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Abstract

:

In the article, the authors present several inequalities of the Čebyšev type for conformable k-fractional integral operators.
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1. Introduction


The Čebyšev inequality [1] reads that


1b−a∫abf(x)g(x)dx≥1b−a∫abf(x)dx1b−a∫abg(x)dx,



(1)




where f and g are two integrable and synchronous functions on [a,b] and two functions f and g are called synchronous on [a,b] if


[f(x)−f(y)][g(x)−g(y)]≥0,x,y∈[a,b].








The inequality (1) has many applications in diverse research subjects such as numerical quadrature, transform theory, probability, existence of solutions of differential equations, and statistical problems (see ([2], Chapter IX) and the paper [3]). Many authors have investigated, generalized, and applied the Čebyšev inequality (1). For detailed information, please refer to [4,5] and closely related references.



In [6,7], the Riemann–Liouville fractional integrals Ia+α and Ib−α of order α>0 are defined respectively by


Ia+αf(x)=1Γ(α)∫ax(x−t)α−1f(t)dt,x>a,ℜ(α)>0



(2)




and


Ib−αf(x)=1Γ(α)∫xb(t−x)α−1f(t)dt,x<b,ℜ(α)>0,



(3)




where Γ is the classical Euler gamma function [8,9,10].



In [11], Belarbi and Dahmani presented the following theorems related to the Čebyšev inequality (1) for the Riemann–Liouville fractional integral operators [12,13,14].



Theorem 1

([11], Theorem 3.1). Let f and g be two synchronous functions on [0,∞). Then, for t,α>0, we have


Jα(fg)≥Γ(α+1)tαJαf(t)Jαg(t).













Theorem 2

([11], Theorem 3.2). Let f and g be two synchronous functions on [0,∞). Then, for all t,α,β>0, we have


tαΓ(α+1)Jβ(fg)(t)+tβΓ(β+1)Jα(fg)(t)≥Jαf(t)Jβg(t)+Jβf(t)Jαg(t).













Theorem 3

([11], Theorem 3.3). Let fi for 1≤i≤n be n positive and increasing functions on [0,∞). Then, for t,α>0, we have


Jα∏i=1nfi(t)≥[Jα(1)]1−n∏i=1nJαfi(t).













Theorem 4

([11], Theorem 3.4). Let f and g be two functions defined on [0,∞), such that f is increasing, g is differentiable, and there exists a real number m=inft≥0g′(t). Then, the inequality


Jα(fg)(t)≥1Jα(1)Jαf(t)Jαg(t)−mtα+1Jαf(t)+mJα(tf(t))








is valid for t,α>0.





In [15], the Riemann–Liouville k-fractional integrals are respectively defined by


Ik,a+αf(x)=1kΓk(α)∫ax(x−t)α/k−1f(t)dt,x>a,ℜ(α)>0








and


Ik,b−αf(x)=1kΓk(α)∫xb(t−x)α/k−1f(t)dt,x<b,ℜ(α)>0,








where Γk is the gamma k-function [16,17].



In [18], the left and right sided fractional conformable integral operators are respectively defined by


βIa+αf(x)=1Γ(β)∫ax(x−a)α−(τ−a)ααβ−1f(τ)(τ−a)1−αdτ



(4)




and


βIb−αf(x)=1Γ(β)∫ax(b−x)α−(b−τ)ααβ−1f(τ)(b−τ)1−αdτ,



(5)




where ℜ(β)>0. Obviously, if taking a=0 and α=1, then the Equations (4) and (5) reduce to the Riemann–Liouville fractional integrals (2) and (3), respectively.



In [19], one sided conformable fractional integral operator was defined as


βIαf(x)=1Γ(β)∫0xxα−τααβ−1f(τ)τ1−αdτ.



(6)







Recently, conformable k-fractional integrals were defined [20] by


kβIa+αf(x)=1kΓk(β)∫ax(x−a)α−(τ−a)ααβ/k−1f(τ)(τ−a)1−αdτ



(7)




and


kβIb−αf(x)=1kΓk(β)∫ax(b−x)α−(b−τ)ααβ/k−1f(τ)(b−τ)1−αdτ,








where ℜ(β)>0.



In this paper, we introduce the conformable k-fractional integral operator


βIkαf(x)=1kΓk(β)∫0xxα−τααβ/k−1f(τ)τ1−αdτ.



(8)




When k=1, the Equations (7) to (8) reduces to the Equations (4) to (6), respectively.




2. Main Results


In this section, we present several Čebyšev type inequalities for conformable k-fractional integral operators defined in the Equation (8).



