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Abstract: In this article, we introduce a new approach to obtain the property of the dissipative
structure for a system of differential equations. If the system has a viscosity or relaxation term
which possesses symmetric property, Shizuta and Kawashima in 1985 introduced the suitable
stability condition called in this article Classical Stability Condition for the corresponding eigenvalue
problem of the system, and derived the detailed relation between the coefficient matrices of the
system and the eigenvalues. However, there are some complicated physical models which possess a
non-symmetric viscosity or relaxation term and we cannot apply Classical Stability Condition to these
models. Under this situation, our purpose in this article is to extend Classical Stability Condition for
complicated models and to make the relation between the coefficient matrices and the corresponding
eigenvalues clear. Furthermore, we shall explain the new dissipative structure through the several
concrete examples.
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1. Introduction

We are interested in the profile of solutions for a system of differential equations. To investigate
the profile, our first step is to analyze the eigenvalue of the corresponding linearized system. If the
coefficient matrices of our system have a good property, it might be easy to analyze the eigenvalue
problem. However, there are a lot of physical models which do not have enough properties to analyze
the corresponding eigenvalue problem. (We will study several problems in Sections 3 and 4). Under
this situation, we focus on a general linear system with weak dissipation and try to construct the useful
condition which induces the notable property of eigenvalues in this article.

Precisely, we consider a general linear system

A0ut +
n

∑
j=1

Ajuxj −
n

∑
j,k=1

Bjkuxjxk + Lu = 0. (1)

Here, u = u(t, x) over t > 0, x = (x1, · · · , xn) ∈ Rn is an unknown vector function, and A0,
Aj, Bjk and L are m× m constant matrices for 1 ≤ j, k ≤ n and m ≥ 2. Here and hereafter, we use
notations that

A(ω) :=
n

∑
j=1

Ajωj, B(ω) :=
n

∑
j,k=1

Bjkωjωk,

where ω = (ω1, · · · , ωn) is a unit vector in Rn, which means ω ∈ Sn−1. Then, throughout this paper,
we assume the following condition for the coefficient matrices of (1).
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Condition (A): A0 is real symmetric and positive definite, Aj (1 ≤ j ≤ n) are real symmetric, while
B(ω) and L are not necessarily real symmetric but B(ω)] and L] are non-negative definite with the
non-trivial kernel for each ω ∈ Sn−1.

Namely, Condition (A) means that the constant matrices satisfy the followings.

(Aj)T = Aj (0 ≤ j ≤ n),

A0 > 0, B(ω)] ≥ 0, L] ≥ 0 on Rm,

Ker(B(ω)) 6= {0}, Ker(L) 6= {0}

for each ω ∈ Sn−1. Here and in the sequel, the superscript T stands for the transposition, and
X] and X[ denote the symmetric and skew-symmetric part of the matrix X, respectively. That is
X] := (X + XT)/2 and X[ := (X − XT)/2. Furthermore, m × m real matrix X is called positive
definite (resp. non-negative definite) on Rm if (X]ϕ, ϕ) > 0 (resp. (X]ϕ, ϕ) ≥ 0) for any ϕ ∈ Rm\{0},
where (·, ·) denotes the standard real inner product in Rm. Here, we remark that “ X] is positive
definite (resp. non-negative definite) on Rm ” is equivalent to 〈X]ϕ, ϕ〉 > 0 (resp. 〈X]ϕ, ϕ〉 ≥ 0) for
any ϕ ∈ Cm\{0}, and Re〈Xϕ, ϕ〉 > 0 (resp. Re〈Xϕ, ϕ〉 ≥ 0) for any ϕ ∈ Cm\{0}, where 〈·, ·〉 denotes
the standard complex inner product in Cm. Furthermore, I and O denote an identity matrix and a zero
matrix, respectively.

To analyze the dissipative structure of (1), we study the corresponding eigenvalue problem

λA0 ϕ + (irA(ω) + r2B(ω) + L)ϕ = 0 (2)

for r ≥ 0 and ω ∈ Sn−1, and look for the eigenvalue λ = λ(r, ω) ∈ C and the corresponding
eigenvector ϕ = ϕ(r, ω) ∈ Cm\{0}.

Remark 1. Under Condition (A), the eigenvalues of (2) satisfy Reλ(r, ω) ≤ 0 for r ≥ 0 and ω ∈ Sn−1.
In fact, using (2) and the symmetric property of A0 and A(ω), we have

Reλ〈A0 ϕ, ϕ〉+ r2〈B(ω)]ϕ, ϕ〉+ 〈L]ϕ, ϕ〉 = 0 (3)

for each r ≥ 0 and ω ∈ Sn−1. Therefore, by the positivity of A0 and non-negativity of B(ω)] and L], we obtain
the desired property.

We define the strict and uniform dissipativity for the system (1).

Definition 1. (Strict and uniform dissipativity ([1])) (i) The system (1) is called strictly dissipative if the
real part of all the eigenvalues of (2) is negative for each r > 0 and ω ∈ Sn−1. (ii) The system (1) is called
uniformly dissipative of the type (α, β) if all the eigenvalues λ(r, ω) of (2) satisfy

Reλ(r, ω) ≤ −c
r2α

(1 + r2)β

for each r ≥ 0 and ω ∈ Sn−1, where c is a certain positive constant and (α, β) is a pair of non-negative integers.

Remark 2. The uniform dissipativity of the type (α, β) with α = β or α < β is called the standard type or the
regularity-loss type, respectively.

Remark that the vertical axis and the horizontal axis denote r and Reλ(r, ω) for (2), respectively,
in Figures 1–3 appeared in Section 4. Under the strict dissipativity for the system (1), the real parts of
the eigenvalues for (2) are located in the gray region in Figure 1 or Figure 2.
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Figure 1. Standard type.
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Figure 2. Regularity-loss type.

Under the symmetric property for B(ω) and L, Umeda et al. [2] and Shizuta and Kawashima [3]
introduced the useful stability condition called Kawashima-Shizuta condition or Classical Stability
Condition in this article. Precisely, they introduced the following conditions.

Classical Stability Condition (CSC): Suppose that µA0 ϕ + A(ω)ϕ = 0 and ϕ ∈ Ker(B(ω)) ∩Ker(L)
hold for each (µ, ω, ϕ) ∈ R× Sn−1 ×Rm. Then ϕ = 0.

Condition (K): There is a real compensating matrix K(ω) ∈ C∞(Sn−1) with the following properties:
K(−ω) = −K(ω), (K(ω)A0)T = −K(ω)A0 and

(K(ω)A(ω))] > 0 on Ker(B(ω)) ∩Ker(L)

for each ω ∈ Sn−1.

On the other hand, Kalman et al. [4], Coron [5] and Beauchard and Zuazua [6] discussed the
different condition called Kalman Rank Condition for the system (1), that is as follows.

Classical Kalman Rank Condition (CR): For each ω ∈ Sn−1, the m2 ×m Kalman matrix has rank m,
that is

rank


L

L(A0)−1 A(ω)
...

L((A0)−1 A(ω))m−1

 = m.
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Under this situation, the following theorem is obtained.

Theorem 1. ([2,3,6]) Suppose that the system (1) satisfies Condition (A) with

Ker(B(ω)) = Ker(B(ω)]), Ker(L) = Ker(L]) (4)

for each ω ∈ Sn−1. Then, for the system (1), the following conditions are equivalent.

(i) System (1) is strictly dissipative.
(ii) System (1) is uniformly dissipative of the type (1, 1).
(iii) Condition (K) holds.
(iv) Classical Stability Condition (CSC) holds.

Furthermore, if Bjk (1 ≤ j, k ≤ n) is zero matrix, the above four conditions are equivalent to the following.
(v) Classical Kalman Rank Condition (CR) holds.

Remark 3. Beauchard and Zuazua [6] considered the system (1) with Bjk ≡ O for 1 ≤ j, k,≤ n, and assumed
that L satisfies

L =

(
O O
O L1

)
, L1 ∈ Rm1×m1 , (L1 ϕ, ϕ) > 0 for any ϕ ∈ Rm1\{0}. (5)

We note that the assumption (5) is the sufficient condition for L] ≥ 0 and Ker(L) = Ker(L]). Thus,
we regard the assumption (5) as the essentially symmetric property. We will discuss in detail in Lemma 1.
Emphasize that the physical examples in Section 4 do not satisfy (4) (and (5)).

