
symmetryS S

Article

JDriver: Automatic Driver Class Generation for
AFL-Based Java Fuzzing Tools

Zhijian Huang and Yongjun Wang ∗

College of Computer, National University of Defense Technology, Changsha 410073, China;
zjhuang@nudt.edu.cn
* Correspondence: wangyongjun@nudt.edu.cn

Received: 31 August 2018; Accepted: 27 September 2018; Published: 3 October 2018
����������
�������

Abstract: AFL (American Fuzzy Lop) is a powerful fuzzing tool that has discovered hundreds
of real-world vulnerabilities. Recent efforts are seen to port AFL to a fuzzing Java program and
have shown to be effective in Java testing. However, these tools require humans to write driver
classes, which is not plausible for testing large-scale software. In addition, AFL generates files as
input, making it limited for testing methods that process files. In this paper, we present JDriver,
an automatic driver class generation framework for AFL-based fuzzing tools, which can build driver
code for methods’ processing files as well as ordinary methods not processing files. Our approach
consists of three parts: a dependency-analysis based method to generate method sequences that are
able to change the instance’s status so as to exercise more paths, a knowledge assisted method to
make instance for the method sequences, and an input-file oriented driver class assembling method
to handle the method parameters for ordinary methods. We evaluate JDriver on commons-imaging,
a widely used image library provided by the Apache organization. JDriver has successfully generated
149 helper methods which can be used to make instances for 110 classes. Moreover, 99 driver classes
are built to cover 422 methods.

Keywords: driver class generation; java fuzzing; AFL; software security

1. Introduction

Fuzzing is an efficient and effective testing method by generating numerous inputs to reveal
the vulnerabilities in the software-under-test (SUT). Recent efforts have been seen to port one of
the most popular fuzzing tools AFL [1] to fuzzing Java programs. Different from binary programs,
Java programs runs on Java Virtual Machine (JVM) and every public method can be tested directly
with a driver class to provide basic runtime environments. Normally, the software developers write
driver classes to test certain functions in the method-under-test (MUT). Their hand-written driver
classes are filled with constant inputs that are only able to exercise limited paths, leaving a large part of
the program not tested. AFL-based Java fuzzing tools [2,3] solve the coverage problem by making use
of fuzzing techniques to generate inputs to exercise more paths. However, these tools fail to address
the problem of automatic driver class generation. Both Kelinci [2] and JQF [3] rely on driver class
written by testers to direct testing. This makes them not convenient for testing large-scale software.
In addition, the AFL-based fuzzing tools employ files to store input, and this hinders the generation
of the driver class for ordinary methods not processing files by requiring additional statements to
converting the input file to correct variables.

Symmetry 2018, 10, 460; doi:10.3390/sym10100460 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/10/10/460?type=check_update&version=1
http://dx.doi.org/10.3390/sym10100460
http://www.mdpi.com/journal/symmetry

Symmetry 2018, 10, 460 2 of 16

Our goal is to build driver classes automatically for AFL-based Java fuzzing tools. Except for
providing basic runtime environments for the MUT, the generated driver class should be able to mutate
the status of the class instances as well as method parameters so as to exercise all paths in the MUT
with the input file generated by the fuzzing tool. The status of the class instance is decided by the
fields in the class, and some class fields can only be modified through invoking methods that change
the method. Thus, for each MUT, the driver class should contain method sequences to change the
instance’s status, statements to prepare runtime time environments for the method sequences and
statements to parse the data from the input file.

We face the following challenges: the first challenge is how to build method sequences for a
target method. In Java, both member fields and method parameters can affect the branch statements.
The member fields declared with keyword private and protected can only be modified by member
methods. We need to know what member fields are accessed by the MUT and what methods can
modify them so that we can build method sequences that are able to change the status of the instance.
The second challenge is how to build instances to make the method sequences work. Instances need
to access member fields and invoke member methods. To instantiate classes defined in SUT as well
as built-in classes properly, we need to have the knowledge of what methods can be used to create
instances. The last challenge is how to handle the input file. AFL-style fuzzing tools employ file to
store input, so the methods in the driver class should process the input file, and prepare basic runtime
instances for the target method with data extracted from the file.

We design and implement JDriver [4], an automatic driver class generation framework for
AFL-based fuzzing tools. It employs dependency analysis to build method sequences that can modify
method parameters as well as the field values. It collects knowledge and uses it to instantiate classes.
JDriver supports making driver classes for general methods with input-file oriented driver class
assembling methods, which can handle different method parameters properly. To summarize, we make
the following contributions:

(1) First study on automatic driver class generation for AFL-based Java fuzzing tools. To the
best of our knowledge, we are the first to study how to make driver classes for AFL-based
fuzzing tools.

(2) A novel approach to automatic driver class generation based on dependency analysis.
The approach consists of a dependency analysis based method to make method sequences,
a knowledge assisted method to generate class instances and an input-file oriented method to
assemble driver classes.

(3) An open framework for driver class generation. We implement JDriver, an open framework
that aims to support driver class generation for different purposes. Evaluation results show we
are able to generate 99 driver classes containing 422 driver methods for common-imaging.

The remaining paper is organized as below: Section 2 introduces related works. Section 3 describes
our approach, Section 4 depicts the implementation, and Section 5 shows our evaluation results.
We illustrate our thoughts on future work in Section 6, and conclusions are given in Section 7.

2. Related Work

In this section, we first introduce related work on fuzzing (Section 2.1), and then we describe the
the research on Java fuzzing (Section 2.2). Finally, we summarize the works on automatic unit testing
(Section 2.3).

2.1. Fuzzing

Based on how inputs are generated, fuzzing techniques can be categorized into two types:
generation-based fuzzing and mutation-based fuzzing [5].

Symmetry 2018, 10, 460 3 of 16

Generation-based fuzzing tools generate inputs with the knowledge of the input format.
These tools are easy to implement, but their effectiveness relies on the accuracy of the input model.
The earliest fuzzing tool [6] generates data randomly without any knowledge of the programs, thus it
is limited to test software whose input is not formatted. To test software processing formatted data,
sulley [7] and peach [8] provide ways for the testers to define specification for the formatted files and
network protocols. BFuzz [9] builds the knowledge of HTML and XML files into fuzzer so that it
can generate valid web pages to test the browsers. Patrice et al. [10] propose using machine learning
algorithms to learn the format of file format, and their method has been used to test the PDF parser of
Microsoft’s Edge browser. Although the techniques are evolving, it is still hard to find an effective and
general way to model input for various software.