Theorem 5.

Let f and g be two integrable functions which are synchronous on [0,∞). Then,


βJkαfg(x)≥Γk(β+k)αβ/kxαβ/kβJkαf(x)βJkαg(x),








where α,β>0.





Proof. 

Since f and g are synchronous on [0,∞), we have


f(u)g(u)+f(v)g(v)≥f(u)g(v)+f(v)g(u).



(9)







Multiplying both sides of the Equation (9) by


1kΓk(β)u1−αxα−uααβ/k−1,x∈R,0<u<x








results in


1kΓk(β)u1−αxα−uααβ/k−1f(u)g(u)+1kΓk(β)u1−αxα−uααβ/k−1f(v)g(v)≥1kΓk(β)u1−αxα−uααβ/k−1f(u)g(v)+1kΓk(β)u1−αxα−uααβ/k−1f(v)g(u).








Further integrating both sides with respect to u over (0,x) gives


1kΓk(β)∫0xxα−uααβ/k−1f(u)g(u)u1−αdu+1kΓk(β)∫0xxα−uααβ/k−1f(v)g(v)u1−αdu≥1kΓk(β)∫0xxα−uααβ/k−1f(u)g(v)u1−αdu+1kΓk(β)∫0xxα−uααβ/k−1f(v)g(u)u1−αdu.











Consequently, it follows that


βJkαfg(x)+f(v)g(v)1kΓk(β)∫0xxα−uααβ/k−1duu1−α≥g(v)βJkαf(x)+f(v)βJkαg(x)








and


βJkαfg(x)+xαβ/kΓk(β+k)αβ/kf(v)g(v)≥g(v)βJkαf(x)+f(v)βJkαg(x),



(10)




where


∫0xxα−uααβ/k−1duu1−α=kxαβ/kβαβ/k.











Multiplying both sides of the Equation (10) by


1kΓk(β)v1−αxα−vααβ/k−1








arrives at


βJkαfg(x)kΓk(β)v1−αxα−vααβ/k−1+f(v)g(v)kΓk(β)v1−αxα−vααβ/k−1xαβ/kΓk(β+k)αβ/k≥g(v)βJkαf(x)kΓk(β)v1−αxα−vααβ/k−1+f(v)βJkαg(x)kΓk(β)v1−αxα−vααβ/k−1.








Now, integrating over (0,x) reveals


βJkαfg(x)1kΓk(β)∫0xxα−vααβ/k−1dvv1−α+xαβ/kΓk(β+k)αβ/k1kΓk(β)∫0xxα−vααβ/k−1f(v)g(v)v1−αdv≥βJkαf(x)1kΓk(β)∫0xxα−vααβ/k−1g(v)v1−αdv+βJkαg(x)1kΓk(β)∫0xxα−vααβ/k−1f(v)v1−αdv.








Therefore, we have


xαβ/kΓk(β+k)αβ/kβJkαfg(x)+xαβ/kΓk(β+k)αβ/kβJkαfg(x)≥βJkαf(x)βJkαg(x)+βJkαf(x)βJkαg(x).








The proof of Theorem 5 is complete. □





Corollary 1.

Let f and g be two integrable functions which are synchronous on [0,∞). Then,


βJkfg(x)≥Γk(β+k)xβ/kβJkf(x)βJkg(x),α,β>0.













Proof. 

This follows from taking α=1 in Theorem 5. □





Theorem 6.

Let f and g be two integrable functions which are synchronous on [0,∞). Then,


xατ/kΓk(τ+k)ατ/kβJkαfg(x)+xαβ/kΓk(β+k)αβ/kτJkαfg(x)≥βJkαf(x)τJkαg(x)+τJkαf(x)βJkαg(x)








for α,β,τ>0.





Proof. 

Multiplying both sides of the equality (10) by


1kΓk(τ)v1−αxα−vαατ/k−1








yields


1kΓk(τ)v1−αxα−vαατ/k−1βJkαfg(x)+f(v)g(v)kΓk(τ)v1−αxα−vαατ/k−1xαβ/kΓk(β+k)αβ/k≥1kΓk(τ)v1−αxα−vαατ/k−1g(v)βJkαf(x)+1kΓk(τ)v1−αxα−vαατ/k−1f(v)βJkαg(x).








Further integrating both sides with respect to v over (0,x) leads to


βJkαfg(x)kΓk(τ)∫0xxα−vαατ/k−1dvv1−α+xαβ/kΓk(β+k)αβ/k1kΓk(τ)∫0xxα−vαατ/k−1f(v)g(v)v1−αdv≥βJkαf(x)kΓk(τ)∫0xxα−vαατ/k−1g(v)v1−αdv+βJkαg(x)kΓk(τ)∫0xxα−vαατ/k−1f(v)v1−αdv.








