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Abstract: The cosmic expansion phenomenon is being studied through the interaction of newly
proposed dark energy models (Tsallis, Rényi and Sharma-Mittal holographic dark energy (HDE)
models) with cold dark matter in the framework of loop quantum cosmology. We investigate different
cosmic implications such as equation of state parameter, squared sound speed and cosmological plane
(ωd-ω′d, ωd and ω′d represent the equation of state (EoS) parameter and its evolution, respectively).
It is found that EoS parameter exhibits quintom like behavior of the universe for all three models of
HDE. The squared speed of sound represents the stable behavior of Rényi HDE and Sharma-Mittal
HDE at the latter epoch while unstable behavior for Tsallis HDE. Moreover, ωd-ω′d plane lies in the
thawing region for all three HDE models.
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1. Introduction

Observational data from type Ia supernovae (SNIa) [1–4], the large scale structure (LSS) [5–8] and
the cosmic microwave background (CMB), anisotropies [9–11], tell us that the universe undergoes
an accelerated expansion at the present time. This expanding phase of the universe is supported
by an unknown component called dark energy (DE) [12–14]. The simplest candidate for DE is the
cosmological constant. This model consists of a fluid with negative pressure and positive energy
density. The cosmological constant suffers from some problems such as the fine-tuning problem
and the coincidence problem [12]. A feasible way to relieve the cosmic coincidence problem is to
suppose an interaction between dark matter and DE. The cosmic coincidence problem can also be
reduced by the appropriate choice of interaction between dark matter and DE [15–17]. The nature of
DE is mysterious and unknown. Therefore, people have suggested various models for DE such as
quintessence, tachyon [18], ghost [19], K-essence [20], phantom [21], Chaplygin gas [22], polytropic
gas [23,24] and holographic dark energy (HDE) [25–27].

A second approach for understanding this strange component of the universe is gravitational
modification in standard theories of gravity which results in modified theories of gravity that
involve some invariants depending upon specific features such as torsion, scalars, curvature etc.
The several modified theories are f (R) theory [28–30], where f is a general differentiable function
of the curvature scalar R, generalized teleparallel gravity, f (T) [31–33] theory, contributing in the
gravitational interaction through the torsion scalar T, Brans-Dicke theory, using a scalar field [34],
Gauss-Bonnet theory and its modified version involving the Gauss-Bonnet invariant G [35,36], f (R, T)
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theory where T is the trace of the energy-momentum tensor [37], etc. For recent reviews on modified
gravity theories and dark energy problem, see, for instance [14,30,38–41].

The HDE is a promising candidate of DE, which has been studied extensively in the literature.
It is based upon the holographic principle [29,42,43] that states the number of degrees of freedom
of a system scales with its area instead of its volume. Cohen et al. studied that the DE should obey
the holographic principle and constrained by the infrared (IR) cut-off [44]. Li has examined three
choices for the IR cutoff as the Hubble horizon, the future event horizon and the particle horizon
and also shown that only the future event horizon is able to provide the sufficient acceleration for
the universe [45]. Sheykhi [46], developed the HDE model with Hubble horizon and argued that this
model possesses the ability to explain the present state of the universe with the help of interaction of
DE and cold dark matter (CDM).

Hu and Ling [47] studied the relationship between interacting, HDE and cosmological parameters
through observational constraints. They investigated that HDE model is justified with the present
observations in the low redshift region. They also tried to reduce the cosmic coincidence problem by
taking different possibilities of time rate of change of the ratio of dark matter to HDE densities for a
particular choice of interacting term. Ma et al. [48] explored observational signatures of interacting
and non-interacting HDE with dark matter. In these models they also observed the big rip singularity
in for different parameters by using a lot of recent observational schemes. They also found that the
HDE models are slightly compatible with the observations as compared to the ΛCDM model.

In the context of thermodynamics, horizon entropy and DE can be effected by each other. Recently,
due to the long-range nature of gravity, the mysterious nature of spacetime and pushed by the
fact that the Bekenstein entropy is a non-extensive entropy measure. The generalized entropies,
i.e., Tsallis and Rényi entropies have been assigned to the horizons to study the cosmological and
gravitational phenomenon.