Mutation-based fuzzing tools generate inputs by mutating the existing input. These tools don’t
rely that much on the knowledge of input, but they suffer from low code coverage because the
mutation is performed on existing inputs. AFL [1] improves this by using coverage to direct fuzzing.
It instruments the SUT with codes to record the branch coverage status and mutate the input that
could exercise new branches to generate new input. AFL has achieved great success in bug finding
and claims to have discovered hundreds of real-world bugs [1]. A number of variants have also come
out to improve AFL. In order to mutate the seed efficiently, VUzzer [11] and Steelix [12] bring in
program analysis to identify “magic bytes”, and use them to generate new inputs. To avoid generating
inputs exercising same paths, AFLFast [13] employs a Markov-chain to direct the mutation of inputs
to less-frequency branches. Angora [14] targets each branch, it solves path constraints by its efficient
byte-level tainting tracking algorithm, and mutates the tainted bytes with a gradient descent based
searching method to generate inputs that exercise new paths. Except for improving AFL, projects to
transplant AFL to other languages and other platforms have also been built [1]. The efficiency and
scalability features have won AFL a lot of research focus.

2.2. Fuzzing Java Programs

Although fuzzing is widely used in testing binary programs, there are fewer tools for fuzzing Java
programs. jFuzz [15] is a concolic whitebox fuzzing tool based on the explicit state software model
checker Java PathFinder [16]. It begins with running a program with seed input in concolic execution
to resolve the path constraints, then it solves the constraint and continuously generates modified input.
Like most symbolic execution tools, it suffers from path explosion, so that it is not a good choice for
fuzzing large software. JFuzz [17] is another effort, which defines several mutators to mutate existing
inputs and generate new inputs. It uses metamorphic relations to detect failures. However, defining
metamorphic relation is difficult, and this makes it even not practical to test ordinary software, not to
mention large software.

Recent efforts [2,3] have been found to port AFL to fuzzing Java codes which make use of AFL
to generate inputs for the driver class written by testers. Kelinci [2] provides the Java program with
AFL-style branch counting codes to track the branch exercising status of the SUT. It acts as an agent
that gets input from AFL, executes the input with the Java program and transfers execution results to
AFL. Similarly, JQF [3] applies AFL to fuzzing Java code in a unit testing style. Both [2] and [3] have
claimed to find real-world vulnerabilities. Unfortunately, these tools require human testers to write
driver classes that hinders their applications.

2.3. Automatic Unit Testing

Automatic unit testing aims at generating small but effective testsuites to exercise all the paths in
the program. Existing approaches can be categorized into two types: random-based generation and
search-based generation.

Random-based generation methods build testcases by assembling methods and assigning values
randomly. These tools are simple and easy to implement, but blind, which fail to achieve high code
coverage. JCrasher [18] is among the earliest efforts. It builds testcases by choosing methods from

Symmetry 2018, 10, 460 4 of 16

“parameter graph” to form method sequences and set random values for method parameters. Feedback
directed random testing uses the execution information to direct future execution [19,20]. With the
execution feedback, Randoop [19] builds inputs incrementally and classifies the inputs into redundant,
illegal, contract-violating by defined contracts. In this way, the quality of the generated testcases is
improved [19]. Lei et al. propose Guided Random Testing (GRT) [21], which uses program analysis to
assist testcase generation. It employs static analysis to extract constants and dependency information.
During the execution phase, the static information, together with dynamic analysis results, are used to
create instances that may reach unexercised MUTs.

Search-based testing methods always maintain a goal, i.e., branch coverage to avoid making
testcases blindly. The Search based Software Testing (SBST) Java Unit Testing Tool Contest [22] was
started in 2012, which has attracted researchers to compete in this area. Evosuite [23] has been a winner
for the last five contests. It employs an evolutionary algorithm to generate new testcases by merging
previous testcases and minimize the size of testsuites according to the coverage metric. Sakti et al. [24]
divide the test input generation problems input selecting proper methods to build class instance,
calling methods to set the class under test into the proper state, and invoking target method call and
searching the input space to build test input. Although these methods [19,23,24] have achieved great
success in the SBST contest, their abilities to reveal real-world bugs are under question [25].

3. Approach

3.1. Overview

More than providing a basic runtime environment to invoke target method and determining the
execution result, AFL-based fuzzing tools require their driver class to change the instance status as
well as method parameters to exercise more paths with the file generated by them. To reach this goal,
we need to build method sequences that are able to change the instance status and make class instances
for the method sequences with data resolved from the input file generated by the fuzzing tools.

The method sequences are designed to explore all the branches in the method under test. In Java,
the branch statements may contain values derived from method parameters as well as fields. Thus,
we need to get the knowledge of which fields are accessed by the method. The method sequences
should contain methods to modify the accessed fields. We put forward dependency analysis based
method sequences generation, which employs static analysis to extract dependency information
(Section 3.2) and build method sequences according to the dependency analysis results (Section 3.3).

The method sequences require class instances to make them work. Instances can be generated
from various sources: constructors and factory methods are the most common ways. However, some
special classes are not easy to find proper methods to get instances, e.g., built-in classes that require
additional helper methods. We put forward knowledge assisted instance generation, which builds
knowledge through collecting method information in the SUT as well as the user’s programming
knowledge. A Helper Class is also generated to store the methods used for creating class instances
(Section 3.4).

AFL-based fuzzing tools generate files to store input data. This requires our driver method to
interpret the file and make instance with the interpreted data. We propose input-file oriented driver
class assembling, which operates differently on methods processing files and ordinary methods not
processing files. For ordinary methods, we assemble all the method parameters and make statements
to recover typed values for different method parameters (Section 3.5).

