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Abstract: For mathematical fuzzy logic systems, the study of corresponding algebraic structures
plays an important role. Pseudo-BCI algebra is a class of non-classical logic algebras, which is
closely related to various non-commutative fuzzy logic systems. The aim of this paper is focus on
the structure of a special class of pseudo-BCI algebras in which every element is quasi-maximal
(call it QM-pseudo-BCI algebras in this paper). First, the new notions of quasi-maximal element
and quasi-left unit element in pseudo-BCK algebras and pseudo-BCI algebras are proposed and
some properties are discussed. Second, the following structure theorem of QM-pseudo-BCI algebra
is proved: every QM-pseudo-BCI algebra is a KG-union of a quasi-alternating BCK-algebra and
an anti-group pseudo-BCI algebra. Third, the new notion of weak associative pseudo-BCI algebra
(WA-pseudo-BCI algebra) is introduced and the following result is proved: every WA-pseudo-BCI
algebra is a KG-union of a quasi-alternating BCK-algebra and an Abel group.

Keywords: fuzzy logic; pseudo-BCI algebra; quasi-maximal element; KG-union; quasi-alternating
BCK-algebra

1. Introduction

In the study of t-norm based fuzzy logic systems [1–9], algebraic systems (such as residuated lattices,
BL-algebras, MTL-algebras, pseudo-BL algebras, pseudo-MTL algebras, et al.) play an important role.
In this paper, we discuss pseudo-BCI/BCK algebras which are connected with non-commutative fuzzy
logic systems (such that non-commutative residuared lattices, pseudo-BL/pseudo-MTL algebras).

BCK-algebras and BCI-algebras were introduced by Iséki [10] as algebras induced by Meredith’s
implicational logics BCK and BCI. The name of BCK-algebra and BCI-algebra originates from the
combinatories B, C, K, I in combinatory logic. The notion of pseudo-BCK algebra was introduced
by G. Georgescu and A. Iorgulescu in [11] as a non-commutative extension of BCK-algebras.
Then, as common generalization of pseudo-BCK algebras and BCI-algebras, W.A. Dudek and Y.B.
Jun introduced the concept of pseudo-BCI algebra in [12]. In fact, there are many other non-classical
logic algebraic systems related to BCK- and BCI-algebras, such as BCC-algebra, BZ-algebra and so
forth, some monographs and papers on these topics can be found in [7–9,13–18].

Pseudo-BCI-algebras are algebraic models of some extension of a noncommutative version of
the BCI-logic, the corresponding logic is called pseudo-BCI logic [19]. P. Emanovský and J. Kühr
studied some properties of pseudo-BCI algebras, X.L. Xin et al. [20] investigated monadic pseudo
BCI-algebras and corresponding logics and some authors discussed the filter (ideal) theory of
pseudo-BCI algebras [21–28]. Moreover, some notions of period, state and soft set are applied to
pseudo-BCI algebras [29–31].

Symmetry 2018, 10, 465; doi:10.3390/sym10100465 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-2320-0884
http://dx.doi.org/10.3390/sym10100465
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/10/465?type=check_update&version=2


Symmetry 2018, 10, 465 2 of 13

In this paper, we further study the structure characterizations of pseudo-BCI algebras. By using
the notions of quasi-maximal element, quasi-left unit element, KG-union and direct product, we give
the structure theorem of the class of pseudo-BCI algebras in which every element is quasi-maximal
(call they QM-pseudo-BCI algebras). Moreover, we introduce weak associative property in pseudo-BCI
algebras, discuss basic properties of weak associative pseudo-BCI algebra (WA-pseudo-BCI algebra)
and establish the structure theorem of WA-pseudo-BCI algebra.

It should be noted that the original definition of pseudo-BCI/BCK algebra is different from the
definition used in this paper. They are dual. We think that the logical semantics of this algebraic
structure can be better represented by using the present definition.