We remark that the typical feature of the type (1, 1) is that the high-frequency part decays
exponentially while the low-frequency part decays polynomially with the rate of the heat kernel
(see Figure 1). A lot of physical models satisfy these conditions and can be treated by applying
Theorem 1. For example, the model system of the compressible fluid gas and the discrete Boltzmann
equation is studied by Kawashima [7] and Shizuta and Kawashima [3], respectively.

In recent 10 years, some complicated physical models which possess the weak dissipative structure
called the regularity-loss structure was studied. For example, the dissipative Timoshenko system
was discussed in [8–10], the Euler-Maxwell system was studied in [11,12], and the hybrid problem
of plate equations is in [13–16]. We would like to emphasize that these physical models do not
satisfy (4) but Condition (A). Namely, we can no longer apply Theorem 1 to these models. Under this
situation, Ueda et al. [1] introduced the new condition called Condition (S) for the system (1) with
Bjk ≡ O (1 ≤ j, k ≤ n) as follows.

Condition (S): There is a real compensating matrix S with the following properties: (SA0)T = SA0 and

(SL)] + L] ≥ 0 on Rm, Ker((SL)] + L]) ⊆ Ker(L),

i(SA(ω))[ = 0 on Ker(L])

for each ω ∈ Sn−1.

Then they derived the sufficient condition which is a combination of Condition (K) and (S) to get
the uniformly dissipativity of the type (1, 2), which is the regularity-loss type. We remark that the
dissipative structure of the regularity-loss type is weaker than the one of the standard type. Precisely,
Reλ(r, ω) may tend to zero as r → ∞ (see Figure 2). This structure requires more regularity for the
initial data when we derive the decay estimate of solutions. This is the reason why this structure is
called the regularity-loss type. Indeed, the dissipative Timoshenko system, the Euler-Maxwell system
and the thermoelastic plate equation with Cattaneo’s law has the weak dissipative structure of type
(1, 2). For the detail, we refer the reader to [8,9,11,12,16].
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However, the stability condition constructed in [1] is not enough to understand the regularity-loss
structure. In fact, some physical models which possess the regularity-loss structure do not satisfy
the stability condition in [1] (e.g., [16–18]). Moreover, we can construct artificial models which
have the several kinds of the regularity-loss structure (in detail, see [19]). Furthermore, in recent,
Ueda et al. in [20] succeeded to extend Condition (K) and (S), and analyzed the more complicated
dissipative structure.

This situation tells us that it is difficult to characterize the dissipative structure for the
regularity-loss type. In fact, there is no related result. Under this situation, we try to extend Classical
Stability Condition (CSC) and Classical Kalman Rank Condition (CR), and derive the sufficient and
necessary conditions to get the strict dissipativity for (1) in Section 2. Furthermore, we will extend our
main theorem to apply to a system under constraint conditions in Section 3. In Section 4, we introduce
several physical models and apply our main theorems to them. Finally, we focus on the Bresse system
as an interesting application of our main theorems in Section 5.

2. New Stability Criterion

We introduce the new stability condition for (1) in this section. The following conditions are
important to characterize the dissipative structure for (1).

Stability Condition (SC): Suppose that

µA0 ϕ + (A(ω)− iνB(ω)[ − iν−1L[)ϕ = 0,

ϕ ∈ Ker(B(ω)]) ∩Ker(L])
(6)

hold for each (µ, ν, ω, ϕ) ∈ R×R+ × Sn−1 ×Cm. Then ϕ = 0.

Kalman Rank Condition (R): For each (ν, ω) ∈ R+ × Sn−1, the 2m2 ×m Kalman matrix has rank m,
that is

rank



B(ω)]

B(ω)]A(ν, ω)
...

B(ω)]A(ν, ω)m−1

L]

L]A(ν, ω)
...

L]A(ν, ω)m−1


= m.

Here and hereafter, we use notations that R+ := (0, ∞) and

A(ν, ω) := (A0)−1(A(ω)− iνB(ω)[ − iν−1L[)

for (ν, ω) ∈ R+ × Sn−1. Under Stability Condition (SC) and Kalman Rank Condition (R), we can
derive the following relation.

Theorem 2. Suppose that the system (1) satisfies Condition (A). Then, for the system (1), the following
conditions are equivalent.

(i) System (1) is strictly dissipative.
(ii) Stability Condition (SC) holds.
(iii) Kalman Rank Condition (R) holds.

Remark 4. (i) If the matrices B(ω) and L satisfy (4), then Condition (SC) is equivalent to the Condition (CSC).
Indeed, (4) and the second property of (6) give us ϕ ∈ Ker(B(ω)[)∩Ker(L[) for each ω ∈ Sn−1. (ii) It is easy
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to check that the system (1) under Condition (A) satisfies Condition (CSC) if the system is strictly dissipative.
Namely, Condition (SC) is sufficient condition for Condition (CSC).

To prove Theorem 2, we shall reduce our system. We introduce the new function ũ := (A0)1/2u.
Then (1) is rewritten as

ũt +
n

∑
j=1

Ãjũxj −
n

∑
j,k=1

B̃jkũxjxk + L̃ũ = 0, (7)

where we define Ãj := (A0)−1/2 Aj(A0)−1/2, B̃jk := (A0)−1/2Bjk(A0)−1/2 and L̃ :=
(A0)−1/2L(A0)−1/2. Similarly as before, we use notations that

Ã(ω) :=
n

∑
j=1

Ãjωj, B̃(ω) :=
n

∑
j,k=1

B̃jkωjωk.

Remark that the matrices of (7) satisfy Condition (A) if the matrices of (1) satisfy Condition (A).
In this situation, the eigenvalue problem (2) is equivalent to

λϕ̃ + (irÃ(ω) + r2B̃(ω) + L̃)ϕ̃ = 0 (8)

with ϕ̃ = (A0)1/2 ϕ.
For the problem (8), we consider the contraposition for Theorem 2. More precisely, we introduce

the complement condition of Condition (SC) and (R), and prove the contraposition of Theorem 2.

Condition (SC)′: There exist (µ0, ν0, ω0, ϕ̃0) ∈ R×R+ × Sn−1 ×Cm\{0} such that(
µ0 I + Ã(ν0, ω0)

)
ϕ̃0 = 0, ϕ̃0 ∈ Ker(B̃(ω0)

]) ∩Ker(L̃]). (9)

Condition (R)′: There exist (ν0, ω0, ψ̃0) ∈ R+ × Sn−1 ×Cm\{0} such that

ψ̃0 ∈
m−1⋂
k=0

Ker(B̃(ω0)
]Ã(ν0, ω0)

k) ∩Ker(L̃]Ã(ν0, ω0)
k). (10)

Here Ã(ν, ω) is defined by Ã(ν, ω) := Ã(ω)− iνB̃(ω)[ − iν−1 L̃[. Then our purpose is to prove
the following theorem.

Theorem 3. Suppose that the system (7) satisfies Condition (A). Then, for the system (7), the following
conditions are equivalent.

(i) System (7) is not strictly dissipative.
(ii) Condition (SC)′ holds.
(iii) Condition (R)′ holds.

Proof. We first prove (i) from (ii). Since Condition (SC)′, we obtain

iµ0ν0 ϕ̃0 + (iν0 Ã(ω0) + ν2
0 B̃(ω0) + L̃)ϕ̃0 = 0.

Therefore, λ = iµ0ν0 ∈ iR is an eigenvalue of (8) with r = ν0, ω = ω0, and ϕ̃0 ∈ Cm\{0}
is a corresponding eigenvector. This means that the system (7) is not strictly dissipative under
Condition (SC)′.

Secondly, we lead (ii) from (i). We assume that the system (1) is not strictly dissipative.
Namely, there exists (r0, ω0) ∈ R+ × Sn−1 such that Reλ(r0, ω0) = 0. Then we obtain from (3) that
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B̃(ω0)
] ϕ̃(r0, ω0) = 0 and L̃] ϕ̃(r0, ω0) = 0, where ϕ̃(r0, ω0) ∈ C\{0} is a corresponding eigenvector of

λ(r0, ω0). Thus we employ (8) and get

λ(r0, ω0)ϕ̃(r0, ω0) + (ir0 Ã(ω0) + r2
0 B̃(ω0)

[ + L̃[)ϕ̃(r0, ω0) = 0.

