
symmetryS S

Article

Synthetic Medical Images Using F&BGAN for Improved
Lung Nodules Classification by Multi-Scale VGG16

Defang Zhao 1, Dandan Zhu 1, Jianwei Lu 1,2,*, Ye Luo 1,* and Guokai Zhang 1

1 School of Software Engineering, Tongji University, Shanghai 201804, China; 1731534@tongji.edu.cn (D.Z.);
dandanzhu@tongji.edu.cn (D.Z.); zhang.guokai@tongji.edu.cn (G.Z.)

2 Institute of Translational Medicine, Tongji University, Shanghai 201804, China
* Correspondence: jwlu33@tongji.edu.cn (J.L.); yeluo@tongji.edu.cn (Y.L.); Tel.: +86-21-6958-9585 (Y.L.)

Received: 28 September 2018; Accepted: 16 October 2018; Published: 17 October 2018
����������
�������

Abstract: Lung cancer is one of the highest causes of cancer-related death in both men and
women. Therefore, various diagnostic methods for lung nodules classification have been proposed
to implement the early detection. Due to the limited amount and diversity of samples, these
methods encounter some bottlenecks. In this paper, we intend to develop a method to enlarge
the dataset and enhance the performance of pulmonary nodules classification. We propose a data
augmentation method based on generative adversarial network (GAN), called Forward and Backward
GAN (F&BGAN), which can generate high-quality synthetic medical images. F&BGAN has
two stages, Forward GAN (FGAN) generates diverse images, and Backward GAN (BGAN) is
used to improve the quality of images. Besides, a hierarchical learning framework, multi-scale
VGG16 (M-VGG16) network, is proposed to extract discriminative features from alternating stacked
layers. The methodology was evaluated on the Lung Image Database Consortium and Image Database
Resource Initiative (LIDC-IDRI) dataset, with the best accuracy of 95.24%, sensitivity of 98.67%,
specificity of 92.47% and area under ROC curve (AUROC) of 0.980. Experimental results demonstrate
the feasibility of F&BGAN in generating medical images and the effectiveness of M-VGG16 in
classifying malignant and benign nodules.

Keywords: Computer Aided Diagnosis (CAD); Generative Adversarial Network (GAN); multi-scale;
pulmonary nodules

1. Introduction

Lung cancer is the most common cause of cancer-related death in America, which accounts for
26% and 25% in men and women, respectively. The five-year relative survival rate of lung cancer is only
18%. By screening with computed tomography (CT), there is potential for lung cancer to be diagnosed
at an earlier stage, which has been shown to reduce lung cancer mortality by up to 20% [1]. Small
masses of tissues found in the lungs, called lung/pulmonary nodules, have the potential to become
cancerous [2]. Thereby, the early diagnosis of lung nodules is important to increase the likelihood of
survival rate.

The traditional diagnostic method is to manually analyze lung CT scans by trained radiologists,
which may be error-prone and time-consuming. Therefore, computer-aided diagnosis (CAD) systems
have been developed, which are based on numeric image features to implement automatic classification
of lung nodules as either benign or malignant and help design follow-up treatment plans. In general,
the lung cancer diagnosis CAD system involves four phases: image processing, extraction of region of
interest (ROI), feature selection and classification. Among them, feature selection and classification
are key steps to improve the sensitivity and accuracy of the entire system. The conventional CAD
systems [3–6] are fundamentally based on complex pattern recognition, which highly rely on image
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processing to capture reliable features. Despite the favorable performance of these CAD systems in
lung nodules analysis, the extracted features tend to be subjective, which limits the performance of the
model to a certain extent.

In recent years, motivated by the creditable performance of neural network in the fields of
computer vision, applying the deep learning technique in medical image has become a main trend
that shows promising results. Consequently, various CAD systems based on neural network have
been proposed to implement the classification of lung nodules [7–15]. Compared to traditional CAD
systems, neural network based systems can automatically extract high-level features from the original
images by using different network structures. Although the network structure can strongly influence
the performance of CAD systems, the amount of training data has the biggest impact. Due to limited
amount and diversity of medical image, deep learning based CAD systems may encounter some
bottlenecks, for example, overfitting. Moreover, in some methods [9,15], image segmentation is used
to extract lung nodules. Automatic nodule segmentation may affect classification results since these
methods depend on initialization. Working on these segmented nodules may produce inaccurate
features that lead to incorrect results. Given the provide citation’s limitation, we attempt to develop
a data generation method to enrich lung nodule images and use the generated data for pulmonary
nodule classification.

