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Abstract: A multi-agent system (MAS) is suitable for addressing tasks in a variety of domains without
any programmed behaviors, which makes it ideal for the problems associated with the mobile robots.
Reinforcement learning (RL) is a successful approach used in the MASs to acquire new behaviors;
most of these select exact Q-values in small discrete state space and action space. This article
presents a joint Q-function linearly fuzzified for a MAS’ continuous state space, which overcomes
the dimensionality problem. Also, this article gives a proof for the convergence and existence of the
solution proposed by the algorithm presented. This article also discusses the numerical simulations
and experimental results that were carried out to validate the proposed algorithm.

Keywords: multi-agent system (MAS); reinforcement learning (RL); mobile robots; function
approximation

1. Introduction

Multi-agent systems (MASs) are finding application in a variety of fields where pre-programmed
behaviors are not a suitable way to tackle the problems that arise. These fields include robotics,
distributed control, resource management, collaborative decision making, data mining [1]. A MAS
includes several intelligent agents in an environment, where each one has its independent behavior
and should coordinate with the others [2].

MASs could emerge as an alternative way to analyze and represent the systems with centralized
control, where several intelligent agents perceive and modify an environment through sensors and
actuators respectively. At the same time, these agents can also learn new behaviors to adapt themselves
to the new tasks and the goals in an environment [3].

One of the fields where multi-agent systems have emerged are mobile robots, most approaches
are based on low level control systems, in [4] a visibility binary tree algorithm is used to generate the
mobile robot trajectories. This type of approach is based on the complete knowledge of the dynamics
of the robotic system. In this article, we offer a proposal based on reinforcement learning, which will
result in high-level control actions.

Reinforcement learning (RL) is one of the most popular methods for learning in a MAS.
The objective of a Multi-agent reinforcement learning (MARL) is to maximize a numerical reward;
so that, the agents can interact with the environment and modify it [5]. At each learning step,
these agents choose an action, which drives the environment to a new state [6]. The Reward function
assesses the grade of this state transition [7]. In the RL the agents are not told which tasks should be
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executed instead they must explore which actions have the best reward. Hence, the RL feedback is less
informative than a supervised learning method [8].

MASs are affected by the curse of dimensionality, which is a term given to suggest that the
computational and memory requirements increase as the number of states or agents increase in an
environment. Most approaches require an exact representation of the state-action pair values in the
form of lookup tables, making the solution intractable, hence the application of these methods is
reduced to small or discrete tasks [9]. In the real-life applications, the state variables can be a selected
from of a large number of possible values or even from the continuous values; so, the problem is
manageable if value functions are approximated [10].

Some MARL algorithms have been proposed to deal with this problem using neural networks
by making generalizations from a Q-table [11], applying function approximation for discrete and
large state-action space [12], applying vector quantization for continuous state and actions [13],
using experience replay for MAS [14], using Q-learning and normalized Gaussian network as
approximators [15], predictions in systems with heterogeneous agents [16]. In [17] a couple of neural
networks is used to represent the value function and the controller, however, the proposed strategy
is based on a sufficient exploration, which is a function of the size of the training data of the neural
networks. Inverse neural networks have also been proposed to approximate the actions policy,
which uses an initial policy of actions to be refined through reinforcement learning [18].

This article presents an approach for MARL in a cooperative problem. It is a modified version
of the Q-learning algorithm proposed in [19] which uses a linear fuzzy approximator of the joint
Q-function for a continuous state space. An implicit form of coordination is implemented to solve the
coordination problem. An experiment is conducted on two robots performing the task of solving a
coordination problem to verify the proposed algorithm. In addition to that, two theorems are presented
to ensure the convergence of the proposed algorithm.

2. MARL with Linear Fuzzy Parameterization

2.1. Single Agent Case

In a reinforcement learning (RL) for a single agent case, let us define: xk as the current state of the
environment at the learning step k, and uk as the action taken by the agent in xk.

The reward or the numerical feedback, rk, reflects how good was the previous action, uk−1, in the
state xk−1. The single agent RL problem is a Markov decision process (MDP). MDP for a deterministic
case is:

f : X×U → X
ρ : X×U → R

(1)

where X is the state space, U is the actions space, f is the state transition function which can be known
or unknown, and ρ is the reward scalar function.

The action policy is used to describe the agent’s behavior, which specifies the way in which the
agent chooses the action from a state. If the action policy, h = X → U, does not change over time it is
considered stationary [20].

