
symmetryS S

Article

Construction and Simulation of Composite Measures
and Condensation Model for Designing Probabilistic
Computational Applications

Susmit Bagchi

Department of Aerospace and Software Engineering (Informatics), Gyeongsang National University,
Jinju 660701, Korea; profsbagchi@gmail.com

Received: 13 October 2018; Accepted: 13 November 2018; Published: 15 November 2018 ����������
�������

Abstract: The probabilistic algorithms are widely applied in designing computational applications
such as distributed systems and probabilistic databases, to determine distributed consensus in
the presence of random failures of nodes or networks. In distributed computing, symmetry
breaking is performed by employing probabilistic algorithms. In general, probabilistic symmetry
breaking without any bias is preferred. Thus, the designing of randomized and probabilistic
algorithms requires modeling of associated probability spaces to generate control-inputs. It is
required that discrete measures in such spaces are computable and tractable in nature. This paper
proposes the construction of composite discrete measures in real as well as complex metric
spaces. The measures are constructed on different varieties of continuous smooth curves having
distinctive non-linear profiles. The compositions of discrete measures consider arbitrary functions
within metric spaces. The measures are constructed on 1-D interval and 2-D surfaces and, the
corresponding probability metric product is defined. The associated sigma algebraic properties are
formulated. The condensation measure of the uniform contraction map is constructed as axioms.
The computational evaluations of the proposed composite set of measures are presented.

Keywords: measure spaces; probability; metric spaces; randomized algorithms; monotone

1. Introduction

The applications of probabilistic models in designing algorithms and solving computational
problems are pervasive in nature. The applications of randomized or probabilistic algorithms are
found in distributed systems for determining consensus and agreement in the presence of random
failures of nodes as well as networks [1]. The probabilistic databases require specific and computable
models to measure uncertainties in noisy datasets [2,3]. The probabilistic algorithms are designed for
events segregation in a computing system and to perform cluster analysis in probabilistic databases [4].
Furthermore, the computation of symmetry breaking in distributed systems requires probabilistic
algorithms [5]. In general, the deterministic algorithms offer relatively optimized solutions, having
higher computational cost. Often, the deterministic algorithms employ restrictive approximate models
of the problems leading to over simplification [6]. However, the probabilistic algorithms are more
suitable to formulate algorithmic models of systems having inherent uncertainties [7]. For example,
the algorithmic measurements of the occurrence of certain types or classes of events in a set of random
events employ probabilistic models [8]. The algorithm randomly assigns a set of initial values to the
elements of a set of events prior to computing the maximal independent set. In general, the probabilistic
and randomized algorithms offer acceptable solutions at reduced computational cost in comparison to
deterministic algorithms [5,9,10]. In the extreme point identification algorithm within d-dimensional
real space for cluster analysis, the probabilistic estimation models are employed [9]. The other
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examples of probabilistic distributed algorithms are probabilistic graph coloring [11] and computation
of symmetry breaking in distributed computing systems [12]. The model checking algorithms are
generally designed using temporal logic. However, the probabilistic models involving discrete-time
Markov chains can be employed to realize probabilistic model checking as well as verification [13].
The designing of probabilistic computing systems requires the formulation of appropriate models of
probability measures [14]. The properties of the models vary depending upon the associated measure
spaces. Researchers have proposed computable metric spaces with probabilistic measures as well as
associated binary representations for applications in randomized algorithms [15]. Thus, one can view
the metric spaces as computable entities with appropriate representations. Moreover, the models of
discrete measures are important for designing and analyzing probabilistic computing systems as well
as distributed algorithms.

Motivation

The probabilistic algorithms are effective solutions to design computational applications under
uncertainties offering acceptable results [16–18]. The randomized and probabilistic algorithms require
input data and a random bit-stream or set of keys to compute on datasets [10]. The outputs of
randomized algorithms vary depending on the random input values and the key, which changes
the execution trajectory of the respective algorithm. The generations of a set of random keys having
specific characteristics require corresponding probability measure spaces. The common design patterns
of probabilistic and randomized algorithms involve the formulation of a probability model to generate
and assign values to a set of events having certain significance depending upon the applications.
The correctness analysis of randomized algorithms requires involvement of probability spaces of
computation [5]. The probability measure spaces have applications in modeling and designing
probabilistic systems such as probabilistic distributed algorithms [1,19]. It is often desired that discrete
measures associated with probability follow some computable smooth function while sampling
random values in order to reduce computational cost and to enhance easy realizations of software
systems. This paper proposes a set of new models to construct composite discrete measures on
arbitrary smooth functions. The proposed model considers real and complex (R, C) metric spaces.
The corresponding analytical properties of the model are formulated using sigma algebraic constructs.
The monotone space properties are presented. The condensation measure of the uniform contraction
map is formulated. The main contributions of the paper are as follows.