Conventional data augmentation methods are mostly based on geometric transformations, such
as flip, distort, crop, rotate, zoom, and so on. Recently, Goodfellow proposed generative adversarial
networks (GAN) [16] which can generate images. Therefore, some investigations propose to enlarge
medical image dataset using GAN [17–19]. Unlike these works, this paper proposes a new data
augmentation technique, Forward and Backward GAN (F&BGAN), based on deep convolutional GAN
(DCGAN) [20], which contains Forward GAN and Backward GAN. In the original formulation,
DCGAN lacks a way to inversely map the real image space to the latent space. We propose
a bi-directional learning framework Forward GAN to fill the above-mentioned gaps. In Forward
GAN, we add a new pipeline and propose a new objective for the generator. Those improvements
solve the gradient vanishing problem and mode collapse problem to a certain extent. Besides, to
further improve the image quality, we use Backward GAN to process the generated images of Forward
GAN. In Backward GAN, the discriminator acts as an encoder, while the generator is a decoder. Firstly,
the encoder extracts features of images, and then the decoder generates high-quality images using
these features.

Our Forward GAN is mostly related to Adversarially Learned Inference (ALI) [21] and
Bidirectional GANs (BiGAN) [22]. However, there are two main differences between ALI, BiGAN
and our Forward GAN: (1) The network structure is different. The ALI and BiGAN consist of three
networks: (1) discriminator D; (2) generator G, which maps the noise vectors from latent space to
image space; and (3) encoder E, which maps from real image space to latent space. Unlike them, our
Forward GAN only has two networks, discriminator D and generator G. Our network D is not only
a discriminator D, but also acts as an encoder E to map the real image space to latent space. (2) The
objective is different. Their objective is to match two joint distributions. In our Forward GAN, except
for the original objective of DCGAN, we employ an additional objective, which results in a cycle
constraint that enables better communication between the network D and network G.

We present a multi-scale model M-VGG16 that uses VGG16 [23] as the structural backbone.
As shown in Figure 1, there two main types of pulmonary nodules. We can see that the diameter of the
nodules varies greatly. Consequently, it is crucial to extract features from fine scales during diagnosis
of diverse diameter nodules. However, with the same receptive field, VGG16’s ability to tolerate scale
variations is limited. This means that VGG16 tends to extract specific scale features and this might
lose some important information. The loss of detailed information of nodules can be an obstacle to the
classification of lung nodules, especially for small diameter nodules. Therefore, multi-scale is essential
in our model. Many multi-scale libraries have been proposed, e.g. scale-invariant feature transform
(SIFT) [24]. However, SIFT is mathematically complicated and computationally heavy. In addition,
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SIFT and many other multi-scale libraries are patent protected. Consequently, we design Multi-Scale
Blocks (MSBs) to tackle this problem. MSB contains a series of filters with different kernel size. Filters
with different kernel sizes can extract discriminative scale features, and this is significant in dealing
with various appearance nodules. Therefore, MSB is conducive to extract scale-relevant features.
Besides, our classification is based on lung image patch, which removes the inaccuracy introduced by
image segmentation.

The contribution of our method is two-fold: (1) For data augmentation, we propose a new method
F&BGAN, which can generate diverse high-quality images. (2) For lung nodules classification, we
propose a multi-scale VGG16 network to extract more features. Extensive experimental results on
Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset [25]
further validate the superiority of the proposed method on lung nodules classification.

Figure 1. Different types of samples. Two main types of pulmonary nodules in LIDC-IDRI dataset.
(a) small diameter nodules; (b) big diameter nodules.

The rest of the paper is organized as follows. Section 2 introduces the related works. Section 3
introduces the proposed methodology. Section 4 describes the experimental setup and analyses of
the result. Section 5 discusses the impact and future of the project and concludes the presented
research works.

2. Related Work

In the past, several methods have been proposed to classify lung nodules as benign or malignant
using different algorithms. They can be generally divided into two categories: traditional methods
and neural network based methods.

Traditional methods characterize the nodules with several quantitative features [26]. Some
geometric feature descriptors, e.g., SIFT [24], local binary pattern (LBP) [27], etc., are combined with
a traditional classification algorithm, e.g., support vector machines (SVM) [28], k-Nearest neighbor
(KNN) [29], etc., to solve lung nodules classification problems, and this has achieved great success.
For example, Farag et al. [3] used two geometric feature descriptors (SIFT and LBP) to extract features
from the nodule candidates and used KNN to classify with an overall sensitivity of 86% and specificity
of 97%. Orozco et al. [4] proposed a methodology that extracted eight texture features from the
histogram and the gray level co-occurrence matrix, and then used SVM to classify lung tissues, with
an accuracy rate of 82.66%. Krewer et al. [6] combined texture and shape features to classify malignant
and benign lung nodules using several classifiers including Decision Trees (DT), KNN and SVM, with
an accuracy rate of 90.91%. Parveen and Kavitha [5] proposed a method based on texture features
using SVM, with a sensitivity rate of 91.38% and specificity rate of 89.56%.