2. Preliminaries

Definition 1 ([10,16]). An algebra (A;→, 1) of type (2,0) is called a BCI-algebra if the following conditions are
satisfied for all x, y, z from A:

(1) x → y ≤ (y→ z) → (x → z),
(2) x ≤ (x → y) → y,
(3) x ≤ x,
(4) x ≤ y, y ≤ x imply x = y, where x ≤ y means x → y = 1 . An algebra (A;→, 1) of type (2,0) is called

a BCK-algebra if it is a BCI-algebra and satisfies:
(5) x → 1 = 1, ∀x ∈ A.

Definition 2 ([10,16]). A BCK-algebra (A;→, 1) is called bounded if there exists unique element 0 such that
0→ x = 1 for any x ∈ A.

Definition 3 ([13,14]). A BCK-algebra (A; →, 1) is called quasi-alternating BCK-algebra if it satisfies the
following axiom: ∀ x, y ∈ X, x 6= y implies x→ y = y.

Definition 4 ([9,11]). A pseudo-BCK algebra is a structure (A; ≤,→, , 1), where “≤” is a binary relation
on A, “→” and “ ” are binary operations on A and “1” is an element of A, verifying the axioms: for all
x, y, z ∈ A,

(1) x → y ≤ ( y→ z ) ( x→ z ), x y ≤ ( y z )→ ( x z ),
(2) x ≤ (x → y) y, x ≤ (x y)→ y
(3) x ≤ x,
(4) x ≤ 1,
(5) x ≤ y, y ≤ x ⇒ x = y,
(6) x ≤ y x → y = 1⇔ x y = 1.

If (A;≤,→, , 1) is a pseudo-BCK algebra satisfying x→ y = x y for all x, y ∈ A, then (A;→, 1)
is a BCK-algebra.

Proposition 1 ([9,11]). Let (A; ≤,→, , 1) be a pseudo-BCK algebra, then A satisfy the following properties
(∀x, y, z ∈ A):

(1) x ≤ y⇒ y→ z ≤ x → z, y z ≤ x z
(2) x ≤ y, y ≤ z⇒ x ≤ z,
(3) x (y→ z) = y→ (x z),
(4) x ≤ y→ z⇔ y ≤ x z,
(5) x → y ≤ (z→ x)→ (z→ y), x y ≤ (z x) (z y),
(6) x ≤ y→ x, x ≤ y x,
(7) 1→ x = x, 1 x = x,
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(8) x ≤ y⇒ z→ x ≤ z→ y, z x ≤ z y,
(9) ((y→ x) x)→ x = y→ x, ((y x)→ x) x = y x.

Definition 5 ([[12]). A pseudo-BCI algebra is a structure (A; ≤,→, , 1), where “≤” is a binary relation
on A, “→” and “ ” are binary operations on A and “1” is an element of A, verifying the axioms: for all
x, y, z ∈ A,

(1) x → y ≤ (y→ z) (x → z), x y ≤ (y z)→ (x z),
(2) x ≤ (x → y) y, x ≤ (x y)→ y,
(3) x ≤ x,
(4) if x ≤ y and y ≤ x, then x = y,
(5) x ≤ y iff x → y = 1 iff x y = 1.

Note that, every pseudo-BCI algebra satisfying x → y = x y for all x, y ∈ A is a BCI-algebra.

Proposition 2 ([12,22,24]). Let (A; ≤, →,  , 1) be a pseudo-BCI algebra, then A satisfy the following
properties (∀x, y, z ∈ A):

(1) if 1 ≤ x, then x = 1,
(2) if x ≤ y, then y→ z ≤ x → z and y z ≤ x z,
(3) if x ≤ y and y ≤ z, then x ≤ z,
(4) x (y→ z) = y→ (x z),
(5) x ≤ y→ z, iff y ≤ x z
(6) x → y ≤ (z→ x)→ (z→ y), x y ≤ (z x) (z y),
(7) if x ≤ y, then z→ x ≤ z→ y and z x ≤ z y,
(8) 1→ x = x, 1 x = x,
(9) ((y→ x) x)→ x = y→ x, ((y x)→ x) x = y x,
(10) x → y ≤ (y→ x) 1, x y ≤ (y x)→ 1,
(11) (x→ y)→ 1 = (x→ 1) (y→ 1),(x y) 1 = (x 1)→ (y→ 1)
(12) x → 1 = x 1 .