• A generalized computational model of composite discrete measures on arbitrary smooth functions
is formulated in real and complex metric spaces.

• It is illustrated that the model can operate on linear, non-linear and arbitrary smooth functions.
• The operational modes and properties of the measures on z-plane are constructed.
• The construction of composite measures on a real 2-D surface is proposed.
• The concept of condensation measure of uniform contraction map and the associated properties

are presented.

The rest of the paper is organized as follows. Section 2 presents related work. Section 3 presents a
formulation of the model and its properties. Section 4 introduces monotone class and metric product
forms. The formulation of a composite measure on 2-D real surface and condensation measure of
the contraction map are presented in Section 5. The computational evaluations of the models are
illustrated in Section 6. Section 7 depicts comparative analysis. Finally, Section 8 concludes the paper.

2. Related Work

The models of various probability measures are applied in designing distributed algorithms
and systems. The formal modeling and analysis of distributed detection of a set of intersections are
performed based on a probabilistic model [20]. The main aim of applications of probabilistic models is
to reduce computational complexity exhausting the entire search space, while achieving acceptable



Symmetry 2018, 10, 638 3 of 16

results. The applications of probability measures are found in designing election algorithms in complex
networks. For example, a probabilistic distributed algorithm is designed for uniform election in
a polyo-triangular graph [21]. The construction of discrete probability models requires associated
discrete measures as a foundation [22]. Interestingly, the discrete measures can be formulated in
metric spaces having specialized properties. The metric space is a space on a metrizable set equipped
with axioms. A special class of metric spaces is called complete separable spaces structured with
weak topology [23]. In general, the mapping on such metric spaces is a continuous and onto function.
However, the continuous bilinear onto mapping in a space is not necessarily to be open in (0, 0).
The concept of formulating probability measures over the metric spaces is explained in Reference [24].

The construction of probability measures over a set of convex bodies in metric spaces is
proposed by researchers [25]. The model considers n-dimensional Euclidean spaces and the
probability space of norms are defined by unit ball. The formulation covers smooth bodies and
the neighborhood with positive probability measures. The research on algorithmic randomness
in Cantor space is conceptualized incorporating the random infinite sequences. It is noted that
the concepts of game-theoretic as well as measure-theoretic algorithmic randomness converge to a
common space [26]. Often, the metric spaces and associated probability measures are computable in
nature [27]. The computability of Borel probability measured over the generalized compact spaces
is investigated [28]. The computable probability measures covering metric spaces are proposed,
having applications in algorithmic randomness [15]. In this case, the concept of binary representation
is introduced in Cantor space, which allows the identification of computable probability spaces.
This model helps in applying the algorithmic randomness to a computable probability space.

In general, the algorithmic randomness is tractable and computable when the covering space is
comprised of a set of finite or infinite sequences having a uniform probability distribution (or any
other computable distributions). The method for uniform testing of algorithmic randomness covering
any general metric spaces is analyzed [29]. The test considers the recognizable Boolean inclusion
principles. However, the universal randomness testing under weak conditions is presented in the
literature [27]. The cellular automata-based algorithmic randomness configurations are proposed
including randomness tests [30]. The results illustrate that surjective maps in cellular automata can be
a basis for generating randomness in full shift spaces.

3. Formulation of Model

In this section, sets of models are formulated for computing the composite discrete measures on
functions over the metric spaces having certain properties. The model considers two metric spaces
such as a function metric space on 1-D real (R) and a complex metric space in z-plane (C). The measure
on 1-D real is further extended to 2-D real metric surface equipped with suitable continuous functions.

3.1. Composite Measures in Real Metric Space

Initially, it is considered that underlying metric space is a 1-D real space maintaining standard
metrizability conditions. Let f (x ∈ R) ∈ R be a smooth continuous function in the region Da, Db ∈ R
and, xj ∈ [Da, Db] where, Db > Da and j ∈ N. Let (S, d) be a function metric space on 1-D real with
S =

{
ej : ej = f (x)δ(x− xj), ej ∈ R

}
such that,

∫ +∞
−∞ δ(x)dx = 1 and, ∀ej, ek ∈ S : d(ej, ek) =

∣∣ej − ek
∣∣.