Lately, neural network has become more popular in medical image diagnosis. Dandil et al. [9]
used multiscale processing and Artificial Neural Networks (ANNs) to classify the nodules, which
reached an accuracy of 90.63%, sensitivity of 92.30% and specificity of 89.47%. Hua et al. [8] proposed
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a methodology using Deep Belief Network (DBN) and Convolutional Neural Network (CNN), with
a sensitivity of 73.40% and specificity of 82.20% using DBN, and a sensitivity of 73.30% and specificity
of 78.70% using CNN. Kumar et al. [10] proposed a method using Stacked Autoencoder (SAE),
with an accuracy of 75.01%, sensitivity of 83.35%. Shen et al. [12] proposed a hierarchical learning
framework—Multiscale Convolutional Neural Network (MCNN)—to capture nodule heterogeneity
by extracting discriminative features from alternating stacked layers, with an accuracy of 86.84%.
Cheng et al. [11] proposed a deep learning-based CADx system using stacked denoising autoencoder
(SDAE), with the best accuracy of 95.6%, sensitivity of 92.4% and specificity of 98.9%. Shen et al. [7]
presented a Multi-crop Convolutional Neural Network (MC-CNN) by using regions cropped from the
convolutional feature maps which showed an accuracy of 87%, sensitivity of 77% and specificity of
93%. Kwajiri and Tezuka [13] used Convolutional Neural Network (CNN) and the Residual Network
(ResNet) to classify the nodules, with a best sensitivity of 76.64% and specificity of 81.97% using
CNN, and a best sensitivity of 89.50% and specificity of 89.38% using ResNet. Abbas [14] presented
a multilayer combination of the convolutional neural network (CNN), recurrent neural networks
(RNNs) and softmax linear classifies, with a sensitivity of 88% and specificity of 80%. The method
proposed by da Silva et al. [15] used the evolutionary convolutional neural network to complete
diagnosis, with the best sensitivity of 94.66%, specificity of 95.14%, and accuracy of 94.78%, as shown
in Table 1

Table 1. An overview of representative related works on lung nodule classification.

Approach Author Year Method

Traditional

Farag et al. [3] 2011 Texture features and KNN.
Orozco et al. [4] 2013 Eight texture features and SVM.
Krewer et al. [6] 2013 Texture and shape features with DT, KNN, and SVM.
Parveen and Kavitha [5] 2014 Use GLCM to extract features and SVM to classify.

Neural network

Dandil et al. [9] 2014 ANNs for classification.
Hua et al. [8] 2015 DBN and CNN for classification.
Kumar et al. [10] 2015 SAE for classification.
Shen et al. [12] 2015 Multi-scale CNN (MCNN) for classification.
Cheng et al. [11] 2016 SDAE for classification.
Shen et al. [7] 2017 Multi-crop CNN (MC-CNN) for classification.
Kwajiri and Tezuka [13] 2017 CNN and ResNet to classify.
Abbas [14] 2017 Integrate CNN and RNN for classification.
da Silva et al. [15] 2017 Evolutionary CNN for classification.

Since Goodfellow proposed GAN [16], many GAN variants have been created. For example,
Radford and Metz [20] proposed Deep Convolution GAN (DCGAN), which introduced a convolutional
architecture. In addition to structure improvement and theoretical extension, another major innovative
point is novel applications. Especially in the medical imaging domain, the main bottleneck is the
data. Therefore, some recent works used GAN to cope with the small datasets and the limited
number of annotated samples. Guibas et al. [18] proposed a two-stage GAN to generate retinal
fundi images and vessel segmentation masks. Frid-Adar et al. [17] used GAN to enlarge the liver
dataset. Chuquicusma et al. [19] used DCGAN to generate realistic lung nodules in the literature.
Different from Chuquicusma’s work, we generate data based on original nodule patches instead of
segmented nodules. Moreover, we use the generated lung nodules patches to classify lung nodules for
the first time.

3. Methodology

In this paper, we propose a model to train a generator to generate lung images firstly, and then
train a classifier to distinguish between benign and malignant nodules. The overview of our model is
shown in Figure 2.
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Given a stack of lung CT images, we first extract the region of interest (ROI) containing the
lung nodules. This will improve classification accuracy since the rest of lung tissue may affect the
results. At the same time, this will reduce the training time because models only need to focus on
smaller region. Therefore, we extract image patches containing lung nodules based on annotations
and diagnostic information. The size of these image patches is 64 × 64. After that, we increase the
amount of training data by F&BGAN, which includes two stages to generate high-quality synthetic
images. Using original samples and generated samples, M-VGG16 captures discriminative features as
fully as possible to classify nodules into benign and malignant.

Figure 2. Overview of the whole structure. It is composed of a F&BGAN to generate diverse lung
images (Section 3.1), and a multi-scale VGG16 network for classification (Section 3.2).