To study the cosmological and and gravitational phenomena many generalized entropy formalism
has been applied but Tsallis and Rényi entropies generates the suitable model of universe. Sharma-
Mittal HDE is compatible with universe expansion and whenever it is dominant in cosmos it is stable.
Tsallis and Rényi entropies are attributed to the horizon to study the cosmic implications. Bekenstein
entropy is also can be obtained by applying Tsallis statistics to the system. However, Tsallis and
Rényi entropies can be recovered from Sharma-Mitall entropy by applying appropriate limits [49–51].
Recently, the HDE models such as Tsallis HDE [52] and Rényi HDE [53] and Sharma-Mittal HDE [54],
have been studied extensively.

In classical cosmology, an important role is played by inflationary paradigm in understanding the
problems of the big-bang model, by considering that the universe undergoes an expansion. However,
classical general relativity (GR) fails when spacetime curvature approaches the Planck scale, due to
the singularities where all physical quantities become infinite. So, the quantum gravity is considered
to be necessary To interpret the circumstances in which classical (GR) breaks down [55]. In the last
few decades, loop quantum gravity (LQG) has been widely applied to understand singularities in
different black holes and spacetimes. LQG is not a complete theory, nor has its full stability with GR
been established yet.

The loop quantum cosmology (LQC) is the application of LQG to the homogenous systems which
removes the singularities. It holds the properties of a non-perturbative and background independent
quantization of gravity [56]. The theory has numerous physical applications such as black hole physics
and others.Recently many DE models have been studied in the context of LQC.

Here, we discuss the cosmological implications of Tsallis HDE, Rényi HDE and Sharma-Mittal
HDE in the frame work of loop quantum cosmology (LQC) in the presence of the non-linear interaction
between DE and dark matter [57]. This paper is organized as follows. In Section 2, we provides basics
of LQC and DE models. Section 3 is devoted to cosmological parameters such as EoS parameter,
cosmological plane and squared sound speed for Tsallis HDE, Rényi HDE and Sharma-Mittal
HDEmodels. In the last section, we conclude the results.
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2. Basic Equations

In these days, DE phenomenon has been discussed in the framework of LQC to describe the
quantum effects on the universe. The LQC is the effective and modern application of quantization
techniques from loop quantum gravity. In the context of LQC, many DE models have been studied
in last few years. In modern cosmology, the cosmic coincidence problem by taking Chaplygin gas
into account with dark matter was studied by Jamil et al. [58]. Chakraborty et al. [59], explored the
modified Chaplygin gas in LQC. It is also found that with the help of Loop quantum effects one can
avoid the future singularities appearing in the standard cosmology. The Friedmann equation in case of
LQC [60–63] is given as

H2 =
ρe f f

3

(
1−

ρe f f

ρc

)
, (1)

where, H = ȧ
a is the Hubble parameter and dot represents the derivative of a, with respect to t and

ρe f f = ρm + ρd, ρm is matter density and ρd is DE density. Also, ρc =
√

3
16π2β3G2h where, β represents

the dimensionless Barbero-Immirzi parameter and ρc stands for critical loop quantum density [60].
The different future singularities such as big bang and big rip can be avoided in LQC. It is observed
that phantom DE with the negative pressure can push the universe towards the big rip singularity
where all the physical objects loose the gravitational bounds and finally get dispersed.