This means that

−ir−1
0 λ(r0, ω0)ϕ̃(r0, ω0) + (Ã(ω0)− ir0B̃(ω0)

[ − ir−1
0 L[)ϕ̃(r0, ω0) = 0.

Therefore, putting µ0 = −ir−1
0 λ(r0, ω0), ν0 = r0 and ϕ̃0 = ϕ̃(r0, ω0), Condition (SC)′ is obtained.

Next, we prove (iii) from (ii). Since (9), we have

B̃(ω0)
]Ã(ν0, ω0)ϕ̃0 = µ0B̃(ω0)

] ϕ̃0 = 0, L̃]Ã(ν0, ω0)ϕ̃0 = µ0 L̃] ϕ̃0 = 0

for ϕ̃0 ∈ Ker(B̃(ω0)
]) ∩Ker(L̃]). Hence, we obtain

ϕ̃0 ∈ Ker(B̃(ω0)
]Ã(ν0, ω0)) ∩Ker(L̃]Ã(ν0, ω0)).

Therefore, the induction argument gives

ϕ̃0 ∈
⋂

k∈N∪{0}
Ker(B̃(ω0)

]Ã(ν0, ω0)
k) ∩Ker(L̃]Ã(ν0, ω0)

k).

Now, using the Cayley-Hamilton theorem, we have g(Ã(ν0, ω0)) = O, where

g(µ) := det(µI − Ã(ν0, ω0)). (11)

By virtue of g(Ã(ν0, ω0)) = O, we derive (10) with ψ̃0 = ϕ̃0.
Finally, we prove (ii) from (iii). Equation (11) is rewritten as

g(µ) = det(µI − Ã(ν0, ω0)) =
m

∏
j=1

(µ− τj), (12)

where τj ∈ R since Ã(ν0, ω0) is Hermitian matrix. If m = 2, we consider the cases (Ã(ν0, ω0) −
τ2 I)ψ̃0 6= 0 or (Ã(ν0, ω0)− τ2 I)ψ̃0 = 0, where ψ̃0 is defined in Condition (R)′. When (Ã(ν0, ω0)−
τ2 I)ψ̃0 6= 0, we define ψ̃1 := (Ã(ν0, ω0) − τ2 I)ψ̃0. Then (12) gives (Ã(ν0, ω0) − τ1 I)ψ̃1 = 0.
Furthermore, it is easy to check ψ̃1 ∈ Ker(B̃(ω0)

]) ∩ Ker(L̃]). Namely, µ0 = −τ1 and ϕ̃0 = ψ̃1

satisfy (9). On the other hand, when (Ã(ν0, ω0) − τ2 I)ψ̃0 = 0, this gives (9) with µ0 = −τ2 and
ϕ̃0 = ψ̃0. Using the induction argument, we can introduce g0(µ) which is a divisor of g(µ) and define
ϕ̃0 = g0(Ã(ν0, ω0))ψ̃0 which satisfies (9) with µ0 = −τ0, where τ0 is some eigenvalue of Ã(ν0, ω0).
Therefore, we complete the proof.

Now, we study the relations between the conditions for (1) and the ones for (7). To this end,
we focus on Condition (R) and introduce the complement condition of Condition (R) for (1) as follows.

Condition (R)′′: There exist (ν0, ω0, ψ0) ∈ R+ × Sn−1 ×Cm\{0} such that

ψ0 ∈
m−1⋂
k=0

Ker(B(ω0)
]A(ν0, ω0)

k) ∩Ker(L]A(ν0, ω0)
k).

Then we show that Condition (R)′ is equivalent to Condition (R)′′. Indeed, Condition (R)′ means
B̃(ω0)

]Ã(ν0, ω0)
kψ̃0 = 0 and L̃]Ã(ν0, ω0)

kψ̃0 = 0 for 0 ≤ k ≤ m− 1. This is equivalent to

B(ω0)
]A(ν0, ω0)

k(A0)−1/2ψ̃0 = 0, L]A(ν0, ω0)
k(A0)−1/2ψ̃0 = 0
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for 0 ≤ k ≤ m− 1. Therefore, taking ψ0 = (A0)−1/2ψ̃0, Condition (R)′′ is satisfied.

In the rest of this section, we study the relations between the assumption in Theorem 1 and (5).

Lemma 1. Let X be m×m matrix and m1 ≤ m. Then,

X =

(
O O
O X1

)
, X1 ∈ Rm1×m1 , (X1 ϕ, ϕ) > 0 for any ϕ ∈ Rm1\{0} (13)

is sufficient condition for
X] ≥ 0, Ker(X) = Ker(X]).

Proof. Because of (X]
1 ϕ, ϕ)/2 = (X1 ϕ, ϕ) > 0, it is easy to find X] ≥ 0. Next, we assume rank(X1) <

m1. Then there is the regular matrix P such that PX1 = X̃1, where all of the components of the last
column vector of X̃1 is equal to zero. We introduce ϕ0 := PTem1 , where em1 := (0, · · · , 0, 1)T . This gives

(X1 ϕ0, ϕ0) = (PX1 ϕ0, (PT)−1 ϕ0) = (X̃1 ϕ0, em1) = 0.

This fact is a contradiction under (13). Therefore, we obtain rank(X1) = m1. Similarly as
before, we also get rank(X]

1) = m1, and hence rank(X1) = rank(X]
1). Consequently, this yields

Ker(X1) = Ker(X]
1) which implies Ker(X) = Ker(X]).

3. New Stability Criterion under Constraint Condition

In this section, we consider the system (1) under the constraint condition

n

∑
j,k=1

Pjkuxjxk +
n

∑
j=1

Qjuxj + Ru = 0, (14)

where Pjk, Qj and R are m̃×m real constant matrices. In fact, a lot of physical models are described
as (1) under (14). For example, the linearized system of the electro-magneto-fluid dynamics and
Euler-Maxwell system are described as (1) under (14). For the detail, we refer [2,12] to the reader.

Similarly as before, we study the corresponding eigenvalue problem for the system (1) under the
constraint condition (14). Namely, we look for the eigenvalue and the eigenvector of the eigenvalue
problem (2) under the condition

(r2P(ω)− irQ(ω)− R)ϕ = 0 (15)

for r ≥ 0 and ω ∈ Sn−1, where

P(ω) :=
n

∑
j,k=1

Pjkωjωk, Q(ω) :=
n

∑
j=1

Qjωj.

Here, we introduce a notation that

Xr,ω := Ker(r2P(ω)− irQ(ω)− R)

for r ≥ 0 and ω ∈ Sn−1. From this notation, (15) can be expressed as ϕ ∈ Xr,ω. Then, the strict
dissipativity and the uniform dissipativity under the constraint condition are defined as follows.

Definition 2. (Strict dissipativity and uniform dissipativity under constraint) (i) The system (1) under the
constraint condition (14) is called strictly dissipative under constraint if the real parts of the eigenvalues of (2),
which eigenvectors are in Xr,ω, are negative for each r > 0 and ω ∈ Sn−1. (ii) The system (1) under the
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constraint condition (14) is called uniformly dissipative under constraint of the type (α, β) if the eigenvalues
λ(r, ω) of (2), which eigenvectors are in Xr,ω, satisfy

Reλ(r, ω) ≤ −c
r2α

(1 + r2)β

for each r ≥ 0 and ω ∈ Sn−1, where c is a certain positive constant and (α, β) is a pair of non-negative integers.

Under the constraint condition (15), we introduce the modified stability condition and modified
Kalman rank condition as follows.

Stability Condition under Constraint (SCC): Suppose that (6) and

(ν2P(ω)− iνQ(ω)− R)ϕ = 0 (16)

hold for each (µ, ν, ω, ϕ) ∈ R×R+ × Sn−1 ×Cm. Then ϕ = 0.

Kalman Rank Condition under Constraint (RC): For each (ν, ω) ∈ R+ × Sn−1, the (2m + m̃)m×m
Kalman matrix has rank m, that is

rank



B(ω)]

B(ω)]A(ν, ω)
...

B(ω)]A(ν, ω)m−1

L]

L]A(ν, ω)
...

L]A(ν, ω)m−1

R(ν, ω)

R(ν, ω)A(ν, ω)
...

R(ν, ω)A(ν, ω)m−1



= m.

Here, we define R(ν, ω) := ν2P(ω) − iνQ(ω) − R. For these conditions, we obtain the
following equivalence.