The final goal is to find an action policy h such that the long-term return R is maximized:

Rh = E

{
∞

∑
k=0

γkrk+1

∣∣∣∣∣ x0 = x, π

}
(2)

where γ ∈ [0, 1) is the discount factor. The policy, h, is obtained from the state-action value function,
called Q-function.

The Q-function

Qh : X×U → R (3)



Symmetry 2018, 10, 461 3 of 18

gives a expected return from the policy, h,

Qh(x, u) = E

{
∞

∑
k=0

γkr k+1

∣∣∣∣∣ x0 = x, u0 = u, h

}
(4)

The optimal Q-function Q∗ is defined as:

Q∗ (x, u) = max
h

Qh (x, u) (5)

Once Q∗ is available, the optimal action policy is obtained by:

h∗ (x) = arg max
u

Q∗ (x, u) (6)

2.2. Multi Agent System Case

In a Multi-agent case, there is some number of heterogeneous agents with their own set of actions
and tasks in an environment. A stochastic game model describes this behavior in which the action
performed at any state is a combination of the actions by each agent [21].

The deterministic stochastic game’s model is a tuple (X, U1, U2, ..., Un, f , ρ1, ρ2, ..., ρn), where n is
the number of the agents in the environment, X is the state of the environment, Ui i = 1, 2, ..., n are
the sets of actions available to each agent and the joint action set U = U1 ×U2 × ...×Un. The reward
functions ρi : X×U→ R , i = 1, 2, ..., n and the state transition function is f : X×U→ X.

The joint action uk =
[
uT

1,k, uT
2,k, ..., uT

n,k

]T
, uk ∈ U, ui ∈ Ui taken in the state xk, changes the state

to xk+1 = f (xk, uk). A numerical value for the reward is calculated as ri,k+1 = ρ (xk, uk) for each
joint action uk. The actions are taken according to each agent’s own policy hi : X → Ui, where all of
them form the joint policy h. Similar to a single agent case, the state space and actions space can be
continuous or discrete.

The long term reward R depends on the joint policy Rh
i (x) = ∑∞

k=0 γk ri,k+1 due to the
numerical feedback r of each agent depends on the joint action uk. Thereby the Q-function of
each agent relies on the joint action and the joint policy, Qh

i = X × U→ R, with Qh
i (x, u) =

E
[
∑∞

k=0 γk ri,k+1 |x0 = x, u0 = u, h
]
.

Each agent could have its own goals, however, in this article the agents seek a common goal, i.e.,
the task is fully cooperative. In this way the numerical feedback or reward for any state is the same for
all agents ρ1 = ρ2 = ... = ρn, therefore the reward scalar functions and returns are the same for all the
agents, Rh

1 = Rh
2 = ... = Rh

n . Hence the agents have the same goal which is maximize the common
long term performance (or return).

Determining an optimal joint policy h∗ in Multi-agent systems is the equilibrium selection
problem [22]. Although establishing an equilibrium is a difficult problem, the structure of the
cooperative settings make this problem manageable. Assuming that the agents know the structure of
the game in the form of the transition function f and the reward function ρi makes the searching of the
equilibrium point more tractable.

In a fully cooperative stochastic game, if the transition function f and the reward function ρ for
each agent is known, the objective can be accomplished by learning the optimal joint-action values Q∗

through Bellman optimal equation: Q(xk, uk) = ρ (xk, uk) + γ maxj Q
(

f (xk, uk), uj
)

and then using a
greedy policy [23]. Once Q∗ is available, a policy h is:

h∗i (x) = arg max
ui

max
u1,u2,...,un

Q∗(x, u) (7)

When several joint actions are optimal the agents could choose different actions and degrade the
performance of the search for a common goal. This problem can be solved by: the coordination free
methods assume that the optimal join action are unique across learning a common Q-function [24],
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the coordination-based methods use the coordination graphs through a decomposition of the global
Q-function in local Q-functions [25], or the implicit coordination methods assume the agents learn to
choose one joint action by chance and then discard the others [26].

2.3. Mapping the Joint Q-Function for MAS

In a deterministic case, the Q-function, Q, is

Qk+1 = H(Qk) (8)

H(Q)(x, u) = ρ (x, u) + γ max
j

Q
(

f (x, u), uj
)

with an arbitrary initial value for Q. The iterations (8) attracts the Q to a unique fixed point at [27]

Q∗ = H(Q∗).