We consider the interacting scenario between DE and cold dark matter (CDM) and thus the energy
conservation equation turns to the following equations (we refer to the reader to [64,65])

ρ̇m + 3Hρm = −Q, (2)

ρ̇d + 3H(ρd + pd) = Q. (3)

The cosmological evolution of the universe was analyzed by Arevalo and Acero [66], considering
a non-linear interaction term of the general form

Q = 3dHρa+b
e f f ρc

mρ−b−c
d . (4)

In the above equation the powers a, b and c characterize the interaction and d is a positive coupling
constant. For (a, b, c) = (1,−1, 1) we can get the interaction, Q = 3dHρm and for (a, b, c) = (1,−1, 0)
one can get, Q = 3dHρd. In this present work we choose the interaction is given by

Q = 3dH

(
ρ2

d
ρm + ρd

)
, (5)

this equation correspond to the choice (a, b, c) = (1,−2, 0) where, d is the coupling constant. The coupling
of the dark matter and DE is a method to describe the evolution of the universe. The coupling constant
sign decides the behavior of transformation between DE and dark matter. The positive sign indicates
the decomposition of DE into dark matter while the negative sign shows the decomposition into dark
matter to DE. However, the choice of positive sign of coupling constant is most favorable according to
observational data. The negative sign of coupling parameter should be avoided due to the violation of
laws of thermodynamics.

In this present work, we consider the power-law form of scale factor [67,68] as, a(t) = aotm and
H(t) = m

t where, m > 0. At different values of m, we have different phases of the universe

• 0 < m < 1 shows the decelerated phase of the universe.
• m = 2

3 , corresponds to the dust dominated era.
• m = 1

2 , leads to the radiation dominated era.
• m > 1, shows the accelerated phase of the universe.
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Next, we discuss the motivation and derivation of DE models.

2.1. Tsallis Holographic Dark Energy (HDE) Model

Li [45], has suggested the mathematical form of HDE as following constraint on its energy density
L3ρd ≤ Lmp

2. This inequality can be written as

ρd =
3C2mp

2

L2 , (6)

where, mp
2 = (8πG)−1 represents the reduced Plank mass, C is a dimensionless quantity and L denotes

the IR cutoff. HDE density provides the relation between Ultraviolet and IR cutoff. Many IR cutoffs
has been presented for explaining the accelerated expansion of the universe for example Hubble, event,
particle, Granda- Oliveros, Ricci scalar etc. Tsallis and Cirto [69], studied that the horizon entropy of
the black hole can be modified as Sδ = γAδ, where δ the is non-additivity parameter, γ is an unknown
constant and A = 4πL2, represents the area of the horizon. Cohen et al. [44], proposed the mutual
relationship between IR (L) cutoff, system entropy (S) and UV (Λ) cut off as

L3Λ3 ≤ (S)
3
4 , (7)

which leads to
Λ4 ≤ γ(4π)δL2δ−4, (8)

where, Λ4 is vacuum energy density and ρd ∼ Λ4. So, the Tsallis HDE density [52], is given as

ρd = BL2δ−4. (9)

Here, B is an unknown parameter and IR cutoff is Hubble radius which is L = 1
H . The density of

Tsallis HDE model using the scale factor is given as

ρd = B
t2δ−4

m2δ−4 . (10)

Inserting the value of ρd along with its derivative in Equation (3) it yields expression for pressure

pd =
1
3

B
t2δ−8

m4δ−3

 −3t4

m−2δ−1 −
6Bm5dt2δ

ρc +

√
ρc

(
ρc +

12m2

t2

) − 2m2δt4(δ− 2)

 . (11)

2.2. Rényi HDE Model

We consider a system with n, states with probability distribution Pi and satisfies the condition
Σn

i=1Pi = 1, Rényi and Tsallis entropies are well known parameters of generalized entropy is defined as

S =
1
δ

ln Σn
i=1P1−δ

i , ST =
1
δ

Σn
i=1(P1−δ

i − Pi), (12)

δ ≡ 1−U, where, U is a real parameter. Now combining above set of equations we find their mutual
relation given as

S =
1
δ

ln(1 + δST). (13)

In Equation (13), S belongs to the class of most general entropy functions of homogenous system.
Recently, it is observed that Bekenstine entropy S = A

4 , is in fact Tsallis entropy which gives the
expression, S = 1

δ ln(1 + δ A
4 ), which is the Rényi entropy of the system.
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With the help of following assumption ρddv ∝ Tds we can get the Rényi HDE density as

ρd =
3C2H2

8π(1 + δπ
H2 )

. (14)