Definition 6 ([10,24]). A pseudo-BCI algebra A is said to be an anti-grouped pseudo-BCI algebra if it satisfies
the following identities:

f or any x ∈ A, (x → 1)→ 1 = x or (x 1) 1 = x.

Proposition 3 ([24]). A pseudo-BCI algebra A is anti-grouped if and only if it satisfies:

(G1) for all x, y, z ∈ A, (x→ y)→ (x→ z) = y→ z and
(G2) for all x, y, z ∈ A, (x y) (x z) = y z.

Proposition 4 ([24]). Let A = (A; ≤,→, , 1) be an anti-grouped pseudo-BCI algebra. Define Φ(A) = (A; +,
−, 1) by

x + y = (x → 1)→ y = (y 1) x, ∀x, y ∈ A;

−x = x → 1 = x 1, ∀x ∈ A.

Then Φ(A) is a group. Conversely, let G = (G; +, −, 1) be a group. Define Ψ(G) = (G; ≤,→, , 1), where

x → y = (−x) + y, x y = y + (−x), ∀x, y ∈ G;
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x ≤ y i f and only i f (−x) + y = 1 (or y + (−x) = 1), ∀x, y ∈ G.

Then,Ψ(G) is an anti-grouped pseudo-BCI algebra. Moreover, the mapping Φ and Ψ are mutually inverse.

Definition 7 ([27]). Let (A; ≤,→, , 1) be a pseudo-BCI algebra. Denote

K(A) = {x ∈ A|x ≤ 1};

AG(A) = {x ∈ A|(x → 1)→ 1 = x}.

We say that K(A) is the pseudo-BCK part of A and AG(A) is the anti-grouped part of A.

Definition 8 ([28]). A pseudo-BCI algebra A is said to be a T-type if it satisfies the following identities:
(T1) for all x ∈ A, (x → 1) → 1 = x → 1 , or (x  1)  1 = x  1.

Proposition 5 ([28]). A pseudo-BCI algebra A is T-type if and only if it satisfies:
(T2) for all x ∈ A, x→ (x → 1) = 1, or x (x  1) = 1.

3. Some New Concepts and Results

By the definition of pseudo-BCI/BCK algebra, we know that the direct product of two
pseudo-BCI/BCK algebras is a pseudo-BCI/BCK algebra. That is, we have the following lemma.

Lemma 1 ([20]). Let (X; → X ,  X , 1X ) and (Y; → Y ,  Y, 1Y ) be two pseudo-BCI algebras. Define two
binary operators→, on X×Y as follwos: for any (x1, y1), (x2, y2) ∈ X×Y,

(x1, y1) → (x2, y2) = (x1 → X x2, y1 → Yy2);

(x1, y1)  (x2, y2) = ( x1  X x2y1  Yy2);

and denote 1 = (1X, 1Y). Then (X×Y;→, , 1) is a pseudo-BCI algebra.

By the results in [18,20], we can easy to verify that the following lemma (the proof is omitted).

Lemma 2. Let (K;→, , 1) be a pseudo-BCK algebra, (G;→, , 1) an anti-grouped pseudo-BCI algebra and
K∩G = {1}. Denote A = KG b and define the operations→, on A as follows:

x → y =


x → y i f x, y ∈ K or x, y ∈ G

y i f x ∈ K, y ∈ G

x → 1 i f y ∈ K{1}, x ∈ G

x y =


x y i f x, y ∈ K or x, y ∈ G

y i f x ∈ K, y ∈ G

x 1 i f y ∈ K{1}, x ∈ G

Then (A;→, , 1) is a pseudo-BCI algebra.

Definition 9. Let K be a pseudo-BCK algebra and G be an anti-grouped pseudo-BCI algebra, K∩G = {1}. If the
operators→, are defined on A = K∪G according to Lemma 2, then (A;→, , 1) is a pseudo-BCI algebra,
we call A to be a KG-union of K and G and denote by A = K⊕KGG.

Definition 10. Let (X, ≤) is a partial ordered set with 1 as a constant element. For x in X, we call x a
quasi-maximal element of X, if for any a ∈ X, x ≤ a⇒ x = a or a = 1.
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Definition 11. Let (G,*) be a grouoid, x ∈ G. Then x is called a quasi-left unit element of G, if it satisfies:

∀y ∈ G, x ∗ y = y when x 6= y.