3.1. F&BGAN for Data Augmentation

Medical data are more difficult to obtain than natural data owing to privacy issues. As a result,
many important tasks such as cancer classifications are hindered by lack of data. To tackle this problem,
we propose a data augmentation method F&BGAN. As shown in Figure 3, F&BGAN consists of
two parts: (1) Forward GAN, which is an image generator that can generate a bunch of diverse images;
and (2) Backward GAN, which acts as a noise reducer and makes the generated images more realistic
and high-quality. The two parts are seamlessly cascaded together, and the samples generated by
Forward GAN are the input of Backward GAN.

Figure 3. Illustration of the structure of F&BGAN, where x is the input image;, z is the input noise; D is
a discriminator, which not only gives the classification result, such as yx, yxp and yx f , but also gives the
extracted features, such as fx, fxp and fx f ; G is a generative network; xp, x f are generated images; D

′
is

a discriminator, which extracts features f
′
x f

of the input; and G
′

is a generator that generates the final

synthetic image x
′

f .

The structure of DCGAN is shown in Figure 4. Our model F&BGAN makes some improvements
on the basis of DCGAN to get better performance. For the Forward GAN, the red pipeline of FGAN is
the same as that of DCGAN, and a green pipeline is newly added. In the green pipeline, we use the
network D to extract features fx from the real images. Network G takes these features as input and
learns to generate images xp. By adding the input of real images, the network G can learn the basic
characteristics of lung nodule images. This is beneficial to generate more realistic and diverse images
and avoid mode collapse problem to a certain extent.

Figure 4. Illustration of the structure of DCGAN, where z is the input noise, G is a generative network,
x f are generated images, and D is a discriminator, which gives the classification result yx f .
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Backward GAN is used to eliminate noises of the images generated by Forward GAN.
By comparing Figure 3 with Figure 4, we can notice that the network structure of BGAN is inverse to
that of DCGAN. In the network D

′
of BGAN, the generated images pass through several convolutional

layers, which can extract features of the images and remove unwanted noises. Then, the network G
′

utilizes these features to generate new clear images.

3.1.1. Forward GAN.

As shown in Figures 5 and 6, the structures of generator (G) and discriminator (D) in Forward
GAN are almost the same as that in DCGAN. The only difference is that we make a change in network
D. In addition to the original Fully Connected (FC) layer used to discriminate, we add another FC
layer to obtain the features of the input image. As a result, network D is not only a discriminator,
but also an encoder. Therefore, the network D has two outputs: (1) features D f extracted from input
images; and (2) discriminative result Dd that represents the probability that input images come from
the real images.

Figure 5. Network structure of the generator (G) in Forward GAN. A 100-dimensional input is
converted into a 64 × 64 pixel image by four fractionally-strided convolutions. All layers in the
network G use batch-normalization. ReLU activation is used in all layers except for the output layer,
which uses Tanh.

Figure 6. Network structure of the discriminator (D) in Forward GAN. A stack of strided convolutions
extract features from the input, followed by two FC layers, one for discrimination and the other outputs
a 100-dimensional feature. All convolutional layers in the network D use batch-normalization and
LeakyReLU activation. The FC layer in cyan is followed by a sigmoid classifier.

The generator G and the discriminator D play a minimax game. The network D attempts
to distinguish between real images and generated images. For each real image x, the network D
outputs a discriminative result Dd(x) and tries to make Dd(x)→ 1. Therefore, the network D should
minimize log(1− Dd(x)). For the generated images G(z), the network D tries to make Dd(G(z))→ 0.
Consequently, the network D should minimize log(Dd(G(z))) at the same time. The loss function for
network D is:

LD = log(Dd(G(z))) + log(1− Dd(x)). (1)

Meanwhile, the generator G tries to fool the discriminator D. For the generated images G(D f (x))
and G(z), the network G tries to make Dd(G(D f (x)))→ 1 and Dd(G(z))→ 1. Therefore, We should
train G to minimize log(1−Dd(G(D f (x)))). For the the noise input z, the network G should minimize
log(1− Dd(G(z))).
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Besides, as shown in Figure 3, in the network G, to solve the mode collapse problem, we add
another pipeline, which can obtain a mapping from the real image x to the fx by the network D. Using
fx, we can obtain the generated image xp by the network G. For each real image x, the network G
should generate an image xp that is indistinguishable from x. Consequently, G should satisfy the
cycle consistency: x → D f (x) → G(D f (x)) ≈ x. We can add a `2 reconstruction loss to motivate
this behavior:

Lg = ‖x− xp‖2
2. (2)

Therefore, the goal of network G is to minimize the following loss function:

LG = Lg + log(1− Dd(G(D f (x)))) + log(1− Dd(G(z))). (3)

The entire training pipeline of Forward GAN is described in Algorithm 1.

Algorithm 1 The training pipeline of the proposed Forward GAN algorithm.