The set A ⊂ R and a binary relation <B ⊂ A× S are formulated having conditions as mentioned below,

∀yj ∈ A, ∃(yj, ej) ∈ <B :
(yj /∈ R+ ∪ {0})⇒ ( f (xj) ≤ 0)
and,
(yj ∈ R+)⇒ ( f (xj) > 0)

(1)
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The discrete measure over (S, d) covering A is defined as,

p : <B → [0, 1] (2)

The covering measure is closed and bounded. However, the measure is generalized in nature and
the conditions of probabilistic measures are not imposed on it.

3.2. Composite Measures in Complex Metric Space

In this case, the metric space is considered to be a complex 2-D plane having a definable
and computable norm. Let (Xc, dc) be a complex metric space on z-plane where Xc ⊂ C and
dc(zj, zk) =

∣∣∣∣zj
∣∣−∣∣zk

∣∣∣∣, {zj, zk
}
⊂ Xc . A function fc : Xc → R is defined considering respective

inner-product as,
∀zj ∈ Xc : fc(zj) = zjzj∗ (3)

By denoting S f =
{

fc(zj) : zj ∈ Xc
}

, the discrete measure on the complex metric space covering
A ⊂ R can be formulated as,

pc : A× S f → [0, 1] (4)

In this case, the covering measure is confined within a unit interval without any specific restriction
on measurability.

3.3. Properties of Composite Measure in σ− Algebra

The discrete measures can be evaluated at uncorrelated discrete sample points. Otherwise, it can
be evaluated cumulatively under correlation. Suppose, A ⊂ R is a discrete countable finite set and
g : A→ S be an injective function such that the following biconditional is maintained,

[r ∈ <B]⇔ [r ∈ A× g(A)] (5)

Hence, Bσ = P(A) is a discrete σ− algebra on A. As a result, three different conditions on Bσ can
be formulated related to corresponding probability measures. A Bσ is locally complete with respect to
p(.) iff the following condition is maintained,

∀H ∈ Bσ : ∑
∀y∈H

p(y, g(y)) = 1 (6)

However, the distributive completeness of the discrete measure can be determined by using
sampling from the members of Bσ. Suppose, K ⊂ Bσ and Aσ =

{
yj ∈ A

}
such that the following

property is maintained,

∀yj, yk ∈ Aσ : ∃Hj, Hk ∈ K :
(yj ∈ Hj) ∧ (yk ∈ Hk)⇔ (yj, yk /∈ Hj ∩ Hk)

(7)

Thus, a Bσ is defined as distributive complete with respect to the associated probability measure
p(.) iff the following condition is maintained,

∃Aσ ⊂ A : ∑
∀y∈Aσ

p(y, g(y)) = 1 (8)

Furthermore, the completeness in 1-D real under correlated cumulative measurement can be
determined by maintaining Ej ∈ <B : ∑

∀yj∈A
p(Ej) = 1.
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The σ− algebra for pc(.) in complex metric space can be determined with the respective injective
function gc : A→ S f . Let <H ⊂ A× S f such that ∀rj ∈ <H : rj = (yj, gc(yj)) where yj ∈ H ∈ Bσ.
Thus, Bσ is locally complete in z-plane with respect to pc(.) iff the following condition is maintained,

∀H ∈ Bσ : ∑
∀yj∈H

pc(rj ∈ <H) = 1 (9)

Considering K ⊂ Bσ for the probability measure in z-plane it can be derived as ∃Hj, Hk ∈ K
such that Aσ =

{
yj ∈ A

}
satisfying Equation (7). Suppose, <H ⊂ Aσ × gc(Aσ) and ∀rj ∈ <H : rj =

(yj ∈ Aσ, gc(yj)). A Bσ is considered to be distributive complete in z-plane with respect to pc(.) iff the
following property is maintained,

∃Aσ ⊂ A : ∑
∀yj∈Aσ

pc(rj ∈ <H) = 1 (10)

Furthermore, if <A ⊂ A × S f such that ∀rj ∈ <A : rj = (yj ∈ A, gc(yj)) then Bσ is complete
under correlation with respect to probability measure pc(.) in complex metric space iff the following
condition is satisfied,

∀rj ∈ <A : ∑
∀yj∈A

pc(rj ∈ <A) = 1 (11)

4. Computing Probability-Metric Product

This section enumerates the monotone classes formed by the composite discrete measures and
formulates the concept of the probability-metric product. Suppose Bσ is locally complete with respect
to probability measures p(.) or pc(.) in 1-D real or complex space, respectively. Let the local set of
discrete measures be defined as given below, considering pσ(.) denoting either p(.) or pc(.) depending
on respective metric spaces,