Theorem 1. Let (A; ≤,→, , 1) be pseudo-BCK algebra. Then the following conditions are equivalent:

(a1) ∀x ∈ A, x is a quasi-maximal element;
(a2) ∀x ∈ A, y ∈ A− {1}, x ≤ y implies x = y;
(a3) ∀x ∈ A, x is a quasi-left unit elemen w.r.t →, , that is, x 6= y implies x → y = y and x y = y ;
(a4) ∀x, y ∈ A, x 6= y implies x → y = y ;
(a5) ∀x, y ∈ A, x 6= y implies x y = y .

Proof. (a1)⇒ (a2) : Suppose that x ∈ A, y ∈ A− {1} and x ≤ y.
Case 1: If x = 1, it is follows that 1 = x ≤ y ≤ 1, that is, x = y = 1.
Case 2: If x 6= 1, by (a1) and Definition 10, from x ≤ y and y 6= 1, we have x = y. Therefore,

(a2) hold.
(a2)⇒ (a3) : For any x, y in A, by Proposition 1 (6) and Definition 4 (2), we have x ≤ y→ x ,

y ≤ x → y, x ≤ (x → y) y . Assume x 6= y. If y→ x = 1 , then x → y 6= 1 (since, if x → y = 1 ,
then form y→ x = 1 and x → y = 1 we get x = y, this is contradictory to the hypothesis x 6= y).
Thus, from y ≤ x → y and x → y 6= 1, using (a2) we have y = x → y .

If y→ x 6= 1 , from this and x ≤ y→ x and applying (a2), we have x = y→ x . Thus,

(i) when (x → y) y = 1 , we can get x → y ≤ y ≤ x → y , that is, y = x → y ;
(ii) when (x → y) y 6= 1 , from this and x ≤ (x → y) y, using (a2) we have x = (x → y) y.

Combine the aforementioned conclusion x = y→ x , we can get

x = y→ x = y→ ((x → y) y) = (x → y) (y→ y) = (x → y) 1 = 1,

It follows that y = 1→ y = x → y .
Therefore, based on the above cases we know that x 6= y implies y = x → y .
Similarly, we can prove that x 6= y implies y = x y .
(a3)⇒ (a4): Obviously.
(a4)⇒ (a5): Suppose x 6= y. Applying (a4), x→ y = y. Also, by Definition 4 (2), x ≤ (x y)→ y ,

thus x → [(x y)→ y] = 1 .
Case 1: If x 6= (x y)→ y , using (a4), x → [(x y)→ y] = [(x y)→ y]. Hence,

(x y)→ y = 1. Moreover,

y→ (x y) = x (y→ y) = x 1 = 1.

Therefore, y = x y. Case 2: If x = (x y)→ y , then x y = y . In fact, if x y 6= y ,
using (a4), (x y)→ y = y, it follows that x = y, this is a contradiction with x 6= y.

By above results we know that (a5) hold.
(a5)⇒ (a1): Assume that x ∈ X, a ∈ X and x ≤ a. Then x a = 1 . If x 6= a, by (a5), x a = a ,

then a = x a = 1 . This means that x ≤ a implies x = a or a = 1. 2

By Theorem 1 and Definition 3 we get

Corollary 1. Let (A; ≤,→, , 1) be a pseudo-BCK algebra. Then every element of A is quasi-maximal if and
only if A is a quasi-alternating BCK-algebra.
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4. The Class of Pseudo-BCI Algebras in Which Every Element is Quasi-Maximal

Example 1. Let A = {a, b, c, d, e, f, g, 1}. Define operations→ and on A as following Cayley Tables 1 and 2.
Then A is pseudo-BCI algebra in which every element is quasi-maximal.

Table 1. The Cayley table of operation→.