Therefore, we have


xατ/kΓk(τ+k)ατ/kβJkαfg(x)+xαβ/kΓk(β+k)αβ/kτJkαfg(x)≥βJkαf(x)τJkαg(x)+τJkαf(x)βJkαg(x).








Further integrating with respect to v over (0,x), as did in the proof of Theorem 5, concludes Theorem 6. □





Remark 1.

Applying Theorem 6 to τ=β results in Theorem 5.





Corollary 2.

Let f and g be two integrable functions which are synchronoms on [0,∞). Then


xτ/kΓk(τ+k)βJkfg(x)+xβ/kΓk(β+k)τJkfg(x)≥βJkf(x)τJkg(x)+τJkf(x)βJkg(x)








for α,β,τ>0.





Proof. 

This follows from taking α=1 in Theorem 6. □





Theorem 7.

Let fi for 1≤i≤n be positive and increasing functions on [a,b]. For α,β>0, we have


βJkα∏i=1nfi(x)≥Γk(β+k)αβ/kxαβ/kn−1∏i=1nβJkαfi(x).



(11)









Proof. 

We prove this theorem by induction on n∈N. Obviously, the case n=1 of (11) holds.



For n=2, since f1 and f2 are increasing, we have


[f1(x)−f1(y)][f2(x)−f2(y)]≥0.








Now, the left proof of the inequality (11) for n=2 is the same as that of Theorem 5.



Assume that the inequality (11) is true for some n≥3. We observe that, since fi is increasing, f=∏i=1nfi is increasing. Let g=fn+1. Then, applying the case n=2 to the functions f and g yields


βJkα∏i=1nfifn+1(x)≥Γk(β+k)αβ/kxαβ/kβJkα∏i=1nfiβJkαfn+1(x)≥Γk(β+k)αβ/kxαβ/kn∏i=1n+1βJkαfi(x),








where the induction hypothesis for n is used in the deduction of the second inequality. The proof of Theorem 7 is complete. □





Corollary 3.

Let fi for 1≤i≤n be positive and increasing functions on [a,b]. For α,β>0, we have


βJk∏i=1nfi(x)≥Γk(β+k)xβ/kn−1∏i=1nβJkfi(x).













Proof. 

This follows from taking α=1 in Theorem 7. □





Theorem 8.

Let α,β>0 and the functions f,g:[0,∞)→R be such that f is increasing, g is differentiable, and g′ has a lower bound m=inft∈[0,∞)g′(t). Then,


βJkαfg(x)≥Γk(β+k)αβ/kxαβ/kβJkαf(x)βJkαg(x)−kmx(β+k)βJkαf(x)+mβJkαif(x),








where i(x) is the identity function.





Proof. 

Let h(x)=g(x)−mx. We find that h is differentiable and increasing on [0,∞). As in the proof of Theorem 7, for clarity, let p(x)=mx, we obtain


βJkαf(g−p)(x)≥Γk(β+k)αβ/kxαβ/kβJkαf(x)βJkα(g−p)(x)=Γk(β+k)αβ/kxαβ/kβJkαf(x)βJkαg(x)−Γk(β+k)αβ/kxαβ/kβJkαf(x)βJkαp(x),



(12)




where


βJkαf(g−p)(x)=βJkαfg(x)−mβJkαif(x)



(13)




and


βJkαp(x)=mxαβ/k+1Γk(2k)Γk(β+2k)αβ/k.








Since Γk(k)=1, see ([16], p. 183), then Γk(2k)=k. Therefore, we derive


βJkαp(x)=kmxαβ/k+1Γk(β+2k)αβ/k.



(14)




Substituting the Equations (13) and (14) into the Equation (12) leads to the desired result. □





Corollary 4.

Under conditions of Theorem 8, we have


βJkfg(x)≥Γk(β+k)xβ/kβJkf(x)βJkg(x)−kmx(β+k)βJkf(x)+mβJkif(x),








where i(x) is the identity function.





Proof. 

This follows from taking α=1 in Theorem 8. □






3. Conclusions


In this paper, we established several Čebyšev type inequalities for conformable k-fractional integral operators. We observed that, if allowing k=1, inequalities obtained in this paper will reduce to those inequalities in [21]. Similarly, if letting α=k=1, inequalities obtained in this paper will reduce to those inequalities in [11].
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