Theorem 4. Suppose that the system (1) satisfies Condition (A). Then, for the system (1) under the constraint
condition (14), the following conditions are equivalent.

(i) System (1) under (14) is strictly dissipative under constraint.
(ii) Condition (SCC) holds.
(iii) Condition (RC) holds.

The strategy of proof is almost the same as before. Namely, we consider the contraposition for (7)
under (14) as follows.

Condition (SCC)′: There exist (µ0, ν0, ω0, ϕ̃0) ∈ R × R+ × Sn−1 × Cm\{0} such that (9) and
R̃(ν0, ω0)ϕ̃0 = 0.

Condition (RC)′: There exist (ν0, ω0, ψ̃0) ∈ R+ × Sn−1 ×Cm\{0} such that

ψ̃0 ∈
m−1⋂
k=0

Ker(B̃(ω0)
]Ã(ν0, ω0)

k) ∩Ker(L̃]Ã(ν0, ω0)
k) ∩Ker(R̃(ν0, ω0)Ã(ν0, ω0)

k). (17)
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Here we defined that R̃(ν, ω) := R(ν, ω)(A0)−1/2 and X̃r,ω := Ker(R̃(ν, ω)). Then we shall
prove the following theorem.

Theorem 5. Suppose that the system (7) satisfies Condition (A). Then, for the system (7) under the constraint
condition (14), the following conditions are equivalent.

(i) System (7) under (14) is not strictly dissipative under constraint.
(ii) Condition (SCC)′ holds.
(iii) Condition (RC)′ holds.

Proof. Firstly, we prove (i) from (ii). Since Condition (SCC)′, we obtain

iµ0ν0 ϕ̃0 + (iν0 Ã(ω0) + ν2
0 B̃(ω0) + L̃)ϕ̃0 = 0.

Therefore, λ = iµ0ν0 ∈ iR is an eigenvalue of (8) with r = ν0, ω = ω0, and ϕ̃0 ∈ Cm\{0} is a
corresponding eigenvector. Furthermore, it is easy to find that ϕ̃0 ∈ X̃r0,ω0 . Thus these facts tell
us that the system (7) under the constraint condition (14) is not strictly dissipative in X̃r,ω under
Condition (SCC)′.

Secondly, we prove (ii) from (i). We assume that the problem (1) under (14) is not strictly
dissipative in X̃r,ω. Namely, there exists (r0, ω0) ∈ R+ × Sn−1 such that Reλ(r0, ω0) = 0 and
ϕ̃(r0, ω0) ∈ X̃r0,ω0 , where (λ, ϕ̃) is a pair of the eigenvalue and eigenvector of (8). Then we obtain from
(3) that B̃(ω0)

] ϕ̃(r0, ω0) = 0 and L̃] ϕ̃(r0, ω0) = 0. Thus we employ (8) again and get

−ir−1
0 λ(r0, ω0)ϕ̃(r0, ω0) + (Ã(ω0)− ir0B̃(ω0)

[ − ir−1
0 L̃[)ϕ̃(r0, ω0) = 0.

Moreover, from the fact ϕ̃(r0, ω0) ∈ X̃r0,ω0 , this yields R̃(r0, ω0)ϕ̃(r0, ω0) = 0. Finally, taking µ0 =

−ir−1
0 λ(r0, ω0), ν0 = r0 and ϕ̃0 = ϕ̃(r0, ω0) for the above relations, we conclude that Condition (SCC)′

is satisfied.
Thirdly, we prove (iii) from (ii). Since (9) and R̃(ν0, ω0)ϕ̃0 = 0, we have

B̃(ω0)
]Ã(ν0, ω0)ϕ̃0 = µ0B̃(ω0)

] ϕ̃0 = 0, L̃]Ã(ν0, ω0)ϕ̃0 = µ0 L̃] ϕ̃0 = 0,

R̃(ν0, ω0)Ã(ν0, ω0)ϕ̃0 = µ0R̃(ν0, ω0)ϕ̃0 = 0

for ϕ̃0 ∈ Ker(B̃(ω0)
]) ∩Ker(L̃]) ∩Ker(R̃(ν0, ω0)). Hence, we obtain

ϕ̃0 ∈ Ker(B̃(ω0)
]Ã(ν0, ω0)) ∩Ker(L̃]Ã(ν0, ω0)) ∩Ker(R̃(ν0, ω0)Ã(ν0, ω0)).

Therefore, the same argument as in Theorem 3 gives (17).
Finally, we prove (ii) from (iii). We state the proof from (12) in Theorem 3. If m = 2, we consider

two cases that (Ã(ν0, ω0)− τ2 I)ψ̃0 6= 0 or (Ã(ν0, ω0)− τ2 I)ψ̃0 = 0. When (Ã(ν0, ω0)− τ2 I)ψ̃0 6= 0,
we define ψ̃1 := (Ã(ν0, ω0) − τ2 I)ψ̃0. Then (12) gives (Ã(ν0, ω0) − τ1 I)ψ̃1 = 0. Furthermore, it is
easy to check ψ̃1 ∈ Ker(B̃(ω0)

]) ∩Ker(L̃]) ∩Ker(R̃(ν0, ω0)). Namely, µ0 = −τ1 and ϕ̃0 = ψ̃1 satisfy
(9) and R̃(ν0, ω0)ϕ̃0 = 0. On the other hand, when (Ã(ν0, ω0) − τ2 I)ψ̃0 = 0, this gives (9) and
R̃(ν0, ω0)ϕ̃0 = 0 with µ0 = −τ2 and ϕ̃0 = ψ̃0. Using the induction argument, we can introduce g0(µ)

which is a divisor of g(µ) and define ϕ̃0 = g0(Ã(ν0, ω0))ψ̃0 which satisfies (9) and R̃(ν0, ω0)ϕ̃0 = 0
with µ0 = −τ0, where τ0 is some eigenvalue of Ã(ν0, ω0). Hence, the proof is finished.

Remark 5. If P(ω) ≡ O, Q(ω) ≡ O and R ≡ O, then Xr,ω is equivalent to Cm. Thus Condition (SCC) is
equivalent to Condition (SC), and Theorem 4 is also equivalent to Theorem 2.

In the rest of this section, we discuss a relation for the constrain condition and the initial data.
More precisely, we introduce the following condition.
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Condition (C): The matrices P(ω), Q(ω) and R satisfy

P(ω)(A0)−1B(ω) = 0, P(ω)(A0)−1 A(ω)−Q(ω)(A0)−1B(ω) = 0,

P(ω)(A0)−1L + Q(ω)(A0)−1 A(ω)− R(A0)−1B(ω) = 0,

Q(ω)(A0)−1L + R(A0)−1 A(ω) = 0, R(A0)−1L = 0

for each ω ∈ Sn−1.

Condition (C) implies the fact that (14) holds at an arbitrary time t > 0 for the solution of (14) if
it holds initially. For the detail, we refer the reader to [1]. Therefore, it is reasonable for the Cauchy
problem to assign the constraint condition (14) which satisfies Condition (C). If we suppose that
Condition (C) for the system (1) under (14), we can relax Condition (SCC).

Modified Stability Condition under Constraint (MSCC): Suppose that (6) hold for each (µ, ν, ω, ϕ) ∈
R\{0} ×R+ × Sn−1 ×Cm. Then ϕ = 0. Furthermore, suppose that

(A(ω)− iνB(ω)[ − iν−1L[)ϕ = 0, ϕ ∈ Ker(B(ω)]) ∩Ker(L])

and (16) hold for each (ν, ω, ϕ) ∈ R+ × Sn−1 ×Cm. Then ϕ = 0.

Theorem 6. Under Condition (C), Condition (SCC) is equivalent to Condition (MSCC).

Proof. The sufficient condition is trivial. We only prove the necessary condition. Under Condition (C),
this yields

(ν2P(ω)− iνQ(ω)− R)(A0)−1(iνA(ω) + ν2B(ω) + L)ϕ = 0

for each (ν, ω, ϕ) ∈ R+ × Sn−1 × Cm. Thus, by the first equation of (6), we get −iµν(ν2P(ω) −
iνQ(ω)− R)ϕ = 0. Namely we arrive at (16) if µ 6= 0, and complete the proof.