→ a b c d e f g 1

a 1 b c d e f g 1
b a 1 c d e f g 1
c c c 1 f g d e c
d d d e 1 c g f d
e f f g c 1 e d f
f e e d g f 1 c e
g g g c d e f 1 g
1 a b c d e f g 1

Table 2. The Cayley table of operation .

 a b c d e f g 1

a 1 b c d e f g 1
b a 1 c d e f g 1
c c c 1 f g d e c
d d d e 1 c g f d
e f f g c 1 e d f
f e e d g f 1 c e
g g g c d e f 1 g
1 a b c d e f g 1

Definition 12. A pseudo-BCI/BCK algebra A is said to be a QM-pseudo-BCI/BCK algebra if every element of A
is quasi-maximal.

Theorem 2. Let (A; ≤,→, , 1) be a pseudo-BCI algebra. Then A is a QM-pseudo-BCI algebra if and only if
it satisfies:

f or any x, y ∈ A− {1}, x ≤ y⇒ x = y.

Proof. If A is a QM-pseudo-BCI algebra, by Definitions 10 and 12, the above condition is satisfied.
Conversely, assume that x, y ∈ A, x ≤ y. If x = 1, then 1 = x ≤ y, it follows that x = y = 1,

by Proposition 2 (1). If x 6= 1, y 6= 1, then x = y by the condition. This means that x is a quasi- maximal
element in A, hence, A is a QM-pseudo-BCI algebra. 2

By Theorem 1 we know that a pseudo-BCK algebra is a QM-pseudo-BCK algebra if and only if it
is a quasi-alternating BCK-algebra. It will be proved that any QM-pseudo-BCI algebra is constructed
by the combination of a quasi-alternating BCK-algebra and an anti-grouped pseudo- BCI algebra
(a group-like algebra).

Lemma 3 ([27]). Let A be a pseudo-BCI algebra, K(A) the pseudo-BCK part of A. If AG(A) = (A − K(A))∪{1}
is subalgebra of A, then (∀x, y ∈ A)

(1) If x ∈ K(A) and y ∈ A− K(A), then x → y = x y = y.
(2) If x ∈ A− K(A) and y ∈ K(A), then x→ y = x y = x → 1.
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Applying the results in [24,27] we can easy to verify that the following lemma is true (the proof
is omitted).

Lemma 4. Let A be an anti-grouped pseudo-BCI algebra. Then

(1) for any x, y in A, x ≤ y implies x = y;
(2) for any x, y in A, x = (x → y) y = (x y)→ y.

Theorem 3. Let A be a pseudo-BCI algebra, K(A) the pseudo-BCK part of A and AG(A) the anti-grouped part
of A. The following statements are equivalent:

(1) A is a QM-pseudo-BCI algebra;
(2) K(A) is quasi-alternating BCK-algebras and AG(A) = (A − K(A)) ∪ {1};
(3) ∀x, y ∈ A, x 6= y implies (x → y) y = (x → 1)→ 1;
(4) ∀x, y ∈ A, x 6= y implies (x y)→ y = (x → 1)→ 1;
(5) ∀x, y ∈ A, x 6= y implies (x → y)→ y = (x → 1)→ 1;
(6) ∀x, y ∈ A, x 6= y implies (x y) y = (x → 1)→ 1.

Proof. (1)⇒ (2): Suppose that A is a QM-pseudo-BCI algebra. Then, for all x, y ∈ K(A), by Corollary
1, we can know K(A) is quasi-alternating BCK-algebras. If x ∈ A − K(A), then x → 1 6= 1
and (x → 1)→ 1 6= 1. Since x ≤ (x → 1)→ 1 , by Definition 12 we have x = (x → 1)→ 1 . Thus,
(A − K(A))∪{1} ⊆ AG(A). On the other hand, obviously, AG(A) ⊆ (A − K(A))∪{1}. Hence AG(A) =
(A − K(A))∪{1}.

(2)⇒ (3): Assume that (2) hold. For any x, y in A, x 6= y,
Case 1: x, y ∈ K(A). Then x → 1 = y→ 1 = 1. Because K(A) is quasi-alternating BCK-algebra,

using Theorem 1, x → y = y . Thus

(x → y) y = y y = 1 = 1→ 1 = (x → 1)→ 1.

Case 2: x, y ∈ AG(A). Since AG(A) is an anti-grouped pseudo-BCI subalgebra of A, then by
Lemma 4 we get

(x → y) y = x = (x → 1)→ 1.