3.2. Dependency Information Extraction

In Java, public member fields can be modified directly, while private/protected member fields
can only be modified by member methods. In addition, some methods may access fields directly, while
some methods access fields indirectly through invoking other methods. Thus, method calls should be
taken into consideration for dependency information extraction. In our approach, we extend method

Symmetry 2018, 10, 460 5 of 16

call graph and define two directed graphs, Access Graph and Modify Graph, to store the dependency
information. The vertexes are either methods or fields, and the edges in the graph are either method
calls or accessing/modifying operation. Specifically, in Access Graph AG = (V, E), edge from method
Vma to method Vmb indicates method ma invokes a call to method mb, edge from method Vma to field
Vfx indicates method ma accesses the field fx. In Modify Graph MG = (V, E), the edge from field Vfx

to method Vma indicates that it is modified by method ma, and the edge from method Vma to method
Vmb indicates that method ma is invoked by method mb.

We use static analysis to extract dependency information. Algorithm 1 illustrates how
Access Graph and Modify Graph are built. The algorithm begins with initializing accessGraph and
modifyGraph with the methods and fields in the class (line 2–11). Afterwards, it loops over all the
methods and walks over all the instructions in methods to build the graphs (line 12 to 29). If instruction
inst is a method call instruction, we resolve its call target callee, and add an edge from method to
callee in accessGraph. Differently, we add edge from callee to method in modifyGraph. If instruction
inst is a field related instruction, we retrieve its target field. An edge from field to method is added
to modifyGraph if it is a field-write instruction (lines 21–22) while an edge from method to field is
added to accessGraph if it is a field-read instruction (line 24–25). In this way, both the method call
relationship and the relationship between method and field are written to the two graphs.

Algorithm 1 Analyzing dependency

1: procedure ANALYZE(classnode) . classnode is class under test
2: accessGraph← new AccessGraph()
3: modi f yGraph← new Modi f yGraph()
4: for f ield in classnode. f ields do
5: accessGraph.addVertex(f ield)
6: modi f yGraph.addVertex(f ield)
7: end for
8: for method in classnode.methods do
9: accessGraph.addVertex(method)

10: modi f yGraph.addVertex(method)
11: end for
12: for method in classnode.methods do
13: instrs← method.instrs . instrs stores all the instructions in the method
14: while instrs is not empty do
15: inst← instrs.get(0)
16: if inst is method invoke then
17: callee← inst.getCallee() . resolve callee
18: accessGraph.addEdge(method, callee)
19: modi f yGraph.addEdge(callee, method)
20: else if inst is field-write operation then
21: f ield← inst.getTarget() . f ield is the target of inst
22: modi f yGraph.addEdge(f ield, method)
23: else if inst is field-read operation then
24: f ield← inst.getTarget()
25: accessGraph.addEdge(method, f ield)
26: end if
27: instrs.remove(inst) . remove inst from the instruction set
28: end while
29: end for
30: end procedure

Regarding the graph theory, we come to the following two theorems:

Theorem 1. Method ma accesses field fx if and only if the two nodes Vma and Vfx are connected in
Access Graph.

Proof of Theorem 1. There are two situations in which method ma accesses field fx: direct and indirect
access. In the direct situation, according to our definition of Access Graph, the direct access will be
represented as an edge from Vma to Vfx which means Vma and Vfx are connected directly. In the indirect

Symmetry 2018, 10, 460 6 of 16

situation, method ma accesses field fx indirectly through method calls, which means that there are call
sequences from method ma to method mz and method mz access field fx. Method mz accesses field fx

directly, so Vmz and Vfx are connected (1). The call sequences from ma to mz indicate that there is a path
from Vma to Vmz which indicates that Vma and Vmz are connected (2). Combining (1) and (2), Vma and
Vfx are connected. Thus, if method ma accesses field fx, the two nodes are connected in the Access
Graph. Reversely, if Vma and Vfx are connected, there is a path between Vma and Vfx . If the length of
the path is 1, it means the method ma access field fx directly. If the length is bigger than 1, there are
more than two vertexes in the path, namely Vma , Vmb ...Vmz , Vfx . The vertex Vmz and Vfx are connected
directly meaning method mz access field fx directly (3). The path from Vma to Vmz indicates that there
are call sequences from method ma to mz(4). Combining (3) and (4), we get that method ma accesses
field fx indirectly. Thus, if Vma and Vfx are connected, method ma access field fx.

Theorem 2. Method Vma can modify field Vfx if and only if the two nodes are connected in Modify Graph.

Theorem 2 can be proved in the same convention of Theorem 1. Theorem 1 explains how we can
find the member fields accessed by the given target. While Theorem 2 provides us with a way to find
the member method that can modify target member fields. We use AccesssSetm to represent the set of
fields that are accessed by method m and Modi f ySet f to be the set of methods that can modify field f.
Actually, AccesssSetm is made up of all the field nodes that are connected with the specified method m
and Modi f ySet f is made up of all the method nodes that are connected with field f .

3.3. Method Sequence Building

The method sequences are used to modify the status of the instance. Apart from invoking
methods to change target fields, the public fields can also be changed by assigning values directly.
Thus, we extend method sequences to include field to indicate that the field can be modified directly.

We build method sequences on dependency information. For the MUT, we can get its accessed
fields set with Access Graph, and the Modify Graph assists us with retrieving a set of methods that
can modify the target field. Algorithm 2 illustrates how we build method sequences with Access
Graph and Modify Graph. An empty array ms is initialized to store method sequences. For the
given method mut, we first resolve the mut’s accessSet accessSetmut (line 2). Then, we build the method
sequence incrementally by iterating over the accessSetmut (line 4–10). For every field in the accessSetmut,
we retrieve its modi f ySet f ield and add chosen items to ms (line 5–9). The item is returned by the select
procedure, which is used to define the policy of how we select methods to build method sequences.

Policy to select method. As static analysis is conservative, the extract dependency information
may not be accurate. Thus, we need to implement different policies to get better performance. In our
implementation, we design a policy to prioritize the field item and select the method whose method
parameters are simplest to make. In the procedure select, we first check if the field is public and its
type is primitive. If it is, we return it directly. If not, we examine whether the existing methods in the
method sequences can modify the target field (lines 16–20). If such methods exist, null is returned to
avoid duplicate modification. If not, we sort the method in the modi f ySet f ield (line 21) and return the
first method (line 22). In our case, the methods are sorted by the simpleness of method parameters,
which is measured by the number of primitive parameters in the method.