Tj =
{

pσ(rj) : Hj ∈ Bσ

}
(12)

The set Mj ⊆ P(Tj) is a monotone class of Tj for the corresponding composite probability measure
in respective metric spaces. It can be easily verified that,

|Bσ |
∪

j=1
Mj ⊆ P(

|Bσ |
∪

j=1
Tj) (13)

The metric ratio is a ratio between distance metric and sample points in a metric space. The metric
ratio χ is defined as given below considering dσ(aj, ak) denoting either d(.) in 1-D real metric space
with

{
aj, ak

}
⊂ S or dc(.) in z-plane with

{
aj, ak

}
⊂ Xc,

∀yj, yk ∈ A : χ =
dσ(aj, ak)

yj − yk
(14)

Thus, the probability-metric product (λS in case of 1-D real space and, λC in case of complex
space) can be computed in real and complex metric spaces as,

∀aj, ak ∈ S : ∃yj, yk ∈ A :
λS = χ(p(yj, g(yj))− p(yk, g(yk)))

and,
∀aj, ak ∈ Xc : ∃yj, yk ∈ A :
λC = χ(pc(yj, gc(yj))− pc(yk, gc(yk)))

(15)

The product determines dynamics of variations of distributions on a curve or on a surface, given
a measure space.
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5. Discrete Measure on 2-D Real Surface

A 2-D extension of Dirac function can be given as δ(x, y) such that
+∞∫
−∞

+∞∫
−∞

δ(x, y)dxdy = 1. Let

I ⊂ R and J ⊂ R be two intervals and the metric space in 2-D is defined over I × J ⊂ R2. Furthermore,
a real valued function f : R2 → R is given as, ∀β ∈ I × J : f (β) ∈ R, which is computable in
corresponding metric space. Let a set of samples derived from the surface of the measurement be
given by,

X2D = { f (β)δ(x, y) : x ∈ I ∧ y ∈ J} (16)

Thus, given a real valued continuous function g : (A ⊂ R)→ R , the discrete measure of g(.) on
the surface of f (.) can be computed as,

BX ⊆ {X2D × g(A)},
p2D : BX → [0, 1]

(17)

This indicates that it is possible to discretely measure a function on a 2-D real metric space if the
surface of measurement and domains are known a priori.

However, if f : R2 → R is separable then the discrete measure can be computed in product form.
Let u : R→ R and v : R→ R be two arbitrary continuous real valued functions. If f (.) is separable
such that ∀β ∈ I × J, ∃x ∈ I, ∃y ∈ J : f (β) = u(x)v(y) then the separable set of samples from the
measure surface can be given as,

X2Dx = {u(x)δ(x) : x ∈ I},

X2Dy =

{
v(y)δ(y) : y ∈ J ∧

+∞∫
−∞

δ(y)dy = 1

}
,

Xxy = {u(x)v(y) : f (β) = u(x)v(y) ∧ β = (x, y)}

(18)

Furthermore, the composite measure of g(.) can be formulated on the discrete points on measure
surface as,

Bxy ⊆
{

Xxy × g(A)
}

,
pxy : Bxy → [0, 1]

(19)

Thus, the construction of discrete measure on the surface can be performed depending on the
characteristics of functions.

Contraction and Condensation Measure

Let (X, dx) be a metric space and A ⊂ X be compact. Let an identity map be defined as,
ix : X → X . A uniform contraction map is given as, θc : A→ (B ⊂ X) , such that following axiom is
satisfied, ∀x, y ∈ A, dx(x, y) ≥ dx(θc(x), θc(y)).

The uniform contraction is a condensation if the following axioms are maintained, where B ⊂ A,

ni, k ∈ Z+,
∃ni ∈ (1,+∞), ∀k ≤ ni : θk

c (A) ⊂ B,
∀k > ni, θk

c (A) ⊆ ix(C ⊂ B)
(20)

A compact set Dn ⊂ A is called as n-condensation complete if, Dn ⊆
n
∩

j=1
θ

j
c(A).
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Thus, the finite condensation measure is defined as µc : X → [0,+∞) having the
following properties,

∀k, j ∈ Z+ : µc(A) > µc(θk
c (A)),

∀k > ni, j > 1 : µc(θk
c (A)) = µc(θ

k+j
c (A)),

µc(A) = µc(
+∞
∪

i=0
θi

c(A)),

µc(A) <
+∞
∑

i=0
µc(θi

c(A)),

µc(θk
c (A)) <

+∞
∑

j=1
µc(θ

k+j
c (A))

(21)

Furthermore, it can be derived that, µc(Dn) > µc(Dm), where k > m > n.