Case 3: x ∈ K(A), y ∈ AG(A). Then x → 1 = 1. Applying Lemma 3 (1), x → y = y. Then

(x → y) y = y y = 1 = 1→ 1 = (x → 1)→ 1.

Case 4: x ∈ AG(A), y ∈ K(A). Then x = (x→ 1)→ 1, y→ 1 = 1. Applying Lemma 3 (2),
x→ y = x→ 1. When x = 1, then (x→ y) y = (x→ 1)→ 1; when x 6= 1, then x→ 1 ∈ A−K(A),
using Lemma 3 (2),

(x → 1) y = (x → 1)→ 1

Hence,
(x → y) y = (x → 1) y = (x → 1)→ 1.

(3)⇒ (1): Assume that x ≤ y and x 6= y. We will prove that y = 1. By (3), we have

y = 1 y = (x → y) y = (x → 1)→ 1.

Case 1: when x ∈ K(A), then x → 1 = 1 , so y = 1. Case 2: when x ∈ X − K(A),
then (x → 1)→ 1 = x , so y = x, this is a contradiction with x 6= y.

Therefore, for all x ∈ A, x is a quasi-maximal element of A.
(4)⇒ (2): Suppose (4) hold. For any x, y in A.
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If x, y ∈ K(A), x 6= y, by (4),

(x y)→ y = (x → 1)→ 1 = 1.

Then, x y ≤ y. Since K(A) is a pseudo-BCK subalgebra of A, using Proposition 1 (6), y ≤ x y .
It follows that y ≤ x y ≤ y , that is, x y = y . Thus, applying Theorem 1, K(A) is a quasi-
alternating BCK-algebra.

If x ∈ A− K(A), we prove that (x → 1)→ 1 = x . Assume (x → 1)→ 1 6= x, by (4), we have

{[(x → 1)→ 1] x} → x = {[(x → 1)→ 1]→ 1} → 1.

Using Proposition 2 (9) and (12),

{[(x → 1)→ 1]→ 1} → 1 = (x → 1)→ 1.

Thus
{[(x → 1)→ 1] x} → x = (x → 1)→ 1.

Moreover, applying Proposition 2 (9), (11) and (12) we have

{[(x → 1)→ 1] x} → 1
= {[(x → 1)→ 1] 1} → (x 1)
= {[(x → 1) 1]→ 1} → (x 1)
= (x → 1)→ (x 1)
= 1.

This means that ((x → 1)→ 1)→ x ∈ K(A). By Lemma 3 (1),

{[(x → 1)→ 1] x} → x = x.

Hence, (x→ 1)→ 1 = x . This is contraction with (x→ 1)→ 1 6= x. Therefore, (x→ 1)→ 1 = x
and x ∈ AG(A). It follows that (A− K(A))∪{1}⊆ AG(A). Obviously, AG(A)⊆ (A− K(A))∪{1}. So AG(A)
= (A − K(A))∪{1}.

(2)⇒ (4): It is similar to (2)⇒ (3). It follows that (4)⇔ (2).
Similarly, we can prove (5)⇔ (2), (6)⇔ (2). 2

Theorem 4. Let (A; ≤, →,  , 1) be a pseudo-BCI algebra, AG(A) the anti-grouped part of A, K(A) the
pseudo-BCK part of A. Then A is a QM-pseudo-BCI algebra if and only if K(A) is a quasi-alternating BCK-algebra
and A = K(A)⊕KGAG(A).

Proof. If A is a QM-pseudo-BCI algebra, then K(A) is a quasi-alternating BCK-algebra and
A = K(A)⊕KGAG(A), by Lemma 3 and Theorem 3.

Conversely, if K(A) is a quasi-alternating BCK-algebra, then every element in K(A) is quasi-maximal;
if A = K(A)⊕KGAG(A), then AG(A) = (A − K(A))∪{1}, it follows that every element in A − K(A) is
quasi-maximal. By Definition 12, we know that A is a QM-pseudo-BCI algebra. 2

5. Weak Associative Pseudo-BCI Algebras

Definition 13. A pseudo-BCI/BCK algebra A is said to be weak associative, if it satisfies:

f or any, y, z ∈ A, (x → y)→ z = x → (y→ z) when (x 6= y, x 6= z).
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Example 2 Let A = {a, b, c, d, e, f, 1}. Define operation→ on A as following Cayley Table 3. Then A is a weak
associative pseudo-BCI algebra, where  =→ .