3.4. Knowledge Assisted Instance Generation

Normally, instances are created by the constructor of the specified class. In addition,
factory methods that make instance as its return value can also be used to generate instances. However,
for built-in classes provided by The Java Platform, Standard Edition (Java SE), e.g., String, it is not
easy to find proper constructors or factory methods, they require additional methods to make instances.
We name these methods to create instances as knowledge. Our knowledge assisted instance generation
method builds knowledge through collecting related methods for the SUT as well as making methods

Symmetry 2018, 10, 460 7 of 16

from the users’ knowledge. As instance are frequently used in driver class, we build a Helper Class
to store all the instance generation methods.

Algorithm 2 Building method sequences

1: procedure BUILDMETHODSEQUENCE(mut,accessGraph, modi f yGrph). mut is method under test,
accessGraph and modi f yGraph are used to store dependency information

2: ms← newArrayList()
3: accessSetmut ← accessGraph.getAccessSet(mut)
4: for f ield in accessSetmut do
5: modi f ySet f ield ← modi f yGraph.getModi f ySet()
6: item← select(f ield, modi f ySet f ield, ms)
7: if item is not null then
8: ms.add(item)
9: end if

10: end for
11: return ms
12: end procedure
13: procedure SELECT(f ield, modi f ySet, ms)
14: if f ield is public and primitive typed then return f ield
15: end if
16: for method in ms do
17: if modi f ySet.contains(method) then
18: return null
19: end if
20: end for
21: modi f ySet← sort(modi f ySet)
22: return modi f ySet.get(0)
23: end procedure

Collecting instance generation methods. We define a type table to store factory methods and
class constructors for the SUT. The type table uses class type as the key, and the value of the key is a set
of methods. We build type table by walking all the methods in the SUT as illustrated in Algorithm 3.
For each method in the SUT, we first resolve its return type returnType (line 5). Afterwards, we decide
if returnType has already existed in the type table. If it has, we add it to the corresponding method
set (line 7). If it has not, we create a new set, and put it into the new set, and add an item to the type
table (lines 9–11). Apart from SUT, we also build type table for its dependent libraries.

Algorithm 3 Building type table

1: procedure BUILDTYPETABLE(sut) . sut is the software under test
2: typeTalbe← new TypeTable()
3: for class in sut.classes do
4: for method in class.methods do
5: returnType← getReturnType(method)
6: if typeTable.keySet().contains(returnType) then
7: typeTable.get(returnType).add(method)
8: else
9: newSet← new Set()

10: newSet.add(method)
11: typeTable.put(returnType, newSet)
12: end if
13: end for
14: end for
15: end procedure

Knowledge for built-in classes. We add knowledge for classes provided by the Java Platform.
Specifically, we cover most of the classes defined in the java.util package, which contains the
container classes such as Set, the java.lang package, which defines classes that are fundamental to
the design of the Java programming language such as String, and the classes in java.io package,
which contains classes to handle system input/output [26]. Figure 1 shows two sample knowledge

Symmetry 2018, 10, 460 8 of 16

methods. Method get_String returns a String instance which comes from the input parameter arg0.
Method get_File returns a File instance, which is created by the new expression with the method
parameterarg0.

1 publ ic s t a t i c S t r i n g g e t _ S t r i n g (S t r i n g arg0) throws Exception {
2 re turn arg0 ;
3 }
4 publ ic s t a t i c F i l e g e t _ F i l e (S t r i n g arg0) throws Exception {
5 re turn new F i l e (arg0) ;
6 }
7

Figure 1. Sample knowledge method.

Building Instance Helper Class. Instantiating class instances are frequently used during testing.
To avoid generating it repeatedly, we build an Instance Helper Class to handle the generation of
instances. Algorithm 4 shows the building process for Instance Helper. It starts with initializing
typeSet to include all the buildable classes (lines 2–7). Afterwards, it builds instance helper methods
with buildInstanceHelper (line 8). When the processing finishes, InstanceHelperClasses assembles
all the methods, and adds miscellaneous codes to build a compilable Helper Class (line 9). In the
buildInstanceHelper method, it initializes unprocessed as a copy of typeSet, and then it walks over
all the types in typeSet to build helper methods (lines 13–18) with buildType. Procedure buildType
builds helper methods for each type and returns the number of generated helper methods. If buildType
builds more than one helper method successfully, then the type is removed from unprocessed (line 16).
Since some class constructors rely on other classes, it is necessary to build helper class recursively to
cover these classes (lines 19–20). In buildType, it firstly resolves the methodSet for the given type type.
Then, it iterates over all the methods in the methodSet to build helper method (lines 28–34). Each time a
helper method is generated, it is appended to InstanceHelperClasses. Note that, in order to simplify
the method inputs, our helper method only employs primitives or String as method parameters.

3.5. Input-file Oriented Driver Class Assembling

For a class-under-test (CUT), we build driver method separately for each public method and
assemble the driver methods into a driver class. AFL-based fuzzing tools generate files to store the
input data. If the MUT processes files directly, we can pass the file directly as a method parameter.
However, in most cases, the methods don’t do so. For these methods, their driver methods need to
process the input file and present the data to make variables for the methods. Our input-file oriented
driver class assembling method works differently on ordinary methods not processing file and methods
processing file.

Testing if method processes file. As file processing methods use built-in classes such as File
to handle files, we design the following heuristic to determine whether the method processes files
directly: (1) the method parameters contain file related class instances such as File; and (2) there is a
String typed method parameter which flows to a file opening method.