Require: m, the batch size. θD, initial D network parameters. θG, initial G network parameters.
for number of training iteration do

Sample x ∼ Pr a batch from the real data;

yx, fx ← D(x)
Sample z ∼ Pz a batch of random noise;

x f ← G(z)

xp ← G( fx)

yxp , fxp ← D(xp)

yx f , fx f ← D(x f )

LD ← log(yx f ) + log(1− yx).
Calculate `2 reconstruction loss between x and xp: Lg ← ‖x− xp‖2

2

LG ← Lg + log(1− yxp) + log(1− yx f )
Update discriminator D by stochastic gradient descent: θD

+←− ∇θD (LD)
Update generator G by stochastic gradient descent: θG

+← −∇θG (LG)
end for

3.1.2. Backward GAN.

Although Forward GAN can generate diverse samples, the generated images are a little blurry
and noisy, and the same phenomenon occurs in DCGAN. Considering that low quality samples
may have a negative impact on the classification result, we design a de-noising network Backward
GAN. As shown in Figure 7, Backward GAN also includes two parts, and the structures of the
network G and network D are almost the same as that in Forward GAN except that some layers are
removed (e.g., FC layer). The convolutional neural network D extracts features from noisy images and
eliminates unwanted noises firstly, and then the network G utilizes these features to generate clear
images.
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Figure 7. Network structure of the Backward GAN. Discriminator consists of a stack of strided
convolutions to extract features from the noisy input. In contrast, generator includes a series of
fractionally-strided convolutions. All layers use batch-normalization. LeakyReLU activation and ReLU
activation are used in all layers of network D and network G, respectively.

During the training process, a pair of training data is given, including noisy images xn and
corresponding clear images x. The clear images are lung nodules images extracted from LIDC-IDRI
dataset. The noisy images are obtained by adding noise to corresponding clear images manually.
Backward GAN should convert xn into the de-noised image x

′
n so that x

′
n is indistinguishable from x.

Therefore, we train Backward GAN to minimize the Mean Absolute Deviation (MAD) between x and
x
′
n. In other words, we need to minimize following loss function to optimize the network:

L =
|x− x

′
n|

N
, (4)

where N is the total number of pixels in the image. The entire training pipeline of Backward GAN is
described in Algorithm 2.

Algorithm 2 The training pipeline of the proposed Backward GAN algorithm.

Require: m, the batch size. θD′ , initial D
′

network parameters. θG′ , initial G
′

network parameters.
for number of training iteration do

Sample xn ∼ Pxn a batch from the noise data;
Sample x ∼ Px a batch from the clear data;

fxn ← D
′
(xn)

x
′
n ← G

′
( fxn)

L← |x−x
′
n |

N
Update discriminator D

′
and generator G

′
by stochastic gradient descent: θD′ , θG′

+← −∇θ
D′

,θ
G′
(L)

end for

3.2. Multi-scale VGG16

In previous VGG16 network, all filters have the same receptive field, which leads to the loss
of scale-variant information. As shown in Figure 8, to capture more features, we design a new
network M-VGG16, which adds Multi-Scale Blocks (MSB) after the first four max-pooling layers of the
VGG16 network.

The four MSBs in M-VGG16 have the same network structure. As shown in Figure 9, each MSB
has three convolutional layers with various receptive field scale. The receptive field of first layer is
3 × 3, while that of other layers are 1 × 1. With different receptive field, MSB can capture more subtle
features. In addition, the strides of each MSB are different as shown in Table 2. This allows for the
extraction of different features and ensures the output size of each MSB is the same. All features are
concatenated after the fifth max-pooling layer. Concatenate layer is followed by three Fully-Connected
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(FC) layers: the first two FC layers have 4096 nodes, the third FC layer contains 2 nodes. The final layer
is the softmax layers used to classify. The details for each MSB are shown in Table 2.

Figure 8. Network structure of the M-VGG16. In this network, except for MSBs, all filters have the
same 3 × 3 receptive field, and the convolution stride is fixed to 1. All hidden layers are equipped with
ReLU activation.

Figure 9. Network structure of the MSB. MSB is composed of three convolutional layers. The first layer
has a 3 × 3 receptive field, and the last two layers have 1 × 1 receptive fields.

Table 2. Layer parameters of the multi-scale block (MSB) model.