In our case, we suppose 8π = 1 and consider the power-law scale factor we have the following
expression for density

ρd =
3C2m4

t2(m2 + δπt2)
. (15)

The pressure for this case is also obtained from Equation (3) with the help of Equation (15)

pd = C2m3

t4(m2+πt2δ)
2 (−18C2m5d−

(
ρc +

√
ρc

(
ρc +

12m2

t2

))
× t2 (m2(3m− 2) + (3m− 4)πt2δ

)
)

(
ρc +

√
ρc

(
ρc +

12m2

t2

))−1

.
(16)

2.3. Sharma-Mittal HDE Model

From the Rényi entropy, we have the generalized entropy content of the system. Using Equation (12)
Sharma-Mittal introduced a two parametric entropy and is defined as

SSM =
1

1− r

(
(Σn

i=1P1−δ
i )1−r/δ − 1

)
, (17)

where r is a new free parameter. We can observe that Rényi and Tsallis entropies can be recovered at
the proper limits. In the limit r → 1, Sharma-Mittal entropy becomes Rényi entropy while for r → δ,
it is Tsallis entropy. Using Equation (12), in Equation (17) we have

SSM =
1
R
((1 + δST)

R/δ − 1), (18)

here, R ≡ 1− r. It has been recently argued that Bekenstine entropy is the proper candidate for Tsallis
entropy. It allow us to replace ST with SB in above equation we have

SSM =
1
R
((1 + δ

A
4
)R/δ − 1). (19)

The relation between UV (Λ) cutoff, IR (L) cut off and and system horizon (S) is given as Λ4 ∝ S
L4

Now, taking L ≡ 1
H =

√
A/4π, then the the energy density of DE given by

ρd =
3C2H4

8πR
[(1 +

δπ

H2 )
R/δ − 1], (20)

here, C2 is an unknown free parameter. According to our assumptions we get the following expression
for energy density

ρd =
3C2m4

Rt4 [(1 +
t2δπ

m2 )R/δ − 1]. (21)
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The expression for pressure is obtained as

pd =
C2m

t8

−2πt6
(

1 +
πt2δ

m2

)−1+R/δ

+


(
−1 +

(
1 + πt2δ

m2

)R/δ
)

R



× m2t4(−3m + 4)−
18C2m7d

(
−1 +

(
1 + πt2δ

m2

)R/δ
)2

R2
(

ρc +

√
ρc

(
ρc +

12m2

t2

))
 . (22)

3. Cosmological Parameters

In this section, we will discuss the physical significance of cosmological parameters such as EoS
parameter, squared sound speed vs

2 and ωd −ω′d plane.

3.1. EoS Parameter

To obtain EoS parameter we will use the following equation

ωd =
pd
ρd

. (23)

Here, ρd and pd represents DE density and pressure of HDE model respectively. EoS parameter is
used to categorized decelerated and accelerated phases of the universe. The DE dominated phase has
following eras:

• ωd = 0 corresponds to non-relativistic matter.
• −1 < ωd < − 1

3 ⇒ quintessence.
• ωd = −1⇒ cosmological constant.
• ωd < −1⇒ phantom.
• In this case ωd > −1, evolve across the boundary of cosmological constant shows the quintom behavior.

3.1.1. For Tsallis HDE

The EoS parameter for this model is evaluated by using Equations (10) and (11) in Equation (23)

ωd =
pd
ρd

= − 2Bm−2δ+4dt2δ−4

ρc +

√
ρc

(
ρc +

12m2

t2

) − 2(δ− 2)
3m

− 1. (24)

To check the region of the universe, we plot ωd versus z in Figure 1. The EoS parameter exhibits
the quintom-like behavior of the universe as it crosses the phantom barrier for δ = 1.3. However,
for other values of δ, it remains in the quintessence region of the universe.