Ordinary methods not processing files. Our driver method starts with extracting the input file
to a byte array, and then it resolves the values for the method parameters sequentially from the byte
array. Algorithm 5 shows the building process. Method makeStatements begins with declaring a
variable position to mark the position in the byte array, and it iterates over the items in the method
sequences to make statements. If the item is a field, it makes an assigning statement directly with
makeField (lines 35–40). If it is a method, it makes statements to declare variables as well as the
statement to invoke the method with makeMethod (lines 11–34). For each method parameter, method
makeMethod applies different rules according to their types. There are two categories of types in Java:
primitive types and reference types. (1) Primitive types. Primitive typed data has fixed sizes, and we
can make it directly from the input bytes. Method makeVariableStatement generates statements like

Symmetry 2018, 10, 460 9 of 16

this: int a = Helper.getInt(inputs, position). (2) Reference types. Class types and array types
are two reference types. For class types, we firstly get a helper method from InstanceHelperClasses
(line 18). If helperMethod is not null, we make statements for the helper method (line 20). For array
types, if it is primitive array, we resolve its element type (line 25), and its array length (line 26). If the
length is not specified, we will use a random number to replace it. We make statements with its
element type etype (line 27). If we can’t get a proper helperMethod or the array is not a primitive array,
we make statements with built-in knowledge (lines 21, 28). Method makeMethod ends with making
statements to invoke the method (line 32), and returning the position to avoid retrieving bytes from the
same position (line 33). Method makeField works similarly as the primitive type in makeMethod.

Algorithm 4 Building instance helper

1: procedure BUILD(typeTable) . typeTable is the type table generated for SUT
2: typeSet← new Set()
3: for type in typeTable.keySet() do
4: if isTypeBuildable(type) then . test if the type buildable
5: typeSet.add(type)
6: end if
7: end for
8: buildInstanceHelper(typeTable, typeSet)
9: InstanceHelperClasses.write() . save the generated helper methods to file

10: end procedure
11: procedure BUILDINSTANCEHELPER(typeTable, typeSet) . typeSet is the set of class to build
12: unprocessed← typeSet.copy()
13: for type in typeSet do
14: result← buildType(type, typeTable)
15: if result > 0 then
16: unprocessed.remove(type)
17: end if
18: end for
19: if repeatTest(typeSet, typeSetCopy) then . test if future test is necessary
20: unprocessed← buildInstanceHelper(typeTable, unprocessed) . building unprocessed types
21: else
22: return typeSet
23: end if
24: end procedure
25: procedure BUILDTYPE(type, typeTable) . type is the type for building
26: methodSet← typeTable.get(type)
27: rtn← 0
28: for method in methodSet do
29: helperMethod← buildHelperMethod(type, method) . build a helper method for type
30: if instanceMethod not null then
31: InstanceHelperClasses.add(helperMethod) . save helperMethod to InstanceHelperClass
32: rtn += 1
33: end if
34: end for
35: return rtn
36: end procedure

Method processing files. For these methods, we identify which method parameter is used to
specify the filename, and then present the file path to the method directly. If there exist other method
parameters, we use random generators to generate values.

Symmetry 2018, 10, 460 10 of 16

Algorithm 5 Making statements to recover method parameters

1: procedure MAKESTATEMENTS(ms) . ms are the generated method sequences.
2: position← 0 . position is used to mark the position the byte array
3: for item in ms do
4: if item is method then
5: position = makeMethod(item, poistion)
6: else
7: position = makeField(item, position)
8: end if
9: end for

10: end procedure
11: procedure MAKEMETHOD(method, position)
12: inputTypes← method.getInputs()
13: for i in inputTypes do
14: if i is primitive then
15: makeVariableStatement(i, position)
16: position += Type.getSize(i)
17: else if i is class type then
18: helpMethod← InstanceHelperClasses.getMethod(i)
19: if helpMethod is not null then
20: position = makeMethod(helpMethod, poistion) . make statements for method
21: else makeStatementWithKnowledge(i);
22: end if
23: else if i is array type then
24: if i is primitive array then
25: etype← i.getElementType . etype is the element type of the array
26: size← getArrayLength(i)
27: position = makeArray(etype, size, poistion)
28: else makeStatementWithKnowledge(i);
29: end if
30: end if
31: end for
32: makeMethodStatement()
33: return position
34: end procedure
35: procedure MAKEFIELD(f ield, position)
36: type← f ield.getType()
37: makeVariableStatement(type, position)
38: position += Type.getSize(type)
39: return position
40: end procedure

4. Implementation

Our automatic driver class generation approach has been implemented into JDriver with around
5000 lines of Java code. It uses the general purpose Java bytecode analysis framework ASM [27] to
perform dependency analysis as well as extract class information. JDriver takes Java program as input,
and produces driver classes in the following steps:

(1) preprocessing. JDriver starts with analyzing the SUT to collect methods used for instance
generating and analyzing the attributes of the classes.

(2) extracting dependency information. For each CUT, we extract dependency information, Access
Graph and Modify Graph according to the algorithm described in Section 3.2.

(3) building method sequence. For each MUT, we resolve its accessSetmut and build method
sequences that are able to change the values in the accessSetmut.

(4) building instance helper class for instance generation. For the SUT, we build knowledge
by collecting constructors and factory methods in the SUT. For built-in classes, we design
additional helper methods. With the knowledge, we produce a Helper Class to save methods
for class instantiating.

Symmetry 2018, 10, 460 11 of 16

(5) assembling driver class. Finally, with the method sequences and instance generation helper methods,
we build statements to operate on the input file and declare variables for the method sequences.

5. Evaluation

We first demonstrate our driver class generation with a simple example in Section 5.1.
Then, we work on the widely used image processing library commons-imaging [28] to evaluate instance
generation (Section 5.2) and driver class generation (Section 5.3).

5.1. Simple Example

The example CUT. We use the simple example to illustrate how our approach works.
Figure 2 shows the source code of the CUT. The class AClass has three member fields: a, b and
c. Fields a and c are public while b is private which can only be modified through public method setB
(lines 15–18). In method foo (lines 18–25), both field a and b are involved in the branch statement in
line 19. To exercise all the input space, the driver code should be able to change the values of fields a
and b as well the method parameter x.