Layer Input Output Filter Size Strides

MSB1
conv1 32 × 32 × 64 8× 8 × 128 3 4
conv2 8 × 8 × 128 4 × 4 × 128 1 2
conv3 4 × 4 × 128 2 × 2 × 512 1 2

MSB2
conv1 16 × 16 × 128 4 × 4 × 128 3 4
conv2 4 × 4 × 128 2 × 2 × 128 1 2
conv3 2 × 2 × 128 2 × 2 × 512 1 2

MSB3
conv1 8 × 8 × 256 3 × 3 × 128 3 2
conv2 3 × 3 × 128 2 × 2 × 128 1 2
conv3 2 × 2 × 128 2 × 2 × 512 1 1

MSB4
conv1 4 × 4 × 512 2 × 2 × 128 3 1
conv2 2 × 2 × 128 2 × 2 × 128 1 1
conv3 2 × 2 × 128 2 × 2 × 512 1 1

4. Experiments and Results

4.1. Datasets

The dataset used in this paper is the LIDC-IDRI [25], which contains 1018 cases along with
annotations from up to four experienced thoracic radiologists. Nevertheless, the diagnostic information
is only available for nodules with a diameter larger than 3 mm. As the diagnostic information is the only
way to judge the certainty of malignancy, we chose to use nodules larger than 3 mm. These nodules
are rated from 1 to 5, indicating an increasing degree of malignancy (1 denotes low malignancy and
5 is high malignancy). In our paper, Rating 1 and Rating 2 are regarded as benign. Rating 4 and
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Rating 5 are considered as malignant and we remove those samples with the Rating 3 for unclear
malignancy. Overall, there are 353 samples including 158 benign samples and 195 malignant samples.
In the training process, the original training set has 185 samples, including 83 benign samples and 102
malignant samples, and the test set has 168 samples, including 75 benign samples and 93 malignant
samples. Even if all 353 samples are used for training, it is easy to cause overfitting. Therefore, data
augmentation is necessary to solve this problem.

In addition, for all 353 samples, we need to extract ROI from the original lung images. In the
LIDC-IDRI dataset, the coordinates of each pulmonary nodule are annotated by four professional
radiologists. We read the coordinates of the nodule and take a 64× 64 image with nodule coordinates
as the center point. The 64× 64 image is the ROI of the original CT image.

4.2. Evaluation Metrics

In this paper, we use four metrics to estimate the classification performance of our M-VGG16
model on test dataset. In our case, true positive (TP) is the number of samples correctly identified
as malignant. False positive (FP) is the number of samples incorrectly identified as malignant.
True negative (TN) is the number of samples correctly identified as benign. Analogously, false
negative (FN) is the number of samples incorrectly identified as benign.

1. Accuracy: The accuracy is the ability of our model to differentiate the malignant and benign
samples correctly. Mathematically, this can be defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

2. Sensitivity: The sensitivity represents the ability of our model to determine the malignant
samples correctly. Mathematically, this can be defined as:

Sensitivity =
TP

TP + FN
(6)

3. Specificity: The specificity illustrates the ability of our model to determine the benign samples
correctly. Mathematically, this can be defined as:

Speci f icity =
TN

TN + FP
(7)

4. AUROC: the ROC curve is a graphical plot that illustrates the diagnostic ability of a binary
classifier system. The AUROC score is the area under the ROC curve.

4.3. Data Augmentation Performance of F&BGAN

We propose a new image synthesis method F&BGAN to enlarge dataset. However, to generate
diverse images, F&BGAN also requires many training samples. To cope with this situation,
we incorporate the traditional augmentation techniques for enlarging training dataset of F&BGAN.
Besides, to compare F&BGAN with other data augmentation methods, we obtain a group of datasets
with different size using different methods.

As shown in Figure 10, Dataset1 includes the original training data. Based on original samples,
we use traditional methods, DCGAN and Forward GAN to produce 3200 new images for each class,
and obtain Dataset2, Dataset3, and Dataset4, respectively. For Dataset5, we use Dataset2 to train
Forward GAN and generate 6400 samples for each class. After that, we use Backward GAN to improve
the image quality of Dataset5 to obtain Dataset6. Similarly, we use Dataset2 to train DCGAN and
obtain Dataset7. Finally, we integrate original samples and generated samples for training. The size of
each dataset is shown in Figure 10.
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Figure 10. Datasets generated by different augmentation methods. The augmentation methods are
shown on the arrow. In each box, the first number represents the number of benign samples, the second
number represents the number of malignant samples and the last is the total number.

Figure 11 shows images of different dataset. The images of Dataset2 are clearer than the images
of Dataset3 and Dataset4, and this is because the traditional method generates images by geometric
transformation. However, the images generated by traditional method are lack of diversity. Comparing
Dataset4 and Dataset5, we can draw a conclusion that more training samples lead to more realistically
generated images. Besides, the images of Dataset6 are clearer than the images of Dataset5, which
proves the effectiveness of BGAN. The images of Dataset5 are more realistic than the images of Dataset7,
which indicates that the improvements of FGAN are effective.

Figure 11. The generated images. The left block represents benign samples and the right block
represents malignant samples.
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4.4. Classification Performance of M-VGG16

To evaluate the performance of F&BGAN and M-VGG16, we design and perform the following
experiments: (1) Dataset1 + VGG16; (2) Dataset1 + M-VGG16; (3) Dataset2 + M-VGG16; (4) Dataset3 +
M-VGG16; (5) Dataset4 + M-VGG16; (6) Dataset5 + M-VGG16; (7) Dataset6 + M-VGG16; (8) Dataset7 +
M-VGG16; (9) Dataset2 + Dataset5 + M-VGG16; and (10) Dataset2 + Dataset6 + M-VGG16.