In [28] is shown that the mapping H : Q→ Q is a contraction with factor α < 1 . For any pair of
Q-function Q1 and Q2, ∥∥∥H(Q1)− H(Q2)

∥∥∥ ≤ α ‖Q1 −Q2‖ (9)

and then H has a unique fixed point. Q∗ is a fixed point of H : Q∗ = H(Q∗), and the iteration converges
to Q∗ as k→ ∞. An optimal policy h∗i (x) can be calculated from Q∗ using (8). To perform the former
iteration, we need a model of the task in the form of the transition function f and reward function ρi.

This kind of method, based on the Bellman optimality equation, need saving and updating the
Q-values for each state-joint action stage. In this way, only tasks with finite discrete set of state and
actions are generally treated. The dimensionality problems occur by the growth of the number of
agents involved in the task [29], thus this generates an increment on the computational complexity [30].

In the case where the state space or actions space are continuous or even discrete with a great
number of variables, the Q-functions must be depicted in an approximated form [31]. Because an
exact representation of the Q-function could be impractical or intractable, therefore, we propose an
approximate linear fuzzy representation of the joint Q-function through a vector φ.

2.4. Linear Fuzzy Parameterization of the Joint Q-Function

In general, if there is no prior awareness about the Q-function, the only form to have an exact
representation is saving distinct Q-values for each state-action couple. If the state space is continuous,
the exact representation of the Q-function would need take an infinite number of state-action values.
For this reason, the only practical way to overcome this situation is using an approximate representation
of the joint Q-function.

In this section, we present a parameterized version of the Q-function through a linear fuzzy
approximator which consist in a vector φ ∈ Rz, this vector relies in a fuzzy partition of the continuous
state space. The principal advantage of this proposal is that we only need to save the state-action pair
Q-value of the center of every membership function.

There are N fuzzy sets, which are depicted by a membership function:

µd(x) = X → [0, 1] d = 1, 2, .., N (10)

where µd(x) describe the degree of membership of the state x to the fuzzy set d, this membership
functions can be looked as basis functions or features [32]. The number of membership functions
increase with the size of the state space, the number of the agents and with the degree of resolution
sought for the vector φ.

Triangular shapes of fuzzy partitions are used in this paper since they have their maximum value
in a single point, namely, for every d exist a unique xd (the core of the membership function) such that
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µd(xd) > µd(x) ∀x 6= xd. Since all the others membership functions take zero values in xd , µd̂(xd) = 0
for ∀ d 6= d̂ , we assume that µd(xd) = 1, which mean that the membership functions are normal.
Another kind of Membership Functions shape could diverge when they have too big values in xd [33].

We have a number N of triangular membership functions for each state variable xe = 1, 2, ..., E,
with dim(X) = E. A pyramid shape E dimensional of membership functions will be the consequence
of the product of each single dimensional membership function in the fuzzy partition of the state space.

We assume that the action space is discrete for all the agents and they have the same number of
actions available:

Ui =
{

uij |i = 1, 2, .., n j = 1, 2, ..M
}

(11)

The parameter vector φ is composed by z = nNM elements to be stored, the membership
function-action pair (µd, uij) for each agent correspond an element of the parameter vector φi,d,j.
The approximator’s elements φi,d,j are organized in a preliminary way using n different matrices with
size N ×M , filling the first M columns with the N elements available. The elements of the n matrix
are allocated in a vector arrangement φ column by column for the first agent, then follow with the next
agent’s columns until completing n agents.

Denoting the scalar indexes [i, d, j] of φ by:

[i, d, j] = [d + (j− 1) N] + (i− 1) N ×M (12)

where i = 1, 2, ..., n means the number of the analyzed agent, d = 1, 2, ..., N is the number of fuzzy
partitions for each state variable xe = 1, 2, ..., E, with dim(X) = E and j = 1, 2, ..., M dim(Ui) = M.
In this way we denote the indexes of the parameter approximator by φ[i,d,j], which means the
approximate Q-value for the d membership function, performing the action j available for the agent i.