1 publ ic c l a s s AClass {
2 publ ic i n t a ;
3 p r i v a t e i n t b ;
4 publ ic f i n a l i n t c = 1 0 ;
5 publ ic AClass () {
6 a = b = 0 ;
7 }
8 publ ic AClass (i n t a , i n t b) {
9 t h i s . a = a ;

10 t h i s . b = b ;
11 }
12 p r i v a t e void setA (i n t x) {
13 a = x ;
14 }
15 publ ic void setB (i n t y) {
16 b = y ;
17 }
18 publ ic i n t foo (i n t x) {
19 i f (a+b > 0)
20 re turn 1 0 ;
21 e l s e {
22 setA (x) ;
23 re turn 20 + a ;
24 }
25 }
26 }

Figure 2. Sample class under test.

The driver class. As shown in Figure A1, JDriver generates a driver class AClassTest for the
CUT which is made up the main method to control the testing and driver method foo_test to test
method foo. The entry method main (lines 43–48) employs an array of String as input and args[0]
is set to be the filename of the input. Method foo_test (lines 13–42) takes a String to represent
filename. The file is extracted to a byte array data (lines 14–18), which is divided into fields and
inputs array for building instances for method sequences and inputs of the target method separately
(lines 19–20). Afterwards, the parameters for building AClass instance are prepared (lines 25–28),
and an instance cut is generated (line 29) by the constructor. For public member field a, we modify
it through assigning operation (line 30). The method parameter is recovered in lines 34–35, and the
target method foo is tested in try-catch block to catch runtime exceptions (lines 37–41). Note that the
generated method sequence for foo are lines 29 and 30. Our method sequences contain the statement
(line 30) to change a, but don’t contain separate statements to change b. This is because we implement
a selecting method policy to ignore the fields that are changed by the constructor if the fields could not
be assigned values directly.

Symmetry 2018, 10, 460 12 of 16

5.2. Evaluating Instance Generation

JDriver builds a Helper Class named InstanceHelper.java to save the helper methods
for instance generation. JDriver successfully generates 149 helper methods for 110 classes.
Figure 3 illustrates the Instance Helper Method for class ByteSourceFile, whose constructor uses a
File object. In line 1, a File instance is generated by the helper method get_File, which makes a
File instance from a String instance.

1 publ ic s t a t i c ByteSourceF i le ge t_ByteSourceF i l e (S t r i n g arg0_tmp0) throws Exception {
2 F i l e arg0 = StandardLibraryHelper . g e t _ F i l e (arg0_tmp0) ;
3 re turn new ByteSourceF i le (arg0) ;
4 }
5

Figure 3. Sample instance helper method.

5.3. Evaluating Driver Class Generation

JDriver successfully builds 99 driver classes for 422 methods, 60 of which are methods processing
file. Figure 4 shows the driver method generated for method convertYCbCrtoRGB, which takes three
integers as the method parameter. Our dependency analysis detects there are no fields involved in the
convertYCbCrtoRGB, so we only need declare variables for method parameters. Similar to the driver
class in Figure A1, our driver method begins with reading data in the file and forming the byte array
data (lines 2–5). The input array is later resolved to make variables (line 8). Afterwards, we declare
three int variables and assign them with the values resolved from the inputs (lines 13–19). To avoid
naming conflicts, each variable is named after the name of its method. These variables are later used
as parameters to the convertYCbCrtoRGB. In this way, the input file generated by the AFL-based
fuzzing tool is converted to method parameter of ordinary methods. The more input files it generates,
the higher possibility for the driver method to exercise all paths.

1 publ ic s t a t i c void convertYCbCrtoRGB_test (S t r i n g fi lename) {
2 byte [] data = Helper . readBytes (f i lename) ;
3 i f (data == n u l l) {
4 System . out . p r i n t l n (" F a i l to read bytes from f i l e ! , qu i t ! ") ;
5 re turn ;
6 }
7 byte [] f i e l d s = Helper . s p l i t F i e l d s (data , 0) ;
8 byte [] inputs = Helper . s p l i t I n p u t (data , 0 , 1 2) ;
9 i n t p o s i t i o n = 0 ;

10 byte [] tmp ;
11

12 // c a l l i n g the mut convertYCbCrtoRGB
13 p o s i t i o n = 0 ;
14 i n t convertYCbCrtoRGB_0 = Helper . g e t _ i n t (inputs , p o s i t i o n) ;
15 p o s i t i o n += 4 ;
16 i n t convertYCbCrtoRGB_1 = Helper . g e t _ i n t (inputs , p o s i t i o n) ;
17 p o s i t i o n += 4 ;
18 i n t convertYCbCrtoRGB_2 = Helper . g e t _ i n t (inputs , p o s i t i o n) ;
19 p o s i t i o n += 4 ;
20 t r y {
21 PhotometricInterpreterYCbCr . convertYCbCrtoRGB (
22 convertYCbCrtoRGB_0 , \
23 convertYCbCrtoRGB_1 , \
24 convertYCbCrtoRGB_2) ;
25 } ca tch (Exception e) {
26 e . p r i n t S t a c k T r a c e () ;
27 }
28 }
29

Figure 4. Sample driver method for the processing file method.

Symmetry 2018, 10, 460 13 of 16

6. Discussion and Future Work

Instance Generation. Although JDriver has generated hundreds of driver methods for
commons-imaging, it fails to make correct instances for the following classes: (1) interface classes.
Class ImageFormat is an interface, which should be initialized through classes that has implemented
this interface. However, JDriver has no knowledge for generating class instance for interface, thus it
fails on interface classes. (2) classes containing types not covered in knowledge base. The constructor
of ByteSourceArray has String and byte[] as method parameters, but we missed the byte[]
type in our helper class. This makes JDriver fail to generate instance for class ByteSourceArray.
(3) classes whose constructor involves multiple String objects. The constructor method of class
ByteSourceInputStream takes an InputStream and a String typed parameters. Our algorithm detects
that the helper method get_InputStream can be used to make instance for class InputStream and
method get_String can be used to make String instance. However, it skips the methods that use
multiple String objects because the driver code only has one String object as input, so it fails to
make ByteSourceInputStream instances. In addition, some instances we make are meaningless.
For example, method getBufferedImage in class verb|JpegImageParser| accepts a HashMap instance
and uses it to store items. Normally, we need to initialize an non-empty HashMap. However, if we
assign a null to that parameter, it may continue the execution but won’t reach our target branch.
To summarize, we need more smart knowledge to build correct instance. In the future, we will continue
working on: covering advanced Java features like subclassing, interfaces into knowledge base, covering
more built-in classes, restructuring helper methods, and learning knowledge from the source code of
the SUT.