Remark 6. Theorem 6 tells us that if the system does not satisfy Condition (SC) for some µ ∈ R\{0}, then
it is difficult to find the useful constraint condition and apply Condition (SCC). On the other hand, if the
system satisfies Condition (SC) for µ 6= 0, it might be possible to find the useful constraint condition and
apply Condition (SCC)(or (MSCC)) to the system. We will explain the situation by using concrete examples in
Sections 4.3, 4.4, 5.2 and 5.3.

4. Application to Physical Models

In this section, we introduce the several physical models for the application of Theorem 2, 4 and 6.

4.1. Timoshenko System

In this subsection, as an application of Theorems 2, we consider the following dissipative
Timoshenko system {

φtt − (φx + ψ)x = 0,

ψtt − a2ψxx + (φx + ψ) + γψt = 0,
(18)

where a and γ are positive constants, and φ = φ(t, x) and ψ = ψ(t, x) are unknown scalar functions
of t > 0 and x ∈ R. The Timoshenko system above is a model system describing the vibration of the
beam called the Timoshenko beam, and φ and ψ denote the transversal displacement and the rotation
angle of the beam, respectively. Here we only mention [8,9] for related mathematical results.
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As in [8,9], we introduce the vector function u = (φx + ψ, φt, aψx, ψt)T . Then the Timoshenko
system (18) is written in the form of (1) with coefficient matrices

A0 = I, A1 =


0 −1 0 0
−1 0 0 0
0 0 0 −a
0 0 −a 0

 , B11 = O, L =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 γ

 ,

where I is the 4× 4 identity matrix and O is the 4× 4 zero matrix. Here the space dimension is n = 1
and the size of the system is m = 4. Notice that the relaxation matrix L is not symmetric. From the
above matrices, we have

A(ω) = ω


0 −1 0 0
−1 0 0 0
0 0 0 −a
0 0 −a 0


for ω ∈ {−1, 1}, and the relaxation matrix L is decomposed L = L] + L[ with

L] =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 γ

 , L[ =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 .

It is obvious that these matrices satisfy Condition (A), and we can apply Theorem 2 to the
dissipative Timoshenko system.

Corollary 1. The dissipative Timoshenko system (18) satisfies Condition (SC). Therefore, this system is
strictly dissipative.

Proof. Condition (SC) states that (µ, ν, ω) ∈ R×R+ × {−1, 1} and ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T ∈ C4 satisfy

µϕ1 −ωϕ2 + iν−1 ϕ4 = 0,

µϕ2 −ωϕ1 = 0,

µϕ3 − aωϕ4 = 0,

µϕ4 − aωϕ3 − iν−1 ϕ1 = 0,

and γϕ4 = 0.

Then, for any choice of (µ, ν, ω) ∈ R×R+ × {−1, 1}, we can get ϕ = 0. Namely, we conclude
that the dissipative Timoshenko system (18) satisfies Condition (SC). This completes the proof of
Corollary 1.

4.2. Thermoelastic Plate Equation with Cattaneo’s Law

In this subsection, we consider the following linear thermoplastic plate equation in Rn, where
heat conduction is modeled by Cattaneo’s (Maxwell’s, Vernotte’s) law

vtt + ∆2v + ∆θ = 0,

θt + div q− ∆vt = 0,

τqt + q +∇θ = 0.

(19)

Here, v describes the elongation of a plate, while θ and q denote the temperature and the heat flux,
respectively. For Cattaneo’s law, the relaxation parameter τ is a positive constant. We have a
lot of known results for the system (19). Especially, the system (19) is analyzed in detail by [16].
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The authors of [16] obtained the sharp dissipative structure for the system (19), which is also
regularity-loss structure.

We can rewrite (19) to a general system (1). To this end, we introduce new functions z and w as
z = ∆v and w = vt. Then our equation (19) can be rewritten as

zt − ∆w = 0,

wt + ∆z + ∆θ = 0,

θt + div q− ∆w = 0,

τqt + q +∇θ = 0.

(20)

Now, we introduce an unknown vector function u = (z, w, θ, q)T and n+ 3 dimensional coefficient
matrices Aj, Bjk and L such that

A0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 τ I

 , A(ξ) =
n

∑
j=1

Ajξ j =


0 0 0 0
0 0 0 0
0 0 0 ξT

0 0 ξ 0

 ,

L =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

 , Bjk =


0 δjk 0 0
−δjk 0 −δjk 0

0 δjk 0 0
0 0 0 0

 , 1 ≤ j, k ≤ n,

where I is the n× n identity matrix and δjk denotes Kronecker’s delta. Then the problem (20) can be
rewritten as (1). Remark that the matrices Aj and L are symmetric but Bjk is skew-symmetric. From the
above matrices, we get

A(ω) =


0 0 0 0
0 0 0 0
0 0 0 ω

0 0 ωT 0

 , B(ω) =


0 1 0 0
−1 0 −1 0
0 1 0 0
0 0 0 0


for ω ∈ Sn−1. Under this situation, it is easy to check that our system satisfies Condition (A), and we
can get the following property.

Corollary 2. The thermoelastic plate equation with Cattaneo’s law (19) satisfies Condition (SC). Therefore, this
system is strictly dissipative.

Proof. Condition (SC) suggests to state that (µ, ν, ω) ∈ R×R+ × Sn−1 and ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T ∈

Cn+3 with ϕ4 ∈ Cn satisfy
µϕ1 − iνϕ2 = 0,

µϕ2 + iνϕ1 + iνϕ3 = 0,

µϕ3 + 〈ϕ4, ω〉 − iνϕ2 = 0,

µτϕ4 + ϕ3ωT = 0,

and ϕ4 = 0.

It is easy to check ϕ = 0 for any (µ, ν, ω) ∈ R× R+ × Sn−1, and then we conclude that the
thermoelastic plate equation with Cattaneo’s law satisfies Condition (SC). This completes the proof of
Corollary 2.
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4.3. Coupled System of Wave and Heat Equations

We treat a coupled system of wave and heat equations as one of concrete examples in
this subsection. {

vtt − ∆v + aθ = 0,

θt − avt − γ∆θ = 0.
(21)

Here v = v(t, x) and θ = θ(t, x) over t > 0, x ∈ Rn are unknown scalar functions, and a and γ

denote constants which satisfy a ∈ R\{0} and γ > 0. The system (21) is one of the typical examples
of the regularity-loss type equations. Indeed this system was concerned in [21] and the authors
derived the weak dissipative structure in a bounded domain. Moreover, Liu and Rao in [22] analyzed
this equation to derive the stability criterion for the regularity-loss type problems in a bounded
domain. Recently, the author of [23] also considered this problem in Rn and obtained the detailed
dissipative structure.

To employ our main theorem, we rewrite (21) to a general system. Introduce new functions z and
w as z = ∇v and w = vt. Then (21) can be rewritten as

zt −∇w = 0,

wt − div z + aθ = 0,

θt − aw− γ∆θ = 0.

(22)

Here we remark that by the fact that z = ∇v, the solution z should satisfy

∂xj z
k − ∂xk zj = 0 (23)

for an arbitrary j and k with 1 ≤ j, k ≤ n, where zj denotes the jth component of the vector z. Thus,
we assign the constraint condition (23) for the system (22). We remark that the constraint condition
(23) is trivial in R, and is same as rot z = 0 in R3.

We introduce an unknown vector function u = (z, w, θ)T and n + 2 dimensional coefficient
matrices Aj, Bjk and L such that A0 = I and

A(ξ) =
n

∑
j=1

Ajξ j :=

 0 −ξT 0
−ξ 0 0
0 0 0

 , L :=

 0 0 0
0 0 a
0 −a 0

 , Bjk :=

 0 0 0
0 0 0
0 0 γδjk


for 1 ≤ j, k ≤ n, where I is the (n + 2)× (n + 2) identity matrix and δjk denotes Kronecker’s delta.
Then the problem (22) can be rewritten as (1). We note that the matrices Aj and Bjk are symmetric.
However, the matrix L is skew-symmetric. From these matrices, we have

A(ω) =

 0 −ωT 0
−ω 0 0

0 0 0

 , B(ω) =

 0 0 0
0 0 0
0 0 γ

 .

On the other hand, the constraint condition (23) can be expressed (14) with Pjk = O, R = O and
Q(ω) = Qn(ω) such that

Qn(ω) =

 Q̃n(ω) 0 0
0 0 0
0 0 0

 ,
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where Q̃n(ω) is defined by Q̃2(ω) = (−ω2 ω1) and

Q̃n(ω) =



0 0 · · · 0 −ωn ωn−1

0 0 · · · ωn 0 −ωn−2
...