3.1.2. For Rényi HDE

The EoS parameter for Rényi HDE is evaluated by using Equations (15) and (16) in (23) we get the
following expression

ωd = −
(

18C2m5d +

(
ρc +

√
ρc

(
ρc +

12m2

t2

))
t2 (m2(3m− 2)

+ (3m− 4)πt2δ
))
×
(

3m
(

ρc +

√
ρc

(
ρc +

12m2

t2

))
t4δ
(
m2 + π

))−1

.
(25)
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Figure 1. Plot of ωd versus z for Tsallis HDE at different values of δ. Here m = 2, ρc = 10, B = 2,
a0 = 1, C = 1, d = 1.

The plot of above parameter versus z is shown in Figure 2. The trajectories of EoS parameter show
the transition from phantom region to quintessence region by evolving the vacuum era of the universe.
This is called quintom-like nature of the universe.
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Figure 2. Plot of ωd versus z for Rényi HDE at different values of δ. Here m = 2, ρc = 10, C = 1,
a0 = 1, d = 1.

3.1.3. For Sharma-Mittal HDE

The EoS for Sharma-Mittal HDE is obtained by substituting Equations (21) and (22) in Equation (23)

ωd = R

(
−2πt6R

(
1 +

πt2δ

m2

)−1+R/δ

+ 4m2t4

(
−1 +

(
1 +

πt2δ

m2

)R/δ
)

− 3m3t4

(
−1 +

(
1 +

πt2δ

m2

)R/δ
)
−

18C2m7d
(
−1 +

(
1 + πt2δ

m2

)R/δ
)2

R
(

ρc +

√
ρc

(
ρc +

12m2

t2

))
 (26)

×
(

3m3t4

(
−1 +

(
1 +

πt2δ

m2

)R/δ
))−1

.

In Figure 3, the curves of EoS parameter shows quintom-like behavior of the universe.
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Figure 3. Plot of ωd versus z for Sharma-Mittal HDE at different values of δ. Here m = 2, ρc = 10,
C = 1, a0 = 1, d = 1, R = −2.

3.2. Stability Analysis

To analyze the stability of the HDE models in LQC scenario we evaluate the squared sound speed
which is given by

v2
s =

dpd
dρd

=
dpd/dt
dρd/dt

. (27)

The sign of v2
s determines the stability of HDE model. For v2

s > 0, the model is stable otherwise it
is unstable.

3.2.1. For Tsallis HDE

The expression for squared sound speed can be obtained by taking the derivative of
Equations (10) and (11) with respect to t, and then substitute in Equation (27) we have

vs
2 = m−2δ−1

6t4(δ−2)

− 72Bm7d
√

ρc

(
ρc+

12m2
t2

)
t2δ(

ρc+

√
ρc

(
ρc+

12m2
t2

))2

(12m2+ρct2)

− 6m2δ+1t4(δ− 2)− 24Bm5dt2δ(δ−2)

ρc+

√
ρc

(
ρc+

12m2
t2

) − 4m2δt4(δ− 2)2

 .

(28)

Figure 4 shows the graph between vs
2 and z. This graph is used to analyze the stability of the

Tsallis HDE model under different parametric values. From the figure one can see that vs
2 < 0 at the

early, present and latter epoch. Hence this model shows unstable behavior at the present, early and
latter epoch.
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Figure 4. Plot of vs
2 versus z for Tsallis HDE at different values of δ. Here m = 1.1, ρc = 10, C = 1,

B = −1.5, a0 = 1, d = 1.
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3.2.2. For Rényi HDE

The expression of squared sound speed for Rényi HDE model can be obtained by using
Equation (27) is given by

vs
2 = −

(
2ρc

(
t2

(
12ρcm2 + 6m2

√
ρc

(
ρc +

12m2

t2

)
+ ρ2

c t2 + ρct2

×

√
ρc

(
ρc +

12m2

t2

))(
m4(−2 + 3m) + 3m2(−2 + 3m)πt2δ

+ 2(3m− 4)π2t4δ2
)
+ 18C2m5d

(
2πt4δ

(
ρc +

√
ρc

(
ρc +

12m2

t2

))
(29)

+ 9m4 + m2t2

(
ρc +

√
ρc

(
ρc +

12m2

t2

)
+ 21πδ

))))(
3mt4

(
2πt2δ

+ m2
)(

ρc +

√
ρc

(
ρc +

12m2

t2

))2 (
m2 + πt2δ

)√
ρc

(
ρc +

12m2

t2

)−1

.