Fuzzing Scheduling. Actually, fuzzing every method in Java programs is neither plausible nor
necessary. (1) indirectly accessible methods should be skipped. Java puts access control attributes in
every method, and methods declared with public and private can’t be accessed directly. In addition,
abstract classes can’t be instantiated. These codes should be skipped. (2) methods that don’t produce
errors should be excluded. In Java, some methods are used to do simple work, they have single
branches and never throw exceptions. For example, the getter methods only contain a single statement
to return a field value; they can never produce exceptions. (3) methods that have been exercised
are not necessary to test alone. Some methods are repeatedly implemented when fuzzing other
methods; testing these methods is useless and wastes a lot of time. A proper way to schedule
methods for fuzzing is to use program analysis techniques to identify the methods listed above. Static
analysis can help identify the methods that have no branches and won’t produce exceptions. Dynamic
analysis techniques could track the execution of the methods and find out what methods have already
been used.

7. Conclusions

Building sound driver classes for AFL-based Java fuzzing tools can improve their fuzzing ability
and efficiency. In this paper, we study the automatic driver class generation problem for these tools.
Our automatic driver class generation method employs dependency analysis to analyze what fields
are accessed by the method, and then construct method sequences to mutate the values of the accessed
fields so that the generated method sequences are able to mutate the status of the class instances.
We design a knowledge assisted instance generation method to make instances for classes from various
sources. In order to allow fuzzing for ordinary methods, our input-file oriented driver class generation
method rebuilds method interfaces and generates statements to declare variables for parameters used
in the method sequences. We implement our approach in JDriver. To the best of our knowledge, we are
the first to study this problem, and JDriver is the earliest automatic driver class generation framework
for AFL-based Java fuzzing tools. We evaluate JDriver on real-world library commons-imaging, and it
has successfully generated 99 driver classes to cover 422 methods; this proves that JDriver is effective
in driver class generation for AFL-based fuzzing tools.

Symmetry 2018, 10, 460 14 of 16

Author Contributions: Methodology, Software, Writing, Z.H.; Methodology, Supervision, Review & Editing, Y.W.

Funding: This research is supported by NSFC No.61472439, the National Natural Science Foundation of China.

Acknowledgments: We’d like to express our appreciation to anonymous editors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Generated Sample Driver Class

Figure A1 illustrates the driver class we generated for sample class in Figure 2.

1 import java . u t i l . Arrays ;
2 import java . nio . ByteBuffer ;
3 import java . nio . f i l e . F i l e s ;
4 import java . nio . f i l e . Paths ;
5 import java . nio . f i l e . Path ;
6 import java . lang . r e f l e c t . Method ;
7 //Driver code f o r Class AClass ;
8 publ ic c l a s s AClassTest {
9 publ ic s t a t i c void f o o _ t e s t (S t r i n g f i lename) {

10 byte [] data = Helper . readBytes (f i lename) ;
11 i f (data == n u l l) {
12 System . out . p r i n t l n (" F a i l to read bytes from f i l e ! , qu i t ! ") ;
13 re turn ;
14 }
15 byte [] f i e l d s = Helper . s p l i t F i e l d s (data , 12) ;
16 byte [] inputs = Helper . s p l i t I n p u t (data , 1 2 , 1 6) ;
17 i n t p o s i t i o n = 0 ;
18 byte [] tmp ;
19

20 //recovery parameters f o r AClass
21 i n t AClass_0 = Helper . g e t _ i n t (f i e l d s , p o s i t i o n) ;
22 p o s i t i o n += 4 ;
23 i n t AClass_1 = Helper . g e t _ i n t (f i e l d s , p o s i t i o n) ;
24 p o s i t i o n += 4 ;
25 AClass cut = new AClass (AClass_0 , AClass_1) ;
26 cut . a = Helper . g e t _ i n t (f i e l d s , p o s i t i o n) ;
27 p o s i t i o n += 4 ;
28

29 // c a l l i n g the mut foo
30 p o s i t i o n = 0 ;
31 i n t foo_0 = Helper . g e t _ i n t (inputs , p o s i t i o n) ;
32 p o s i t i o n += 4 ;
33 t r y {
34 cut . foo (foo_0) ;
35 } ca tch (Exception e) {
36 e . p r i n t S t a c k T r a c e () ;
37 }
38 }
39 publ ic s t a t i c void main (S t r i n g [] args) {
40 i f (args . length == 1) {
41 f o o _ t e s t (args [0]) ;
42 }
43 }
44 }

Figure A1. Driver class for class defined in Figure 2.

References

1. American Fuzzy Lop. Available online: http://lcamtuf.coredump.cx/afl/ (accessed on 21 August 2018).
2. Kirsten, R.; Luckow, K.; Păsăreanu, C.S. POSTER: AFL-based Fuzzing for Java with Kelinci. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA,
30 October–3 November 2017; ACM: New York, NY, USA, 2017; pp. 2511–2513. [CrossRef]

3. JQF. Available online: https://github.com/rohanpadhye/jqf (accessed on 21 August 2018).
4. JDriver. Available online: https://github.com/qorost/jdriver.git (accessed on 1 October 2018).

http://lcamtuf.coredump.cx/afl/
http://dx.doi.org/10.1145/3133956.3138820
https://github.com/rohanpadhye/jqf
https://github.com/qorost/jdriver.git

Symmetry 2018, 10, 460 15 of 16

5. Li, J.; Zhao, B.; Zhang, C. Fuzzing: A survey. Cybersecurity 2018, 1, 6. [CrossRef]
6. Miller, B.P.; Fredriksen, L.; So, B. An Empirical Study of the Reliability of UNIX Utilities. Commun. ACM

1990, 33, 32–44. [CrossRef]
7. The Sulley Fuzzer. Available online: https://github.com/OpenRCE/sulley (accessed on 21 September 2018).
8. The Peach Platform. Available online: https://www.peach.tech/products/peach-fuzzer/peach-platform/

(accessed on 21 September 2018).
9. The BFuzz Platform. Available online: https://github.com/RootUp/BFuzz (accessed on 21 September 2018).
10. Godefroid, P.; Peleg, H.; Singh, R. Learn&fuzz: Machine learning for input fuzzing. In Proceedings of the

32nd IEEE/ACM International Conference on Automated Software Engineering, Urbana-Champaign, IL,
USA, 30 October–3 November 2017; IEEE Press: Piscataway, NJ, USA, 2017; pp. 50–59.