The state x is taken as input by the fuzzy rule base and produces M outputs for each agent,
which are the corresponding Q-values to each action for every agent uij |i = 1, 2, ..., n j = 1, 2, ..., M,
the function’s outputs are the elements of φ[i,d,j]. The fuzzy rule base proposed can be considered as a
zero order Takagi-Sugeno rule base [34]:

if x is µd(x) then q[i,1] = φ[i,d,1]; ...; q[i,M] = φ[i,d,M]

The approximate Q-value can be calculated by:

Q̃ (x, u) =
n

∑
i=1

N

∑
d=1

µd (x) φ[i,d,j] (13)

The expression (13) is a linear parameterized approximation, the Q-values of a specified
state-action couple is estimated through a weighted sum, where the weights are generated by the
membership functions [35]. This approximator can be denoted by an approximator mapping

F = Rz → Q (14)

where Rz is the parameter space, the parameter φ represents the approximation of the Q-function:

Q̃ (x, u) = [F (φ)] (x, u) (15)

Thus we do not need to store a great amount of Q-values for every pair (x, u) . Only z parameters
in φ are needed. The mapping approximator F only represents a subset of Q [36].

From the point of view of reinforcement learning, a linear parameterized approximation of F are
preferred since they make more suitable to analyze the theoretical aspect. This is the reason for our
choosing of using a linear parameterized approximation φ, in this way, the normalized membership
functions can be considered as basis functions [37].
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The Expression (15) provides a Q̃ which is an approximate Q-function, in place of the exact
Q-function Q, so the approximate Q̃ is supplied to the mapping H:

Q̄k+1 (x, u) = (H ◦ F) (φk) (x, u) (16)

Most of the time the Q-function Q̄ is not able to be stored in a explicit way [38], as alternative,
it has to be represented in an approximate form using a projection mapping P : Q→ Rz

φk+1 (x, u) = P(Q̄k+1) (x, u) (17)

which makes certain that Q̃ (x, u) = [F (φ)] (x, u) is as near as possible of Q̄ (x, u) [39], in the sense of
least square regression:

P(Q) = φ∗ φ∗ = arg min
φ

s

∑
λ

(Q (xλ, uλ)− [F (φ)] (xλ, uλ))
2 (18)

where a set of state-joint actions samples (x, u) are used. Because of the use of triangular membership
function shapes, and the linear parameterized approximation mapping F, (18) is a convex quadratic
optimization problem where z = nNM samples are used [40], so the expression (18) is reduced to a
designation in the form:

φ[i,d,j] = P(Q)[i,d,j] = Q(x, u) (19)

Recapitulating, the approximate linear fuzzy representation of the joint Q-function begins with an
arbitrary value of the vector parameter vector φ and actualizes it in each iteration using the mapping:

φk+1 = (P ◦ H ◦ F) (φk) (20)

and stops when a parameter threshold ξ is greater than the difference between 2 consecutive
parameters vector φ

‖φk+1 − φk‖ ≤ ξ (21)

A greedy policy can be obtained to control the system from φ∗ (which is the parameter vector
derived when k → ∞), for whichever state, the actions are calculated by interpolation between the
best local actions for each agent for every membership function center xd:

h∗i (x) =
N

∑
d=1

φi,d (x) uj∗id
wherej∗i,d ∈ arg max[F(φ∗)] (x, u) (22)

To implement the update (20), we propose a procedural using a modified version of the Q-learning
algorithm [19], where the linear parameterization is added, in this way the algorithm can be extended
to Multi-agent problems with continuous state space but with discrete action space. The algorithm
starts with an arbitrary φ (it can be φ = 0) until a threshold ξ is reached after several iterations.

2.5. Reinforcement Learning Algorithm for Continuous State Space

The linear fuzzy approximation depicted by (20) can be described by the following algorithm,
where is used a modified version of Q-learning algorithm. To set a correspondence among the
algorithm and the expression (20), the right hand of step 2 can be seen as (16) and then using the
expression (17). Here the dynamics f , the reward function ρ and the discount factor γ are known in
the form of a batch sample data.
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1. Let α ∈ (0, 1], ε ∈ (0, 1] set

φ(x, u)←− 0 (23)

where (1− ε) is the probability of choose a greedy action in the state x, and ε is the probability of
choose a random joint-action in U.

2. Repeat in each iteration k

• For state x, we select a joint action U with a suitable exploration. At each step a random
action with probability ε ∈ (0, 1) is used.