In the present model, we significantly investigate the stability analysis of the Rényi HDE model
which depends upon the different cosmological parameters. Here we take some specific values
ρc = 10, C = 1, d = 1 for different values of δ. In Figure 5, the curves for vs

2 shows the positive
behavior for different values of δ at latter epoch which shows the stability the Rényi HDE model at the
latter epoch.

3.2.3. For Sharma-Mittal HDE

Using Equation (27) and after some calculations we obtained the expression for squared sound
speed which is given by

vs
2 =

(
2C2m

(
3πt2(2−m)

(
1 +

πt2δ

m2

)−1+R/δ

+
2m2π2t4(−R + δ)

(m2 + πt2δ)2

×
(

1 +
πt2δ

m2

R/δ
)
+

2m2

R
(3m− 4)

(
−1 +

(
1 +

πt2δ

m2

)R/δ
)

+
72C4m6d(

ρcR + R
√

ρc

(
ρc +

12m2

t2

))2

t9

(
ρc

(
πRt2

(
1 +

πt2δ

m2

)−1+R/δ

×
(

1−
(

1 +
πt2δ

m2

)R/δ
)
+ 2m2

(
−1 +

(
1 +

πt2δ

m2

)R/δ
)2
 (30)

+

√
ρc

(
ρc +

12m2

t2

)
m2 (21m2 + 2ρct2) (−1 +

(
1 + πt2δ

m2

)R/δ
)2

12m2 + ρct2

+ πRt2
(

1 +
πt2δ

m2

)−1+R/δ
(

1−
(

1 +
πt2δ

m2

)R/δ
))))(

6C2m2πt2

×
(

1 +
πt2δ

m2

)−1+R/δ

− 12C2m4

R

(
−1 +

(
1 +

πt2δ

m2

)R/δ
))−1

.
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Figure 5. Plot of vs
2 versus z for Rényi HDE at different values of δ. Here m = 1.1, ρc = 10, C = 1,

a0 = 1, d = 1.

To check the stability of the Sharma-Mittal HDE model we plot a graph of vs
2 against z. In Figure 6,

the curves for vs
2 shows the positive behavior for different values of δ at latter epoch which shows the

stability the Sharma-Mittal HDE model at the latter epoch.
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Figure 6. Plot of vs
2 versus z for Sharma-Mittal HDE at different values of δ. Here m = 2.5, ρc = 10,

C = 1, d = 1, R = −2, 3 and 4.

3.3. ωd-ω′d Plane

Caldwell and Linder [70], proposed the ωd-ω′d plane to explain the dynamical property of DE
model in quintessence scalar field. Here, ωd is EoS parameter and ω′d is its evolutionary form where
prime denotes the derivative with respect to ln a. They divided the ωd-ω′d plane in two parts, the
thawing part (ωd < 0, ω′d > 0) is the region where EoS parameter nearly evolves from ωd < −1,
increases with time while its evolution parameter expresses positive behavior, and the freezing part
(ωd < 0, ω′d < 0) is the evolution parameter for EoS parameter remains negative.

3.3.1. For Tsallis HDE

The expression ω′d for THDE can be obtained by taking the derivative of Equation (24) with
respect to ln a for THDE.

ω′d = 4ρcBm−2δ+3dt2δ−4

((
ρc +

√
ρc

(
ρc +

12m2

t2

))
(δ− 2) + 6m2(2δ− 3)

)

×

(ρc +

√
ρc

(
ρc +

12m2

t2

))2√
ρc

(
ρc +

12m2

t2

)−1

. (31)
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In Figure 7, ωd −ω′d, plane is used to check the region for this Tsallis HDE model. It can be seen
that the value of ω′d decreases as we increase the value of ωd. We can see that ωd < 0 and ω′d > 0 for
all values of δ, which corresponds to the thawing region of the universe.
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Figure 7. Plot of ωd versus ω′d for Tsallis HDE at different values of δ. Here m = 2, ρc = 10, C = 1,
B = 2, a0 = 1, d = 1.