...
...

...
...

0 (−1)nωn · · · 0 0 (−1)n−3ω2

(−1)n+1ωn 0 · · · 0 0 (−1)n−2ω1

Q̃n−1(ω) 0


for ω ∈ Sn−1 and n ≥ 3. Here, Q̃n(ω) is a n(n− 1)/2× n matrix. For example, there are

Q̃3(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , Q̃4(ω) =



0 0 −ω4 ω3

0 ω4 0 −ω2

−ω4 0 0 ω1

0 −ω3 ω2 0
ω3 0 −ω1 0
−ω2 ω1 0 0


.

We can check that these matrices satisfy Condition (A). Moreover, it is not difficult to check
that Qn(ω) satisfies Condition (C). Therefore, we can also apply our main theorems to this problem.
Namely, we obtain the following corollary.

Corollary 3. In the case n ≥ 2 (resp. n = 1), the coupled system (22) under the constraint condition (23)
satisfies Condition (SCC) (resp. (SC)). Therefore, this system is strictly dissipative under constraint (resp.
strictly dissipative).

Proof. The proof in the case n = 1 is easy and omitted here. We only consider the case n ≥ 2.
From Condition (SCC), we state that (µ, ν, ω) ∈ R×R+ × Sn−1 and ϕ = (ϕ1, · · · , ϕn, ϕn+1, ϕn+2)

T ∈
Cn+2 with ϕ̃ = (ϕ1, · · · , ϕn)T ∈ Cn satisfy

µϕ̃− ϕn+1ωT = 0,

µϕn+1 − 〈ϕ̃, ω〉 − iνaϕn+2 = 0,

µϕn+2 + iνaϕn+1 = 0,

and γϕn+2 = 0. (24)

Furthermore, the constraint condition (23) gives us that

ωj ϕk −ωk ϕj = 0 (25)

for 1 ≤ j, k ≤ n. If µ 6= 0, we can derive ϕ = 0 immediately by using only (24). On the other hand,
if µ = 0, we have to employ not only (24) but also (25). In fact, we have from (24) that ϕn+1 = ϕn+2 = 0
and 〈ϕ̃, ω〉 = 0. Thus, using (25) and 〈ϕ̃, ω〉 = 0, we calculate that

|ϕ̃|2 =
n

∑
j,k=1

ω2
j |ϕk|2

=
n

∑
j=1

ω2
j |ϕj|2 +

n

∑
j,k=1,j 6=k

ω2
j |ϕk|2

=
n

∑
j=1

ω2
j |ϕj|2 +

n

∑
j,k=1,j 6=k

(ωj ϕj)(ωk ϕ̄k)

= |〈ϕ̃, ω〉|2 = 0.
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Thus ϕ = 0 for any (ν, ω) ∈ R+ × Sn−1. Namely, we conclude that this system satisfies Condition
(SCC) and (MSCC). This completes the proof of Corollary 3.

4.4. Euler-Maxwell System

As a next application of Theorem 4, we deal with the following Euler-Maxwell system
ρt + div(ρv) = 0,

(ρv)t + div(ρv⊗ v) +∇p(ρ) = −ρ(E + v× B)− ρv,

Et − rot B = ρv,

Bt + rot E = 0,

(26)

div E = ρ∞ − ρ, div B = 0. (27)

Here the density ρ > 0, the velocity v ∈ R3, the electric field E ∈ R3, and the magnetic induction
B ∈ R3 are unknown functions of t > 0 and x ∈ R3. Assume that the pressure p(ρ) is a given smooth
function of ρ satisfying p′(ρ) > 0 for ρ > 0, and ρ∞ is a positive constant.

The Euler-Maxwell system above arises from the study of plasma physics. The authors of [11,12]
derived the asymptotic stability of the equilibrium state and the corresponding decay estimate.
Furthermore, they analyzed the dissipative structure and concluded that the Euler-Maxwell system is
a regularity-loss type which is of type (1, 2). To get the structure of uniform dissipativity, they applied
the complicated energy estimate. On the other hand, we suggest the different approach to get the
information of the dissipative structure for Euler-Maxwell system in this subsection.

From the analysis in [11,12], we had already known that the system (26) can be written in the form
of a symmetric hyperbolic system. Precisely, we introduce that u = (ρ, v, E, B)T , u∞ = (ρ∞, 0, 0, B∞)T ,
which are regarded as column vectors in R10, where B∞ ∈ R3 is an arbitrarily fixed constant. Then the
Euler-Maxwell system (26) is rewritten as

A0(u)ut +
3

∑
j=1

Aj(u)uxj + L(u)u = 0, (28)

where the coefficient matrices are given explicitly as

A0(u) :=


p′(ρ)/ρ 0 0 0

0 ρI 0 0
0 0 I 0
0 0 0 I

 , L(u) :=


0 0 0 0
0 ρ(I −ΩB) ρI 0
0 −ρI 0 0
0 0 0 0

 ,

3

∑
j=1

Aj(u)ξ j :=


(p′(ρ)/ρ)(v · ξ) p′(ρ)ξ 0 0

p′(ρ)ξT ρ(v · ξ)I 0 0
0 0 0 −Ωξ

0 0 Ωξ 0

 .

Here I denotes the 3× 3 identity matrix, ξ = (ξ1, ξ2, ξ3) ∈ R3, and Ωξ is the skew-symmetric
matrix defined by

Ωξ =

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0


for ξ = (ξ1, ξ2, ξ3) ∈ R3, so that we have Ωξ ET = (ξ × E)T (as a column vector in R3) for E =

(E1, E2, E3) ∈ R3. We note that (28) is a symmetric hyperbolic system because A0(u) is real symmetric
and positive definite and Aj(u) with j = 1, 2, 3 are real symmetric. Also, the matrix L(u) is non-negative
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definite, so that it is regarded as a relaxation matrix. Moreover, we have L(u)u∞ = 0 for each u
so that the constant state u∞ lies in the kernel of L(u). However, the matrix L(u) or L(u∞) has
skew-symmetric part and is not real symmetric. Consequently, our system is not included in a class of
systems considered in Theorem 1.

Next, we consider the linearization of (28) with (27) around the equilibrium state u∞. If we denote
u− u∞ by u again, then the linearization of the system (28) with (27) can be written in the form of (1)
with (14), where the coefficient matrices are given by Bjk = O and

A0 =


a∞ 0 0 0
0 ρ∞ I 0 0
0 0 I 0
0 0 0 I

 , A(ξ) =
3

∑
j=1

Ajξ j =


0 b∞ξ 0 0

b∞ξT 0 0 0
0 0 0 −Ωξ

0 0 Ωξ 0

 ,

L] =


0 0 0 0
0 ρ∞ I 0 0
0 0 0 0
0 0 0 0

 , L[ =


0 0 0 0
0 −ρ∞ΩB∞ ρ∞ I 0
0 −ρ∞ I 0 0
0 0 0 0

 ,

(29)

and Pjk = O and

Q(ξ) =
3

∑
j=1

Qjξ j =

(
0 0 ξ 0
0 0 0 ξ

)
, R =

(
1 0 0 0
0 0 0 0

)
, (30)

where a∞ = p′(ρ∞)/ρ∞ and b∞ = p′(ρ∞) are positive constants. Here the space dimension is n = 3
and the sizes of the systems are m = 10 and m̃ = 2. For this linearized system it is easy to check that
the system satisfies Condition (A). Furthermore, using the expression (30), we can also check Condition
(C) for the constraint condition. Therefore we can apply Theorem 4 and 6 for (1), (14) with (29), (30),
and get the following result.

Corollary 4. The linearized Euler-Maxwell system satisfies Condition (SCC) (and (MSCC)). Therefore, this
system is strictly dissipative under constraint.