During training, we use a 10-fold cross validation for evaluating classification performance.
During training, the training dataset is randomly partitioned into 10 equal sized subsamples. Of the
10 subsamples, a single subsample is retained as the validation data for testing the model, and the
remaining 9 subsamples are used as training data. In the testing phase, we use test set to evaluate the
final model fit on the training dataset. Finally, we get experiment results with the best accuracy of
95.24%, sensitivity of 98.67%, specificity of 92.47% and AUROC of 0.980. The experiment results are
shown in Tables 3 and 4. Table 4 shows directly how each component affects performance.

Table 3. Results of experiments. We evaluate the classification results of the test set with four evaluating
indicators: accuracy, sensitivity, specificity and AUROC. The number in the second column represents
the size of training set in the each experiment. The third column is the classification method.

Num Training Set Classification ACC (%) SEN (%) SPE (%) AUROC

1 Dataset1(185) VGG16 72.62 58.67 83.87 0.835
2 Dataset1(185) M-VGG16 88.09 85.33 90.32 0.954
3 Dataset2(6585) M-VGG16 92.86 96.00 90.32 0.982
4 Dataset3(6585) M-VGG16 90.48 88.00 92.47 0.966
5 Dataset4(6585) M-VGG16 91.67 89.33 93.55 0.968
6 Dataset5(12985) M-VGG16 92.86 92.00 93.55 0.967
7 Dataset6(12985) M-VGG16 93.45 91.04 95.29 0.980
8 Dataset7(12985) M-VGG16 92.26 90.67 93.55 0.973
9 Dataset2 + Dataset5(19385) M-VGG16 94.05 98.67 90.32 0.984
10 Dataset2 + Dataset6(19385) M-VGG16 95.24 98.67 92.47 0.980

Table 4. Effects of various design choices and components on performance. The check mark
represents that the component is used in experiment. The red check mark means FGAN, BGAN
and DCGAN are trained using Dataset2 not the original Dataset1. Tra is the abbreviation of traditional
augmentation method.

Num Tra DCGAN FGAN BGAN M-VGG16 ACC (%) SEN (%) SPE (%) AUROC

1 72.62 58.67 83.87 0.835
2

√
88.09 85.33 90.32 0.954

3
√ √

92.86 96.00 90.32 0.982
4

√ √
90.48 88.00 92.47 0.966

5
√ √

91.67 89.33 93.55 0.968
6

√ √
92.86 92.00 93.55 0.967

7
√ √ √

93.45 91.04 95.29 0.980
8

√ √
92.26 90.67 93.55 0.973

9
√ √ √

94.05 98.67 90.32 0.984
10

√ √ √ √
95.24 98.67 92.47 0.980

With the same training dataset, the result of Experiment 2 is much better than Experiment 1, which
proves that the M-VGG16 classifier outperforms traditional VGG16. The results of Experiments 3–5
show that our method Forward GAN is superior to DCGAN. However, the classification performance
of GAN-based methods is not as good as traditional data augmentation methods, which is probably
because that images generated by traditional methods are more realistic. The result of Experiment 6 is
better than Experiment 5, and this implicitly proves that the more training samples the more realistic
the generated images. The training samples in Experiment 6 are generated by Forward GAN, while
training samples in Experiment 7 are generated by F&BGAN. The experiment results indicate that
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proposed Backward GAN is necessary and effective in removing noise and improving image quality.
Analogously, the results of Experiments 9 and 10 can also prove the effectiveness of BGAN. The results
of Experiments 6 and 8 demonstrate once again that FGAN has better performance than DCGAN in
image generation. Compared with the Experiment 1, the accuracy of Experiment 10 is increased by
22.78%, which powerfully proves the effectiveness of F&BGAN and M-VGG16.

4.5. Performance of MSB

In addition, we have designed a set of experiments to verify the effectiveness of MSBs. The first
experiment uses VGG16 without any MSB. The second experiment uses only the first one MSB.
The third experiment uses the first two MSBs. The fourth experiment uses the first three MSBs. The last
experiment uses four MSBs. All experiments use the same training dataset (Dataset2 + Dataset6) and
the same testing dataset. In addition, 10-fold cross validation is used during the training process.

The experimental results are shown in Table 5. The results illustrate that, the more MSB is used,
the better is the classification performance. In addition, compared with VGG16, the accuracy of
M-VGG16 is improved by 4%, which proves that MSBs are effective to enhance the classification
performance.

Table 5. Comparison of classification performance using different numbers of MSBs.