3.3.2. For Rényi HDE

The expression of ω′d for Rényi HDE can be obtained by taking the derivative of EoS parameter in
Equation (25) with respect to ln a for Rényi HDE.

ω′d = 4ρcπt2
(

12m2 + ρct2
)

δ + 3c2md

(
6m4

√
ρc

(
ρc +

12m2

t2

)
+

+ 6m2π(−2ρc + 3

√
ρc

(
ρc +

12m2

t2

))
t2δ + ρcπt4δ (−ρc (32)

+

√
ρc

(
ρc +

12m2

t2

)))
×
(

3ρc

(
12m2 + ρct2

) (
m2 + πt2δ

)2
)−1

In Figure 8, we find the region on the ωd −ω′d, for the model under consideration. In this plane,
the EoS parameter corresponds to the quintessence era, also ωd − ω′d shows that (ωd < 0, ω′d > 0
which leads to the thawing region.
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Figure 8. Plot of ωd versus ω′d for Rényi HDE at different values of δ. Here m = 2, ρc = 10, a0 = 1,
C = 1, d = 1.
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3.3.3. For Sharma-Mittal HDE

The expression of ω′d for Sharma-Mittal HDE can be obtained by taking the derivative of
Equation (26) with respect to ln a for Sharma-Mittal HDE.

ω′d = −
4πRt2

(
1 + πt2δ

m2

)R/δ
(
−πRt2 + m2

(
−1 +

(
1 + πt2δ

m2

)R/δ
))

3m2 (m2 + πt2δ)
2
(
−1 +

(
1 + πt2δ

m2

)R/δ
)2

+ 12C2m3d

ρc

−2 +

(
2m2 − πt2(R− 2δ)

) (
1 + πt2δ

m2

)R/δ

m2 + πt2δ



+

√
ρc

(
ρc +

12m2

t2

)
(12m2 + ρct2) (m2 + πt2δ)

(
−2
(

9m2 + ρct2
) (

m2 + πt2δ
)

(33)

+

(
1 +

πt2δ

m2

)R/δ (
18m4 − ρcπt4(R− 2δ) + 2m2t2(ρc − 6πR + 9πδ)

)))

×

R

(
ρc +

√
ρc

(
ρc +

12m2

t2

))2

t4

−1

.

To find out the region of the ωd −ω′d, for the model which is under consideration we construct
the ωd − ω′d plane for different parametric values. In Figure 9 we can see that ωd − ω′d shows that
(ωd < 0, ω′d > 0) which corresponds to the thawing region.
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∆=1.4

∆=1.3

Figure 9. Plot of ω′d versus ωd for Sharma-Mittal HDE at different values of δ. Here m = 2
3 , ρc = 10,

C = 1, a0 = 1, d = 1, R = −2

4. Concluding Remarks

In this paper, cosmological implications with the help of non-linear interaction terms between
dark matter and DE models have been discussed in the framework of LQC. For this purpose, we have
constructed the EoS parameter, the squared sound speed and ωd − ω′d plane and discussed their
graphical behavior.

• The trajectories of EoS parameter in all three models HDE exhibit the quintom-like nature of the
universe as it shows transition of the universe from phantom era (at early and present) towards
quintessence era (latter epoch) by evolving phantom barrier.

• To analyze the stability of the Tsallis HDE, Rényi HDE and Sharma-Mittal HDE models we check
the graphical behavior of squared sound speed. For Tsallis HDE model, it is observed that vs

2 < 0
for all values of z which leads to the instability of this model. On the other hand, for Rényi HDE,
the squared speed of sound shows unstable behavior at the early and present epoch while leads
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to the stability at the latter epoch. The same behavior of the squared speed of sound has been
observed in case of Sharma-Mittal HDE model.

• Also, ωd −ω′d corresponds to thawing region (ωd < 0 and ω′d > 0) for all three models of HDE.
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