• Applying the linear fuzzy parameterization with membership functions µd d = 1, ..., N and
discrete actions Uj j = 1, ..., M, the threshold ξ > 0

φ[i,d,j]k+1
←− φ[i,d,j]k

+ αk [rk+1 + β− Γ]Ω

β = γ max
j′

n

∑
i=1

N

∑
d′=1

µd′
(

f
(

xk+1, u′
))

φ[i,d′ ,j′ ] (24)

Γ =
n

∑
i=1

N

∑
d=1

µd ( f (xk, u)) φ[i,d,j] (25)

Ω =
n

∑
i=1

N

∑
d=1

µd ( f (xk, u)) (26)

• Until:
‖φk+1 − φk‖ ≤ ξ (27)

• Output:

φ∗ = φk+1 (28)

A greedy policy is obtained to control the system by:

h∗i (x) =
N

∑
d=1

φi,d (x) uj∗id
where j∗i,d ∈ arg max[F(φ∗)] (x, u) (29)

where j∗i,d ∈ arg max F(φ∗) (x, u) , j∗i,d is the optimal action for the center xd for the agent i.

Theorem 1. The algorithm with linear fuzzy parameterization (20) converges to a fixed vector φ∗.

Proof of Theorem 1. Since the mapping given by F,

[F (φ)] (x, u) =
n

∑
i=1

N

∑
d=1

µd (x) φ[i,d,j] (30)

the convergence of the algorithm is guaranteed through ensuring that the compound mapping P ◦H ◦ F
is a contraction in the infinite norm. [28] shows that the mapping H is a contraction, so it remains to
demonstrate that F and P are not expansions. The mapping given by F is a weighted linear combination
of membership functions
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∥∥∥[F (φ)] (x, u)− [F
(

φ
′
)
] (x, u)

∥∥∥
=

∥∥∥∥ n
∑

i=1

N
∑

d=1
µd (x) φ[i,d,j] −

n
∑

i=1

N
∑

d=1
µd (x) φ

′
[i,d,j]

∥∥∥∥
=

∥∥∥∥ n
∑

i=1

N
∑

d=1
µd (x)

[
φ[i,d,j] − φ

′
[i,d,j]

]∥∥∥∥
=

∣∣∣∣ n
∑

i=1

N
∑

d=1
µd (x)

∣∣∣∣ ∥∥∥φ[i,d,j] − φ
′
[i,d,j]

∥∥∥
≤

n
∑

i=1

N
∑

d=1
|µd (x)|

∥∥∥φ[i,d,j] − φ
′
[i,d,j]

∥∥∥
≤

n
∑

i=1

N
∑

d=1
µd (x)

∥∥∥φ[i,d,j] − φ
′
[i,d,j]

∥∥∥
≤

n
∑

i=1

N
∑

d=1
µd (x)

∥∥∥φ− φ
′
∥∥∥

∞

≤
∥∥∥φ− φ

′
∥∥∥

∞

(31)

where the last step is true because the sum of the standard functions µd (x) is 1, and the product
generated by each agent also is 1. So it shows that the mapping F is a non-expansion. Since the
mapping P is

P(Q)[i,d,j] = Q(x, u) (32)

and the samples are centers of the membership functions φk (xk, uk) = 1, so the mapping P is a
non-expansion [33]. Since H mapping is a contraction with γ < 1, so P ◦ H ◦ F is also a contraction by
the factor γ ∥∥∥(P ◦ H ◦ F) (φ)− (P ◦ H ◦ F)

(
φ
′)∥∥∥ ≤ γ

∥∥∥φ− φ
′
∥∥∥

∞
(33)

where P ◦ H ◦ F has a fixed vector φ∗, and the algorithm above converges to this fixed point as
k→ ∞.

Theorem 2. For any choice of ξ > 0 and any initial threshold value parameter vector φ0 ∈ Rz, the algorithm
with linear fuzzy parameterization is completed in a finite time.

Proof of Theorem 2. As shown in Theorem 1, the mapping is a contraction P ◦ H ◦ F with γ < 1 and
a fixed vector φ∗

‖φk+1 − φ∗‖∞
= ‖(P ◦ H ◦ F) (φk)− (P ◦ H ◦ F) (φ∗)‖
< γ ‖φk − φ∗‖∞

(34)

So, if ‖φk+1 − φ∗‖∞ < γ ‖φk − φ∗‖∞ , for induction ‖φk − φ∗‖∞ < γk ‖φ0 − φ∗‖ for k > 0.
According to Banach fixed point, φ∗ is bounded. Since the vector where the iteration starts is bounded,
then ‖φ0 − φ∗‖∞ is also bounded. Let Go = ‖φ0 − φ∗‖∞ which is bounded and ‖φk − φ∗‖∞ ≤ γkG0

for k > 0, applying the triangle inequality:

‖φk+1 − φk‖∞ ≤ ‖φk+1 − φ∗‖∞ + ‖φk − φ∗‖∞
≤ γk+1G0 + γkG0 = γkG0 [γ + 1]

(35)

If γkG0 [γ + 1] = ξ,

γk =
ξ

G0 [γ + 1]
(36)

Applying γ log base on both side of the above expression

k = logγ

[
ξ

G0 [γ + 1]

]
(37)



Symmetry 2018, 10, 461 9 of 18

with Go = ‖φ0 − φ∗‖∞ which is bounded and γ < 1 implies that k is finite. So the algorithm is arrived
in the most k iterations.