Table 3. The Cayley table of the operation→.

→ a b c d e f 1

a 1 b c d e f 1
b a 1 c d e f 1
c a b 1 d e f 1
d d d d 1 f e d
e e e e f 1 d e
f f f f e d 1 f
1 a b c d e f 1

Theorem 5. Let (A; ≤, →, , 1) be a weak associative pseudo-BCI algebra. Then A is a QM-pseudo-BCI
algebra and a T-type pseudo-BCI algebra.

Proof. For any x, y in A, x 6= y, then (by Definition 13)

(x → y)→ y = x → (y→ y) = x → 1.

Thus, if x 6= 1, then (x → 1)→ 1 = x → 1. Obviously, when x = 1, (x → 1)→ 1 = x → 1.
Hence, from Definition 13 we get that for any x, y in A, x 6= y ⇒ (x → y)→ y = (x → 1)→ 1.
Applying Theorem 3 (5) we know that A is a QM-pseudo-BCI algebra.

Moreover, we already prove that (x → 1)→ 1 = x → 1 for any x in A, by Definition 8 we know
that A is a T-type pseudo-BCI algebra. 2

The inverse of Theorem 5 is not true. Since (d → c ) → c 6= d→ 1, so the QM-pseudo-BCI algebra
in Example 1 is not weak associative. The following example shows that a T-type pseudo-BCI algebra
may be not a QM-pseudo-BCI algebra.

Example 3. Let A = {a, b, c, d, 1}. Define operations → and  on A as following Cayley Tables 4 and 5.
Then A is a T-type pseudo-BCI algebra but it is not a QM-pseudo-BCI algebra, since

(b→ c)→ a = a 6= 1 = b→ (c→ a).

Table 4. The operation→ in the T-type pseudo-BCI algebra.

→ a b c d 1

a 1 1 1 d 1
b b 1 1 d 1
c b b 1 d 1
d d d d 1 d
1 a b c d 1

Table 5. The operation in the T-type pseudo-BCI algebra.

 a b c d 1

a 1 1 1 d 1
b c 1 1 d 1
c a b 1 d 1
d d d d 1 d
1 a b c d 1
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Lemma 5 ([16,24]). Let (A;→, 1) be a BCI-algebra. Then the following statements are equivalent:

(1) A is associative, that is, (x → y)→ z = x → (y→ z) for any x, y, z in A;
(2) for any x in A, x → 1 = x;
(3) for all x, y in A, x→ y = y→ x.

Theorem 6. Let (A; ≤,→, , 1) be a weak associative pseudo-BCI algebra, AG(A) the anti-grouped part of A,
K(A) the pseudo-BCK part of A. Then

(1) K(A) is quasi-alternating BCK-algebra and AG(A) = (A − K(A))∪{1};
(2) For any x in AG(A), x → 1 = x 1 = x ;
(3) For any x, y in A, x → y = x y, that is, A is a BCI-algebra;
(4) AG(A) is an Abel group, that is, AG(A) is associative BCI-algebra.

Proof. (1) It follows from Theorems 5 and 3.
(2) For any x in AG(A), then (x → 1)→ 1 = x. We will prove that x → 1 = x.
If x = 1, obviously, x → 1 = x.
If x 6= 1, then (x → 1)→ 1 = x → 1 by Definition 13. Thus,

x → 1 = (x → 1)→ 1 = x.

Applying Proposition 2 (12) we have

x 1 = x → 1 = x.