Proof. Condition (SCC) suggests to state that (µ, ν, ω) ∈ R×R+ × Sn−1 and ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T ∈

C10 with ϕj = (ϕj1, ϕj2, ϕj3)
T ∈ C3 for j = 2, 3, 4 satisfy

µa∞ ϕ1 + b∞〈ϕ2, ω〉 = 0,

µb∞ ϕ2 + b∞ ϕ1ωT + ρ∞ΩB∞ ϕ2 − iν−1ρ∞ ϕ3 = 0,

µϕ3 −Ωω ϕ4 + iν−1ρ∞ ϕ2 = 0,

µϕ4 + Ωω ϕ3 = 0,

and ρ∞ ϕ2 = 0. (31)

Furthermore, we get from the constraint condition that

− iν〈ϕ3, ω〉 − ϕ1 = 0, −iν〈ϕ4, ω〉 = 0. (32)

Using the fact that ρ∞ ϕ2 = 0, we obtain ϕ2 = 0. Thus (31) is reduced to
µa∞ ϕ1 = 0,

b∞ ϕ1ωT − iν−1ρ∞ ϕ3 = 0,

µϕ3 −Ωω ϕ4 = 0,

µϕ4 + Ωω ϕ3 = 0.

(33)
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If µ 6= 0, it is easy to get ϕ1 = 0 and ϕ3 = ϕ4 = 0. On the other hand, we have to employ the
condition (32) if µ = 0. Precisely, substituting µ = 0 into (33), we obtain

b∞ ϕ1ωT − iν−1ρ∞ ϕ3 = 0, −Ωω ϕ4 = 0, Ωω ϕ3 = 0. (34)

Combining the first equation in (32) and the first equation in (34), this yields (ν2b∞ + ρ∞)ϕ1 = 0.
Namely, we get ϕ1 = 0. Moreover, using the last equation in (32), the second equation in (34), and the
fact that |ϕ4|2 = |〈ϕ4, ω〉|2 + |Ωω ϕ4|2, we get ϕ4 = 0. Similarly, we also obtain ϕ3 = 0.

Therefore, we arrive at ϕ = 0 for any (µ, ν, ω) ∈ R× R+ × Sn−1, and we conclude that the
Euler-Maxwell system (18) satisfies Condition (SCC) and (MSCC). Here we remark that we used
the both conditions in (32) to check Condition (SCC) and (MSCC). This completes the proof of
Corollary 4.

Remark 7. When we check Condition (CSC) for the linearized Euler-Maxwell system, we do not need to use
the first condition in (32).

5. Bresse System

In the last section, we introduce the important application of Condition (SC). The Bresse system
is a one of good examples that Condition (CSC) is not enough to check what the physical model is
strictly dissipative.

5.1. Dissipative Bresse System

We consider the dissipative Bresse system
φtt − κ2

1(φx + ψ + `w)x − κ2
2`(wx − `φ) = 0,

ψtt − a2ψxx + κ2
1(φx + ψ + `w) + γψt = 0,

wtt − κ2
2(wx − `φ)x + κ2

1`(φx + ψ + `w) = 0,

(35)

where a, γ, κ1 and κ2 are positive constants, ` is a non-zero constant, and φ = φ(t, x), ψ = ψ(t, x) and
w = w(t, x) are unknown scalar functions of t > 0 and x ∈ R. If we put ` = 0, the dissipative Bresse
system (35) is equivalent to the dissipative Timoshenko system (18) and the simple wave equation.
Now, we introduce new functions such that

v := κ1(φx + ψ + `w), s := φt, z := aψx,

y := ψt, q := κ2(wx − `φ), p := wt,

then (35) is rewritten as 

vt − κ1sx − κ1y− κ1`p = 0,

st − κ1vx − κ2`q = 0,

zt − ayx = 0,

yt − azx + κ1v + γy = 0,

qt − κ2 px + κ2`s = 0,

pt − κ2qx + κ1`v = 0.

(36)
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Namely the system (36) is described as (1), where u = (v, s, z, y, q, p)T , and the matrices A0, A1,
B11 and L are defined by A0 = I, B11 = O and

A1 =



0 −κ1 0 0 0 0
−κ1 0 0 0 0 0

0 0 0 −a 0 0
0 0 −a 0 0 0
0 0 0 0 0 −κ2

0 0 0 0 −κ2 0


, L =



0 0 0 −κ1 0 −κ1`

0 0 0 0 −κ2` 0
0 0 0 0 0 0
κ1 0 0 γ 0 0
0 κ2` 0 0 0 0

κ1` 0 0 0 0 0


.

The space dimension is n = 1 and the size of the system is m = 6. Notice that the relaxation
matrix L is not symmetric. Then, we obtain

A(ω) = ω



0 −κ1 0 0 0 0
−κ1 0 0 0 0 0

0 0 0 −a 0 0
0 0 −a 0 0 0
0 0 0 0 0 −κ2

0 0 0 0 −κ2 0


for ω ∈ {−1, 1}, and the matrix L is decomposed L = L] + L[ with

L] =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 γ 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, L[ =



0 0 0 −κ1 0 −κ1`

0 0 0 0 −κ2` 0
0 0 0 0 0 0
κ1 0 0 0 0 0
0 κ2` 0 0 0 0

κ1` 0 0 0 0 0


.

It is clear that these matrices satisfy Condition (A). Thus we can apply Theorem 2 and get the
following result.

Theorem 7. The dissipative Bresse system (35) does not satisfy Condition (SC). Therefore, this system is not
strictly dissipative.

Proof. From Condition (SC), we state that (µ, ν, ω) ∈ R× R+ × {−1, 1} and ϕ = (ϕ1, · · · , ϕ6)
T ∈

C6 satisfy 

µϕ1 − κ1ωϕ2 + iν−1κ1 ϕ4 + iν−1κ1`ϕ6 = 0,

µϕ2 − κ1ωϕ1 + iν−1κ2`ϕ5 = 0,

µϕ3 − aωϕ4 = 0,

µϕ4 − aωϕ3 − iν−1κ1 ϕ1 = 0,

µϕ5 − κ2ωϕ6 − iν−1κ2`ϕ2 = 0,

µϕ6 − κ2ωϕ5 − iν−1κ1`ϕ1 = 0,

and γϕ4 = 0. (37)
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Now, we put (µ, ν) = (0, |`|). Then (37) can be rewritten as ϕ4 = 0 and

−κ1ωϕ2 + iκ1`|`|−1 ϕ6 = 0,

−κ1ωϕ1 + iκ2`|`|−1 ϕ5 = 0,

−aωϕ3 − iκ1|`|−1 ϕ1 = 0,

−κ2ωϕ6 − iκ2`|`|−1 ϕ2 = 0,

−κ2ωϕ5 − iκ1`|`|−1 ϕ1 = 0,

(38)

Thus we can reduce (38) to

ϕ2 − i`|`|−1ωϕ6 = 0, κ1 ϕ1 − iκ2`|`|−1ωϕ5 = 0, aϕ3 + iκ1|`|−1ωϕ1 = 0.

Therefore, for each ω ∈ {−1, 1} and (σ1, σ2) ∈ C2, the vector

ϕ = (σ1, σ2,− κ1

a|`| iωσ1, 0,− κ1`

κ2|`|
iωσ1,− `

|`| iωσ2)
T

satisfies (37) with (µ, ν) = (0, |`|). This means that the system (36) does not satisfy Condition (SC).
Hence this completes the proof.

The proof of Theorem 7 tells us that the real part of some eigenvalue for (2) which comes from the
dissipative Bresse system (36) contacts the imaginary axis at r = |`|. Namely, we can expect that the
real parts of the eigenvalues are located in the gray region in Figure 3.

Reλ(r,ω)
0

r

|ℓ|

Figure 3. Eigenvalues of the dissipative Bresse system.

Remark 8. The dissipative Bresse system (35) satisfies Condition (CSC).

Remark 8 means that Condition (CSC) is not enough to check the strict dissipativity for the
system (1) under Condition (A).

Compare with the Corollary 1 and Theorem 7, we can predict that the difficulty of the analysis
for (36) comes from the terms related with `. Therefore we focus on the effect of the terms of ` and
analyze the structure of strict dissipativity in the next subsections.
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5.2. Reduced Bresse System (I)

Inspired by the analysis in the previous subsection, we regard that p ≡ 0 in (36) and study the
reduced system. Namely, we treat the system

vt − κ1sx − κ1y = 0,

st − κ1vx − κ2`q = 0,

zt − ayx = 0,

yt − azx + κ1v + γy = 0,

qt + κ2`s = 0.

(39)

Then the problem (39) can be rewritten as (1), where u = (v, s, z, y, q)T , and the matrices are
defined by A0 = I, B11 = O and

A1 =


0 −κ1 0 0 0
−κ1 0 0 0 0

0 0 0 −a 0
0 0 −a 0 0
0 0 0 0 0

 , L =


0 0 0 −κ1 0
0 0 0 0 −κ2`

0 0 0 0 0
κ1 0 0 γ 0
0 κ2` 0 0 0

 .