3. Results

3.1. Simulation of a Cooperative Task with Mobile Robots

We perform a simulation where the linear fuzzy parameterization is applied to a two-dimensional
Multi-agent cooperative problem with continuous states and discrete actions. The two agents with
mass m have to be directed in a flat surface, such that they reach the origin at the same time with
minimum time elapsed. The information available to the agents consists of the reward function,
the transition function of states and joint actions.

In the simulation environment, the state x = [x1,x2, ..., x8]
T has the coordinates in two

dimensions of each agent six, siy and their velocities in two dimensions ṡix, ṡiy for i = 1, 2

: x =
[
s1x, s1y, ṡ1x, ṡ1y, s2x, s2y, ṡ2x, ṡ2y

]T . The continuous state space model of the simulated system is:

s̈1x = −η
(
s1x, s1y

) ṡ1x
m1

+
u1x
m1

s̈1y = −η
(
s1x, s1y

) ṡ1y

m1
+

u1y

m1

s̈2x = −η
(
s2x, s2y

) ṡ2x

m2
+

u2x

m2

s̈2y = −η
(
s2x, s2y

) ṡ2y

m2
+

u2y

m2

(38)

where η
(
six, siy

)
for i = 1, 2 is the function friction which depends of the position of each agent,

the control signal is U =
[
u1x, u1y, u2x, u2y

]T which is a force and mi for i = 1, 2 is the mass of each robot.
The system is discretized with a step of T = 0.4s and the expression that describes the dynamics

of the system are integrated between the sampling time. In the task, we select the start points randomly
and carry out 50 training iteration, in the case of reaching 50 iterations without accomplishing the final
goal, the experiment is restarted.

The magnitude of the state and action variables are bounded. To make more tractable the problem,
six and siy ∈ [−6, 6] meters, ṡix and ṡiy ∈ [−3, 3] m

s , also the force is bounded uix, uix ∈ [−2, 2] for

i = 1, 2 , the friction coefficient is taken constant with η = 1 kg
s , the mass of the agent is taken equal for

both m = 0.5 kg.
The actions control for each agent are discrete with 25 elements Ui = [−2− 0.2 0 0.2 2]× [−2− 0.2

0 0.2 2] for i = 1, 2 , they correspond to force in diagonal, left, right, up, down and no force applied.
The membership functions used for the position state and velocity state have triangular shape, where the
core of each membership function is xd . The cores of the membership function for the location domain
s is centered at [−6,−3,−0.3,−0.1, 0, 0.1, 0.3, 3, 6] and the cores of the membership function for the
velocity domain are: [−3,−1, 0, 1, 3], each one for every agent, this is shown in Figure 1. In this way
50625 pairs (x, u) are storage for each agent in the vector parameter φ, this amount increases with the
number of membership functions. An example of fuzzy triangular partition is showed in Figure 1.

The partition of the state space x is determined by the product of the individual membership
function for each agent i

µ(x) =
2

∏
i=1

µsix

2

∏
i=1

µsiy

2

∏
i=1

µṡix

2

∏
i=1

µṡiy (39)

The final objective of arriving at the same is shown by a common reward function ρ:

ρ (x, u) = 5 if ‖x‖ < 0.1 (40)

ρ (x, u) = 0 in another way
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As regards the coordination problem, the agents accomplish an implicit coordination, where they
learn to prefer one solution about equally good solutions by chance and then overlook the other
options [41].
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Fuzzy partition for velocity state variable

Figure 1. Triangular fuzzy partition for velocity state.

After the algorithm is performed and φ∗ is obtained, a policy can be derived by interpolation
between the best local action for each agent:

h∗i (x) =
N

∑
d=1

φi,d (x) uj∗id
where j∗i,d ∈ arg max F(φ∗) (x, u) (41)

For the simulation, the learning parameters were set γ = 0.96 and the ξ = 0.05, the initial
conditions for the experiment were set s0 = [−4,−6,−2, 2, 5, 3, 2,−1] , the algorithm shows a
convergence after 15 iterations, Figure 2 shows the states and the signal control U1 =

[
u1x, u1y

]
for the agent 1, Figure 3 shows the states and the signal control U2 =

[
u2x, u2y

]
for the agent 2.