(3) For any x, y in A,

(i) when x, y in K(A), by (1), K(A) is a BCK-algebra, so x → y = x y;
(ii) when x, y in (A − K(A)), by (1) and (2), applying Proposition 2 (11),

x → y = (x → y)→ 1 = (x → 1) (y→ 1) = x y;

(iii) when x in K(A), y in (A − K(A)), using Lemma 3 (1), x → y = x y;
(iv) when y in K(A), x in (A − K(A)), using Lemma 3 (2), x → y = x y;

Therefore, for all x, y in A, x→ y = x y. It follows that A is a BCI-algebra.
(4) Applying (2), by Lemma 5 we know that AG(A) is an Abel group, that is, AG(A) is associative

BCI-algebra. 2

From Theorems 6 and 4 we immediately get

Theorem 7. Let (A; ≤, →,  , 1) be a pseudo-BCI algebra, AG(A) the anti-grouped part of A, K(A) the
pseudo-BCK part of A. Then A is a weak associative pseudo-BCI algebra if and only if K(A) is a quasi-alternating
BCK-algebra, AG(A) is an Abelian group and A = K(A)⊕KGAG(A).

Theorem 8. Let (A; ≤,→, , 1) be a pseudo-BCI algebra. Then the following conditions are equivalent:

(1) for any x, y, z ∈ A, (x → y)→ z = x → (y→ z) when (x 6= y, x 6= z);
(2) for any x, y, z ∈ A, (x y) z = x (y z) when (x 6= y, x 6= z);
(3) for any x, y, z ∈ A, (x → y) z = x → (y z) when (x 6= y, x 6= z);
(4) for any x, y, z ∈ A, (x y)→ z = x (y→ z) when (x 6= y, x 6= z).

Proof. (1)⇒ (2) : It follows from Definition 13 and Theorem 6.
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(2)⇒ (1) : Similar to the discussion process from Definition 13 to Theorem 6, we can obtain a
result similar to Theorem 6. That is, from (2) we can get that A is a BCI-algebra. Hence, (2) implies (1).

Similarly, (3)⇔ (1) and (4)⇔ (1). 2

Finally, we discuss the relationships among general pseudo-BCI algebras, QM-pseudo-BCI
algebras and weak associative pseudo-BCI algebras (WA-pseudo-BCI algebras).

In fact, in every T-type pseudo-BCI algebra, there is a maximal WA-pseudo-BCI subalgebra.
That is, if (A; ≤,→, , 1) is a T-type pseudo-BCI algebra, AG(A) the anti-grouped part of A, K(A) the
pseudo-BCK part of A, then Kqm(A)∪AG(A) is a WA-pseudo-BCI subalgebra of A, where Kqm(A) is the
set of all quasi-maximal element in K(A). For example, {c, d, 1} is a WA-pseudo-BCI subalgebra of the
pseudo-BCI algebra A in Example 3.

In general, in every pseudo-BCI algebra, there is a maximal QM-pseudo-BCI subalgebra. That is,
if (A; ≤,→, , 1) is a pseudo-BCI algebra, AG(A) the anti-grouped part of A, K(A) the pseudo-BCK
part of A, then Kqm(A)∪AG(A) is a QM-pseudo-BCI subalgebra of A, where Kqm(A) is the set of all
quasi-maximal element in K(A).

6. Conclusions

In the study of pseudo-BCI algebras, the structures of various special pseudo-BCI algebras
are naturally an important problem. At present, the structures of several subclasses such as
quasi-alternating pseudo-BCI algebras and anti-grouped pseudo-BCI algebras are clear. In this paper,
we have studied an important subclass of pseudo-BCI algebras, that is, QM-pseudo-BCI algebras in
which every element is quasi-maximal. We obtain a very clear structure theorem of this subclass. At the
same time, we have studied a class of more special pseudo-BCI algebras, that is, weak associative
(WA) pseudo-BCI algebras in which every element is weak associative and obtained the structure
theorem of this subclass. These results enrich the research content of pseudo-BCI algebras and clearly
presented the relationships between various subclasses, which can be illustrated as Figure 1. Finally,
we show that the two types of pseudo-BCI algebras are very important, since (1) every pseudo-BCI
algebra contains a subalgebra which is QM-pseudo-BCI algebra, (2) every T-type pseudo-BCI algebra
contains a subalgebra which is WA-pseudo-BCI algebra. As a further study direction, we will discuss
the integration of related topics in the light of some new research findings in [32–34].
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