Hence, we get

A(ω) = ω


0 −κ1 0 0 0
−κ1 0 0 0 0

0 0 0 −a 0
0 0 −a 0 0
0 0 0 0 0


for ω ∈ {−1, 1}, and L = L] + L[ with

L] =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 γ 0
0 0 0 0 0

 , L[ =


0 0 0 −κ1 0
0 0 0 0 −κ2`

0 0 0 0 0
κ1 0 0 0 0
0 κ2` 0 0 0

 .

It is obvious that the system (39) satisfies Condition (A). Under this situation, we obtain the
following result which comes from Theorem 2.

Theorem 8. The reduced Bresse system (39) does not satisfy Condition (SC). Therefore, this system is not
strictly dissipative.

Proof. From Condition (SC), we state that (µ, ν, ω) ∈ R× R+ × {−1, 1} and ϕ = (ϕ1, · · · , ϕ5)
T ∈

C5 satisfy 

µϕ1 − κ1ωϕ2 + iν−1κ1 ϕ4 = 0,

µϕ2 − κ1ωϕ1 + iν−1κ2`ϕ5 = 0,

µϕ3 − aωϕ4 = 0,

µϕ4 − aωϕ3 − iν−1κ1 ϕ1 = 0,

µϕ5 − iν−1κ2`ϕ2 = 0,

and γϕ4 = 0. (40)

Substituting µ = 0 into (40), then (40) is reduced to ϕ2 = ϕ4 = 0 and

− κ1ωϕ1 + iν−1κ2`ϕ5 = 0, −aωϕ3 − iν−1κ1 ϕ1 = 0. (41)
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Then, for an arbitrary (ν, ω) ∈ R+ × {−1, 1} and σ ∈ C, the vector

ϕ = (σ, 0,− κ1

aν
iωσ, 0,−κ1ν

κ2`
iωσ)T (42)

satisfies (40) with µ = 0. This means that the system (39) does not satisfy Condition (SC). Hence this
completes the proof of Theorem 8.

Remark 9. The reduced Bresse system (39) satisfies Condition (CSC).

Theorem 8 tells us that the system (39) is not strictly dissipative without any condition. At the rest
of this subsection, we try to find the useful constraint condition for the system (39). Inspired by (42),
we introduce the following condition

κ1aqxx + κ2a`vx − κ1κ2`z = 0. (43)

Then the condition (43) can be expressed by (14) with

P =
(

0 0 0 0 κ1a
)

, Q =
(

κ2a` 0 0 0 0
)

, R =
(

0 0 −κ1κ2` 0 0
)

.

Then, we have P(ω) = P = (0 0 0 0 κ1a) and Q(ω) = (κ2a`ω 0 0 0 0), and the system (39) under
the constraint condition (43) satisfies Condition (C). Therefore, the constraint condition (43) may be
reasonable for the system (39). Now, we derive the following result.

Theorem 9. The reduced Bresse system (39) under the constraint condition (43) satisfies Condition (SCC).
Therefore, (39) under (43) is strictly dissipative under constraint.

Proof. We begin the proof from (40). Moreover, the constraint condition (43) gives us

κ1aν2 ϕ5 − κ2a`νωiϕ1 + κ1κ2`ϕ3 = 0. (44)

In the case µ = 0, we had already obtained ϕ2 = ϕ4 = 0 and (41). Thus, combining (41) and (44),
we arrive at

(ν4κ2
1a2 + ν2κ2

2a2`2 + κ2
1κ2

2`
2)iϕ1 = 0,

and hence ϕ1 = ϕ5 = 0. On the other hand, in the case µ 6= 0, it is easy to get ϕ = 0 by using (40).
Therefore, we can apply Theorem 4 and complete the proof.

5.3. Reduced Bresse System (II)

Based on the similar motivation as in Section 5.2, we also regard q ≡ 0 in (36). Then this yields

vt − κ1sx − κ1y− κ1`p = 0,

st − κ1vx = 0,

zt − ayx = 0,

yt − azx + κ1v + γy = 0,

pt + κ1`v = 0.

(45)
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The system (45) can be rewritten as (1), where u = (v, s, z, y, p)T , and the matrices A0, A1, B11 and
L are defined by A0 = I, B11 = O and

A1 =


0 −κ1 0 0 0
−κ1 0 0 0 0

0 0 0 −a 0
0 0 −a 0 0
0 0 0 0 0

 , L =


0 0 0 −κ1 −κ1`

0 0 0 0 0
0 0 0 0 0
κ1 0 0 γ 0
κ1` 0 0 0 0

 . (46)

Namely, we have

A(ω) = ω


0 −κ1 0 0 0
−κ1 0 0 0 0

0 0 0 −a 0
0 0 −a 0 0
0 0 0 0 0


for ω ∈ {−1, 1}, and L = L] + L[ with

L] =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 γ 0
0 0 0 0 0

 , L[ =


0 0 0 −κ1 −κ1`

0 0 0 0 0
0 0 0 0 0
κ1 0 0 0 0
κ1` 0 0 0 0

 .

Here, we note that our problem (1) with (46) satisfies Condition (A). Therefore, we can apply
Theorem 2 and get the following result.

Theorem 10. The reduced Bresse system (45) does not satisfy Condition (SC). Therefore, this system is not
strictly dissipative.

Proof. Condition (SC) suggests us to state that (µ, ν, ω) ∈ R×R+ × {−1, 1} and ϕ = (ϕ1, · · · , ϕ5)
T ∈

C5 satisfy 

µϕ1 − κ1ωϕ2 + iν−1κ1 ϕ4 + iν−1κ1`ϕ5 = 0,

µϕ2 − κ1ωϕ1 = 0,

µϕ3 − aωϕ4 = 0,

µϕ4 − aωϕ3 − iν−1κ1 ϕ1 = 0,

µϕ5 − iν−1κ1`ϕ1 = 0,

and γϕ4 = 0. (47)

If we substitute µ = 0 into (47), then (47) is reduced to ϕ1 = ϕ3 = ϕ4 = 0 and

−ωϕ2 + iν−1`ϕ5 = 0. (48)

Then, for an arbitrary (ν, ω) ∈ R+ × {−1, 1} and σ ∈ C, the vector

ϕ = (0, σ, 0, 0,−ν

`
iωσ)T (49)

satisfies (47) with µ = 0. This means that the system (45) does not satisfy Condition (SC). Hence this
completes the proof of Theorem 10.

Remark 10. The reduced Bresse system (45) satisfies Condition (CSC).
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Similarly as before, we shall derive the useful constraint condition for the system (45). Inspired
by (49), we introduce the following condition

px + `s = 0. (50)

The condition (50) can be expressed by (14) with P ≡ O and

Q =
(

0 0 0 0 1
)

, R =
(

0 ` 0 0 0
)

.

From P(ω) = O and Q(ω) = (0 0 0 0 ω), we can check that the constraint condition (50) satisfies
Condition (C). Using this constraint condition, we show the following result.

Theorem 11. The reduced Bresse system (45) under the constraint condition (43) satisfies Condition (SCC).
Therefore, (45) under (50) is strictly dissipative under constraint.

Proof. We begin the proof from (47). Furthermore, the constraint condition (50) gives us

− iνωϕ5 − `ϕ2 = 0. (51)

In the case µ = 0, we had already got ϕ1 = ϕ3 = ϕ4 = 0 and (48). Thus, combining (48) and (51),
we conclude (ν2 + `2)ϕ2 = 0, and hence ϕ2 = ϕ5 = 0. On the other hand, in the case µ 6= 0, it is easy
to get ϕ = 0 by using (47). Therefore we can apply Theorem 4 and complete the proof.

6. Conclusions

In this article, we succeeded in introducing new stability conditions. By virtue of Stability
Condition (SC), it is easy to check the dissipative structure for the general system (1), and there are a lot
of applications. However, if the system has the symmetric property (4), Classical Stability Condition
(CSC) is equivalent to the uniform dissipativity. Inspired by this situation, we predict that the system (1)
is uniformly dissipative under Stability Condition (SC). If we can get the positive answer for this
conjecture, Stability Condition (SC) is applicable to nonlinear problems.
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