The final path followed by both agents are shown in Figure 4.
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Figure 2. States and signal control for the Agent 1.
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Figure 3. States and signal control for Agent 2.
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Figure 4. Final path by Agent 1 and Agent 2.

3.2. Experimental Set-up

Two mobile robots Khepera IV are used to perform a experiment in MAS [42]. They have 5 sensors
which are placed around the robot and are positioned and numbered as shown in Figure 5. These 5
sensors are ultrasonic devices compose of one transmitter and one receiver, they are used to detect the
physical features of the environment such as obstacles and other nearby agents.

The five Khepera’s sonar readings la,c are quantified in three degrees. They represent the amount
of closeness to the nearest obstacle or others agents, 0 indicates obstacles or agents which are near,
1 indicates obstacles or agents which are in a medium distance and finally 2 indicates obstacles or
agents which are relatively far from the sensors.
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Figure 5. Position of the Khepera’s UltraSonic sensors.

The parameters da (the distance to the target or the goal) and pa (the relative angle to the target
or goal) are divided in eight degrees (0–8). Where 0 represents the smallest distance or angle and 8
represents the greatest relative distance or angle from the current Khepera’s position to the target
or goal.

The actions available for the robot khepera are:

• Move forward
• Turn in clockwise direction
• Turn in counter clockwise direction
• Stand-Still

The ultra-sonic sensors on the Khepera are used to help the mobile robots to determine if there
are any obstacles in the environment. The experimental set up reveals that the reinforcement learning
algorithm relies strongly in the sensors readings.

Sensor readings in the ideal simulation situation are based on mathematical calculations which
are accurate and consistent. In the experimental implementation the readings are inaccurate and
fluctuating. During the application of the controller this effect is minimized by permitting a period
after performing a joint action, with the above we ensure that the sensor has steady reading before
it is recorded. In addition, by moving the robots at relatively slow step during the learning process,
the collisions with other objects or agent are reduced. The quantified readings would be enough to
represent the current location and velocity when the robots are moving [43].

3.3. Experimental Results

To validate the proposed algorithm, the linear fuzzy approximator of the joint Q-function is
applied to a two-dimensional Multi-agent cooperative task. Two mobile robots Khepera IV must be
driven in a surface such that both agents reach the origin at the same time with minimum time elapsed,
it is shown in Figure 6.

The fuzzy partition and the location of centroids used for the states were the same as the
simulation section.

The goal of arriving at the same moment toward the origin in minimum time elapsed is shown by
the common reward function ρ:

ρ (x, u) = 5 if ‖x‖ < 0.2 (42)

ρ (x, u) = 0 in another way

For this experiment the learning parameters were set γ = 0.96 and ξ = 0.2, the initial conditions
for the experiment were set s0 = [−4, 5, 0, 0, 5, 3, 0, 0] , the experiment shows a convergence after
27 iterations. Figure 7 shows the states, the signal control U1 =

[
u1x, u1y

]
and the rewards for the

agent 1 and Figure 8 shows the states, the signal control U2 =
[
u2x, u2y

]
and the reward for the agent 2.
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Figure 6. Experimental test

0 5 10 15 20 25 30
-5

0

5

S
t
a

t
e

s

x
1
(t)

x
2
(t)

x
3
(t)

x
4
(t)

0 5 10 15 20 25 30
-2

-1

0

1

2

C
o

n
t
r
o

ls

u
1
x(t)

u
1
y(t)

0 5 10 15 20 25 30
-10

-5

0

5

R
e

w
a

r
d

Figure 7. States and Rewards for the Agent 1 in the experimental implementation.

The election of the value for γ and ξ was set arbitrarily, the vector φ converged after 27 iterations
when the bounded ‖φl+1 − φl‖ ≤ ξ was reached. The final path is shown in Figure 9, this trajectory is
evidently different from the optimal policy, which would drive both agents in a straight line toward
the goal since any initial position. However, with the fuzzy quantization used in this implementation
and the effect of the damping, the final path obtained is the best that can be accomplished with this
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fuzzy parameterization. The coordination problem was overcame using an indirect method, where the
agents learn to choose a solution by chance.