11. Rawat, S.; Jain, V.; Kumar, A.; Cojocar, L.; Giuffrida, C.; Bos, H. Vuzzer: Application-aware evolutionary
fuzzing. In Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego,
CA, USA, 26 February–1 March 2017.

12. Li, Y.; Chen, B.; Chandramohan, M.; Lin, S.W.; Liu, Y.; Tiu, A. Steelix: Program-state based binary fuzzing.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, Paderborn, Germany,
4–8 September 2017; ACM: New York, NY, USA, 2017; pp. 627–637.

13. Böhme, M.; Pham, V.T.; Roychoudhury, A. Coverage-based greybox fuzzing as markov chain. IEEE Trans.
Softw. Eng. 2017. [CrossRef]

14. Chen, P.; Chen, H. Angora: Efficient Fuzzing by Principled Search. In Proceedings of the 2018 IEEE
Symposium on Security and Privacy, San Francisco, CA, USA, 21–23 May 2018; pp. 711–725. [CrossRef]

15. Jayaraman, K.; Harvison, D.; Ganesh, V.; Kiezun, A. jFuzz: A Concolic Whitebox Fuzzer for Java.
In Proceedings of the First NASA Formal Methods Symposium, Moffett Field, CA, USA, 6–8 April 2009;
pp. 121–125.

16. NASA Java PathFinder. Available online: http://javapathfinder.sourceforge.net (accessed on 21 August 2018).
17. Zhu, H. JFuzz: A Tool for Automated Java Unit Testing Based on Data Mutation and Metamorphic

Testing Methods. In Proceedings of the 2nd International Conference on Trustworthy Systems and Their
Applications, Hualien, Taiwan, 8–9 July 2015; pp. 8–15.

18. Csallner, C.; Smaragdakis, Y. J. Crasher: An automatic robustness tester for Java. Softw. Pract. Exp. 2004,
34, 1025–1050. [CrossRef]

19. Pacheco, C.; Ernst, M.D. Randoop: Feedback-directed Random Testing for Java. In Proceedings of
the Companion to the 22Nd ACM SIGPLAN Conference on Object-oriented Programming Systems and
Applications Companion, Montreal, QC, Canada, 21–25 October 2007; ACM: New York, NY, USA, 2007;
pp. 815–816. [CrossRef]

20. Godefroid, P.; Klarlund, N.; Sen, K. DART: Directed Automated Random Testing. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Implementation, Chicago, IL, USA,
12–15 June 2005; ACM: New York, NY, USA, 2005; pp. 213–223. [CrossRef]

21. Ma, L.; Artho, C.; Zhang, C.; Sato, H.; Gmeiner, J.; Ramler, R. Grt: Program-analysis-guided random
testing (t). In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Lincoln, NE, USA, 9–13 November 2015; pp. 212–223.

22. 10th International Workshop on Search-Based Software Testing. Available online: http://sbst2017.lafhis.dc.
uba.ar (accessed on 21 August 2018).

23. Fraser, G.; Arcuri, A. EvoSuite: Automatic Test Suite Generation for Object-oriented Software. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, Szeged, Hungary, 5–9 September 2011; ACM: New York, NY, USA, 2011; pp. 416–419.
[CrossRef]

24. Sakti, A.; Pesant, G.; Guéhéneuc, Y.G. Instance generator and problem representation to improve object
oriented code coverage. IEEE Trans. Softw. Eng. 2015, 41, 294–313. [CrossRef]

25. Shamshiri, S.; Rojas, M.; Fraser, G.; Mcminn, P.; Arcuri, A. Do Automatically Generated Unit Tests
Find Real Faults? An Empirical Study of Effectiveness and Challenges. In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), Lincoln, NE, USA, 9–13
November 2015.

26. Java Platform, Standard Edition & Java Development Kit Version 9 API Specification. Available online: https:
//docs.oracle.com/javase/9/docs/api/index.html?overview-summary.html (accessed on 21 August 2018).

http://dx.doi.org/10.1186/s42400-018-0002-y
http://dx.doi.org/10.1145/96267.96279
https://github.com/OpenRCE/sulley
https://www.peach.tech/products/peach-fuzzer/peach-platform/
https://github.com/RootUp/BFuzz
http://dx.doi.org/10.1109/TSE.2017.2785841
http://dx.doi.org/10.1109/SP.2018.00046
http://javapathfinder.sourceforge.net
http://dx.doi.org/10.1002/spe.602
http://dx.doi.org/10.1145/1297846.1297902
http://dx.doi.org/10.1145/1065010.1065036
http://sbst2017.lafhis.dc.uba.ar
http://sbst2017.lafhis.dc.uba.ar
http://dx.doi.org/10.1145/2025113.2025179
http://dx.doi.org/10.1109/TSE.2014.2363479
https://docs.oracle.com/javase/9/docs/api/index.html?overview-summary.html
https://docs.oracle.com/javase/9/docs/api/index.html?overview-summary.html

Symmetry 2018, 10, 460 16 of 16

27. ASM. Available online: http://https://asm.ow2.io (accessed on 21 August 2018).
28. commons-imaging. Available online: https://commons.apache.org/proper/commons-imaging (accessed

on 21 August 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://https://asm.ow2.io
https://commons.apache.org/proper/commons-imaging
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Fuzzing
	Fuzzing Java Programs
	Automatic Unit Testing

	Approach
	Overview
	Dependency Information Extraction
	Method Sequence Building
	Knowledge Assisted Instance Generation
	Input-file Oriented Driver Class Assembling

	Implementation
	Evaluation
	Simple Example
	Evaluating Instance Generation
	Evaluating Driver Class Generation

	Discussion and Future Work
	Conclusions
	The Generated Sample Driver Class
	References