6. Computational Evaluation

The composite discrete measures are evaluated by using computational methods considering
various functions having different properties. The profile of distribution of numerically mapped values
of keys of set A in 1-D real is illustrated in Figure 1 spanning negative and positive domains.
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The computational evaluations of discrete measures are carried out on non-linear smooth curves,
linear smooth curves, periodic functions and on the function of complex numbers. The software
implementation of computational evaluation is realized in C language using installed standard
math-libraries to generate numerical data sets. The implementation in C has offered greater flexibility
in software design to carry out numerical analysis by generating data sets. However, the numerical
analysis is not particularly dependent on programming languages and the proposed computational
models can also be realized in any other suitable software platforms of choice.

6.1. Evaluation on Linear Smooth Curve

The computational evaluations are carried out considering linear smooth curves having two
different slopes. In the first case, the slope is slant and in the second case, the slope is steep. The profile
of the function f (x) = ax is illustrated in Figure 2 considering a = 2 and a = 3.

The composite discrete measure on the curve is defined as given below,

p(yj, ej) =

{ ∣∣yj/(yj + ej − 1)
∣∣, yj, ej ≤ 0∣∣yj/(yj + ej + 1)
∣∣, yj, ej > 0

(22)
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The variations of discrete measures on the slant linear curve and the steep linear curve are
illustrated in Figures 3 and 4, respectively.
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The composite discrete measures reach zero early in the slant smooth curve as compared to the
curve with steep slope. Moreover, the measure tends to saturate at higher positive sample points.
In both cases, the characteristics of measure are non-linear and approximately symmetric with respect
to zero measure.
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6.2. Evaluation on Non-Linear Curves

The evaluations of composite discrete measure on non-linear curves are carried out based on
periodic and non-periodic (arbitrary) smooth functions. The generalized form of composite discrete
measure is formulated in uncorrelated A as given below.

p(yj, ej) =


ejyj, (yj < 1) ∧ (ej < 1)
ej/yj, (yj ≥ 1) ∧ (ej < yj) ∧ (ejyj > 0)
yj/ej, (yj ≥ 1) ∧ (ej > yj) ∧ (ejyj > 0)

(23)

Initially, a trigonometric periodic smooth curve (sinusoid) is considered for evaluating the
measure. The profile of the periodic smooth curve is illustrated in Figure 5.
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The characteristic of the composite discrete measure on the periodic smooth curve is presented in
Figure 6. In this case, the measure values decreased sharply within a narrow domain and reach zero
synchronously with the periodic function. The measure exhibits a monotonic decrease in the positive
domain at an extremely low rate. The profile of the measure is asymmetric in nature with respect
to zero.
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Next, the composite discrete measures are computed on arbitrary smooth function and the profile
of the function is illustrated in Figure 7. The curve is generated by software by using a randomized
seeded function.
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The characteristic variation in composite discrete measure on the arbitrary smooth curve is
presented in Figure 8.
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The profile of the measure illustrates that the estimated discrete measure values are random both
in positive and negative domains. This indicates that the measure follows the inherent randomness of
the function. Moreover, the measure is asymmetric in nature with respect to zero.

6.3. Evaluation in z-Plane

The evaluation of the composite discrete measure in the z-plane considers a set of uncorrelated
points in complex space. The general form of a smooth and non-linear measure function is defined as,

pc(yj, fc(zj)) = 1/(1 + eyjzjzj∗) (24)

The profile of trajectory of a point in z-plane and the associated distribution of sample points on
the curve are illustrated in Figures 9 and 10, respectively.
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The dynamics of composite discrete measure in complex metric space on the curve is illustrated
as the surface map illustrates in Figure 11.
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Figure 11. Surface map of discrete measure in z-plane.