0 5 10 15 20 25 30
-5

0

5

S
t
a

t
e

s

x
5
(t)

x
6
(t)

x
7
(t)

x
8
(t)

0 5 10 15 20 25 30
-2

-1

0

1

2

C
o

n
t
r
o

ls

u
2
x(t)

u
2
y(t)

0 5 10 15 20 25 30
-10

-5

0

5

R
e

w
a

r
d

Figure 8. States and Rewards for the Agent 2 in the experimental implementation.
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Figure 9. Final path by Agent 1 and Agent 2 in experimental implementation.

4. Comparison with CMOMMT Algorithm for Multi-Agent Systems

There are other methods for MARL in continuous state space, these proposals are restricted to a
limited kind of task, one of this methods is “cooperative multi-robot observation of multiple moving
target” (CMOMMT) given in [13], which relies in local information in order to learn cooperative
behavior. It allows the application of the reinforcement learning in continuous state space for
Multi-agents systems.
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The kind of cooperation learned in this proposal is by implicit techniques, in this way this method
is useful for reducing the representation of the state space through of a mapping of the continuous
state space in a finite state space, where every new state discretized is considered as a region in the
continuous state space.

The action space is discrete, this method uses a delayed reward where positive or negative values
are obtained at the end of the training. Finally, an optimal joint policy of actions is obtained by a
clustering technique in the discrete action space.

We performed the same cooperative task of arriving to the origin point at the same time for 2
agents as in the section above, using the same reward function and the same continuous state space.
The initial condition was set s0 = [−4, 5, 0, 0, 5,−3, 0, 0].

The final path obtained by the CMOMMT algorithm is shown in Figure 10, where the path traced
is not straight enough and near to the origin point is shown as a persistent oscillation. The signal state
and the signal control for the agent 1 and agent 2 are shown in Figure 11 and the Figure 12, respectively.
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Figure 10. Final path obtained by CMOMMT algorithm.
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Figure 11. States and signal control for agent 1 CMOMMT algorithm.



Symmetry 2018, 10, 461 16 of 18

0 5 10 15 20 25 30
−4

−2

0

2

4

6

S
ta

te
s

 

 

x
5
(t)

x
6
(t)

x
7
(t)

x
8
(t)

0 5 10 15 20 25 30
−2

−1

0

1

2

C
o

n
tr

o
ls

 

 

u
2
x(t)

u
2
y(t)

Figure 12. States and signal control for agent 2 CMOMMT algorithm.

The Table 1 shows a comparison between our proposal and the CMOMMT algorithm for an
average of trials conducted under the same initial conditions.

Table 1. Comparison between fuzzy partition and CMOMMT.

Training CMOMMT Fuzzy Parameterization

Error (cm) 18 6
Time (s) 25 12

Iterations 34 27

One possible reason for the results of CMOMMT could be that the Q-functions obtained by this
method are less smooth than the presented by the fuzzy parameterization. In this way the method
proposed in our paper shows a better performance in the form of the more accuracy representation of
the state space and less computational resources used by it.

5. Conclusions

One of the principal research direction of the artificial intelligent is to develop autonomous
mobile robots with cooperative skills in continuous state space. For this reason, in this paper we
have presented a linear fuzzy parameterization of the joint Q-function which is used with a modified
version Q-learning algorithm. Our algorithm proposed can handle MARL problems with continuous
state space, minimizing the time of convergence and avoiding storing the entire Q-values in a look up
table. Triangular shapes were used to set the membership functions to define de estate space of the
environment, this form was selected to simplify the projection mapping.

The main contribution of our work is that we present a reinforcement learning algorithm for MAS
which uses a linear fuzzy parameterization of the joint Q-function. This approximation is carried out
by means of a parameterization vector which only stores the Q-values at the centers of the triangular
membership functions. The Q-values that are not found in the center are calculated by means of a
weighted sum according to their degree of membership.

Two theorems were presented to guarantee the convergence to a fixed point in a finite number of
iterations. The proposed method is a off-line model-based algorithm with deterministic dynamics,
in the assumption that the joint reward function and the transition function are known by all the agents.
Since having that kind of knowledge could be difficult in a real-life application, a future work could be
to extend this proposal to a model free method, where the agents can learn by itself the dynamics of
the environment, also this extension can be done to encompass problems with stochastic dynamics.
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The performance of the linear fuzzy parameterization was evaluated first through simulation
using Matlab software and then by an experiment where the task involves two mobile robots Khepera
IV. Finally, the results obtained was compared with another suitable algorithm called CMOMMT which
is capable of deal with tasks where the estate space is continuous.
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