DWT operation. Therefore, the computation complexity is k×m× n×W. The reassembled
image only constituted of low-frequency coefficients is scrambled with the Arnold transformation.
Therefore, the computation complexity is 1

4 × k×m× n× A. All the pixel values of k plain images
are performed by the XOR with the chaotic image. Therefore, the computation complexity is
1
4 × k×m× n× X. Lastly, the computation complexity for Li’s algorithm is about kmn

4 (4W + A + X)

in total.
(5) For Zhang’s Algorithm 1, the main time-consuming operation is scrambling image blocks.

If the size of image blocks are 8× 8, there are 1
64 × k×m× n image blocks for k plain images. Therefore,

the computation complexity for Zhang’s Algorithm 1 is about kmnS
64 .

(6) For Zhang’s Algorithm 2, the main time-consuming operations are the scrambling of the image
blocks and the XOR operation. If the size of image blocks is 8× 8, the computation complexity of
scrambling the image blocks is kmnS

64 . The computation complexity of the XOR operation is k×m×
n× X. Lastly, the computation complexity for Zhang’s Algorithm 2 is about kmn

(
S
64 + X

)
in total.

(7) For Zhang’s Algorithm 3, the main time-consuming operations are the DNA coding, scrambling
DNA codes, and the DNA XOR operation. The computation complexity for Zhang’s Algorithm 3 is
about mn[k(2D + S + X) + D] in total [19].

(8) For Suri’s algorithm, the main time-consuming operations are the XOR operation and AES
encryption. The computation complexity for Suri’s algorithm is about mn(X + E).

(9) For Das’s algorithm, the main time-consuming operations are the decimal-binary conversion,
scrambling bits between the pixel values, and the XOR operation. The computation complexity for
Das’s algorithm is about 2mn(2B + S + X).
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(2) Encryption Time Analysis

To encrypt the plain images in Figure 6, this paper implements the proposed algorithm,
Hua’s algorithm, Wu’s algorithm, Li’s algorithm, Zhang’s Algorithms 1–3, Suri’s algorithm, and Das’s
algorithm with Matlab R2016a. The hardware environment is PC with Intel M-5Y71@1.20 GHz CPU
and 8 GB Memory. The encryption time of these image algorithms is listed in Table 5. The experimental
results show that the encryption speed of Zhang’s Algorithm 1 is the fastest and the proposed algorithm
is faster than Hua’s algorithm, Wu’s algorithm, Li’s algorithm, Zhang’s Algorithm 3, Suri’s algorithm,
or Das’s algorithm. Therefore, the proposed algorithm is the most efficient, which is suitable for
practical image encryption.

Table 5. Encryption time (unit: second).

Algorithms Time

The proposed algorithm 8.7202
Hua’s algorithm 21.4147
Wu’s algorithm 1300.484
Li’s algorithm 85.1965

Zhang’s algorithm 1 0.255 [17]
Zhang’s algorithm 2 0.7103 [18]
Zhang’s algorithm 3 43 [20]

Suri’s algorithm 407.9352
Das’s algorithm 149.7175

7. Conclusions and Outlook

Inspired by the magic cube game, this paper establishes a 3D permutation model to permute
images, which includes the internal-row, internal-column, and external modes. An MIE algorithm is
designed with the 3D permutation model. When compared with eight similar algorithms, the proposed
algorithm performs well. Simulation and algorithm evaluation display that the proposed algorithm is
secure and efficient.
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