Experiment Number ACC (%) SEN (%) SPE (%) AUROC

1 0 91.07 96.00 87.10 0.976
2 1 92.26 96.00 89.25 0.977
3 2 92.86 97.34 89.25 0.978
4 3 94.05 98.67 90.32 0.978
5 4 95.24 98.67 92.47 0.980

4.6. Comparison with Other Classification Methods

To further evaluate the classification performance of M-VGG16, we compare M-VGG16 with
other traditional methods and neural network methods. All methods use the same training dataset
(Dataset2 + Dataset6) to train the classification model. Besides, the same test dataset is used to evaluate
those models. In addition, 10-fold cross validation is used during the training process. We measure the
performance of different classification methods with the accuracy, specificity, sensitivity and AUROC.
The experimental results are shown in Table 6.

Table 6. Comparison between our method and the state-of-the-art in classification.

Approach Methods ACC (%) SEN (%) SPE (%) AUROC

Traditional KNN [29] 68.45 66.67 69.89 0.683
Softmax 88.10 89.34 87.10 0.882
SVM [28] 89.88 88.00 91.40 0.897

Neural Network CNN [30] 87.50 93.33 82.80 0.935
GoogLeNet [31] 89.88 97.33 83.87 0.950

ResNet [32] 93.45 98.67 89.25 0.979
VGG16 [23] 91.07 96.00 87.10 0.976

Our Method(M-VGG16) 95.24 98.67 92.47 0.980

The experimental results show that, although the same dataset is used, the performance of
different classification methods varies greatly. The neural network methods are superior to the
traditional methods, except for CNN. This may be due to the CNN we use has a relatively simple
network structure. Only three convolutional layers and two full-connected layers are used in CNN.
For neural network methods, our M-VGG16 network outperforms others. Furthermore, M-VGG16
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is superior to ResNet while VGG16 is inferior to ResNet. It is remarkable that M-VGG16 is 4% more
accurate than the traditional VGG16 network with the help of MSB.

4.7. Comparison with the State-Of-the-Art

Furthermore, we compare the results of our method with the results of other related methods,
including traditional methods and neural network-based methods. As shown in Table 7, we statistically
measure the performance of different methods with the accuracy, specificity, sensitivity and AUROC.

Table 7. Classification performance comparison with the state-of-the-art with reference to the
classification of lung nodules. Tra is the abbreviation of traditional methods. NN is the abbreviation of
neural network based methods. The test column indicates the size of the test set for each method.

Research Database Test ACC (%) SEN (%) SPE (%) AUROC

Tra Farag et al. [3] ELCAP (294) - - 86.0 86.0 -
Orozco et al. [4] NBIA-ELCAP (113) 75 84.00 83.33 83.33 -
Krewer et al. [6] LIDC-IDRI (33) - 87.88 85.71 89.47 -

Parveen and Kavitha [5] Private (3278) 1639 - 91.38 89.56 -

NN Hua et al. [8] LIDC (2545) - - 73.40 82.80 -
Kumar et al. [10] LIDC (4323) 432 75.01 83.35 - -
Shen et al. [12] LIDC-IDRI (16764) 275 86.84 - - -

Cheng et al. [11] LIDC (10133) 140 95.6 92.4 98.9 0.989
Shen et al. [7] LIDC-IDRI (1375) 275 87.14 77.0 93.0 0.93

Kwajiri and Tezuka [13] LIDC-IDRI (748) 299 - 89.50 89.38 -
Abbas [14] LIDC-IDRI (3250) 2112 - 88 80 0.89

Da Silva et al. [15] LIDC-IDRI (21631) 1343 94.78 94.66 95.14 0.949
Our method LIDC-IDRI (19553) 168 95.24 98.67 92.47 0.980

Among all the methods, Cheng et al. [11] has the best accuracy of 95.6%, and our method
has the second-best accuracy of 95.24%, with the difference of 0.36%; however, the sensitivity of
our method is better, with the difference of 6.27%. It is worth noting that the sensitivity shows the
performance to classify correctly malignant nodules, which is more important in CAD system. Besides,
Cheng et al. [11] selected 700 malignant and 700 benign samples from LIDC datasets, while we only
chose 158 benign samples and 195 malignant samples due to different selection criteria and methods.
The size of our original samples is relatively small. Da Silva et al. [15] used more samples than us, i.e.,
21,631 samples. Nevertheless, their accuracy is lower than ours.

5. Conclusions

In this paper, a new data augmentation method F&BGAN is proposed to tackle the limited data
problem. In addition, we design a multi-scale VGG16 to classify lung nodules as benign or malignant.
By using F&BGAN and M-VGG16, the accuracy of lung nodules classification is increased by 22.78%,
which demonstrates the feasibility of F&BGAN in generating medical images and the effectiveness
of M-VGG16 in classifying malignant and benign nodules. In the future, we will further boost the
classification performance by combining different CNNs with M-VGG16 by referring to the work of
Nanni et al. [33]. In addition, we plan to extend our work to other diseases.
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