The surface map illustrates that the composite discrete measure in the z-plane is highly non-linear
in nature and there is a zone of sharp reduction starting from the left-neighborhood of zero in the
set of samples. At the pairs of points in complex space on the extreme left of zero-th sample on the
corresponding axis, the dynamics of the measure are non-linear with initial exponential increment to
maxima. Moreover, as the complex conjugate values are increased within a region of sample space, the
composite discrete measure decreases rapidly.
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6.4. Measure on Real Surface

The computation of discrete measure on real surface is carried out with the following definition
of decomposed surface function,

x ∈ I ⊂ R, y ∈ J ⊂ R,
u(x) = (x + 1)2,
v(y) = esin y

(25)

The first component of the surface function is a non-linear monotonic increase in nature, while
the second component of the surface function is providing periodic breaking on the growth of the
surface. The profile of the surface map is illustrated in Figure 12.
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The compositely measurable function g(.) on the surface is considered as constant (=1) in order
to detect the characteristics of discrete measure on surface in the absence of any external influence.
The disjoint measure intervals are defined as,

0 < m < sup( f (β)), M ∈ (sup( f (β)),+∞),
S = {m, M},
γ ∈ S : pxy =

∣∣∣ 1
γ− f (β)

∣∣∣ (26)

The discrete measure on surface is computed in two cases, Case I: boundary is kept lower, and
Case II: boundary is extended to a larger value. In Case I, the boundary is set to 50 and in Case II the
boundary is extended seven times to 350.

The variations of discrete measures on the surface for m = 50 and M = 350 are illustrated in
Figures 13 and 14, respectively.

Evidently, the measures are non-linear, continuous and aperiodic in nature in both the cases.
However, if the measure threshold is kept embedded into the surface, then the discrete measure never
reaches zero throughout the interval and for the negative samples in the surface, the discrete measures
produce enhanced positive concentration at distinct zones. On the contrary, if the measure threshold
is shifted away from the surface (i.e., above the surface), then the enhanced positive concentration
of discrete measure is produced only at a positive extreme. However, in both the cases, the discrete
measures never reach zero. The corresponding profile of composite distribution of discrete measure
surface is illustrated in Figure 15.
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The surface map illustrates that there exists a set of distinct concentration zones and the
concentration zones are distributed unevenly on the surface. Furthermore, the concentration zones
are distributed throughout the measure interval. The distributions of samples do not stretch the
concentration zones perpendicularly with respect to measure interval.
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7. Comparative Analysis

The measure theoretic analysis is applicable in Lebesgue measurable (LM) spaces and in
probabilistic measures on group (PMG) structures [31]. On the other hand, the discrete composite
measures (DCM) consider arbitrary functions while constructing probability measures in composite
form. Furthermore, DCM considers real as well as complex metric spaces while formulating composite
measures. The comparative analysis of related models is presented in Table 1.

Table 1. Comparative analysis of models of measures.

Models Locally
Compactness

Haar Measurability
Condition Norm Closure Amenability

PMG Yes Yes Finite Integrable (convergent to 0)

DCM Yes No Finite Summable (convergent in positive interval)

LM No No Possibly infinite Integrable (may not be convergent)

In general, the PMG assumes a non-commutativity property of the groups. Moreover, the space
in PMG is assumed to be locally compact. The LM does not require restriction of local compactness
because Lebesgue measure is equipped to operate on open intervals. However, the proposed
DCM model in this paper considers that underlying space is locally compact to generate a finite
probability measure. The similarity between LM and DCM is that both are not dependent on the Haar
measurability condition. On the contrary, the PMG model requires the Haar measurability condition to
be maintained in groups. The norm closure for PMG and DCM is finite in probability spaces, whereas
the LM does not require the measure to be strictly finite. In terms of the amenability property, PMG
and LM are continuous measures. However, amenability in PMG is convergent to zero, whereas in
LM, such convergence may not always be guaranteed. On the other hand, the amenability property of
DCM is based on summability (discrete in nature) and is convergent in a closed finite interval.

8. Conclusions

The computational applications such as randomized and probabilistic distributed algorithms and
probabilistic databases benefit from drawing the inputs from various composite probability measures.
The variability of input to probabilistic systems becomes restrictive in standard probability spaces,
having long periodicity. The formulation of composite measures in different metric spaces enhances
the variability of inputs. The characteristics of composite discrete measures on different metric spaces
have distinguishing effects on respective computational output profiles. The computable measures
can be formed on linear, periodic or arbitrary smooth curves in different metric spaces comprised of
real and complex spaces. Furthermore, the corresponding algebra and monotone class property of
the measures in spaces are identified and analyzed. The composite measures on 2-D real surface and
condensation measures of uniform contraction map are formulated. A set of composite measures are
computationally evaluated in real as well as complex space. The corresponding surface maps provide
dynamics of the composite measures. The future work will include evaluations of the behaviours of
probabilistic computational applications under the influence of randomized inputs drawn from the
proposed composite models.
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