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Abstract: The power Bonferroni mean (PBM) operator is a hybrid structure and can take the
advantage of a power average (PA) operator, which can reduce the impact of inappropriate data given
by the prejudiced decision makers (DMs) and Bonferroni mean (BM) operator, which can take into
account the correlation between two attributes. In recent years, many researchers have extended the
PBM operator to handle fuzzy information. The Dombi operations of T-conorm (TCN) and T-norm
(TN), proposed by Dombi, have the supremacy of outstanding flexibility with general parameters.
However, in the existing literature, PBM and the Dombi operations have not been combined for
the above advantages for interval-neutrosophic sets (INSs). In this article, we first define some
operational laws for interval neutrosophic numbers (INNs) based on Dombi TN and TCN and
discuss several desirable properties of these operational rules. Secondly, we extend the PBM operator
based on Dombi operations to develop an interval-neutrosophic Dombi PBM (INDPBM) operator, an
interval-neutrosophic weighted Dombi PBM (INWDPBM) operator, an interval-neutrosophic Dombi
power geometric Bonferroni mean (INDPGBM) operator and an interval-neutrosophic weighted
Dombi power geometric Bonferroni mean INWDPGBM) operator, and discuss several properties of
these aggregation operators. Then we develop a multi-attribute decision-making (MADM) method,
based on these proposed aggregation operators, to deal with interval neutrosophic (IN) information.
Lastly, an illustrative example is provided to show the usefulness and realism of the proposed MADM
method. The developed aggregation operators are very practical for solving MADM problem:s, as it
considers the interaction among two input arguments and removes the influence of awkward data
in the decision-making process at the same time. The other advantage of the proposed aggregation
operators is that they are flexible due to general parameter.

Keywords: interval neutrosophic sets; Bonferroni mean; power operator; multi-attribute decision
making (MADM)

1. Introduction

While dealing with any real world problems, a decision maker (DM) often feels discomfort when
expressing his\ her evaluation information by utilizing a single real number in multi-attribute decision
making (MADM) or multi-attribute group decision making (MAGDM) problems due to the intellectual
fuzziness of DMs. For this cause, Zadeh [1] developed fuzzy sets (FSs), which are assigned by a

Symmetry 2018, 10, 459; d0i:10.3390/sym10100459 www.mdpi.com/journal /symmetry


http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-5048-8145
https://orcid.org/0000-0002-3871-3845
https://orcid.org/0000-0002-5560-5926
https://orcid.org/0000-0002-1438-6413
http://dx.doi.org/10.3390/sym10100459
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/10/459?type=check_update&version=3

Symmetry 2018, 10, 459 2 of 32

truth-membership degree (TMD) in [0, 1] and are a better tool to present fuzzy information for handling
MADM or MAGDM problems. After the introduction of FSs, different fuzzy modelling approaches
were developed to deal with uncertainty in various fields [2-4]. However, in some situations, it
is difficult to express truth-membership degree with an exact number. In order to overcome this
defect and to express TMD in a more appropriate way, Turksen [5] developed interval valued FSs
(IVFESs), in which TMD is represented by interval numbers instead of exact numbers. Since only TMD
was considered in FSs or IVFSs and the falsity-membership degree (FMD) came automatically by
subtracting TMD from one, it is hard to explain some complicated fuzzy information, for example, for
the selection of Dean of a faculty, if the results received from five professors are in favor, two are against
and three are neither in favor nor against. Then, this type of information cannot be expressed by FSs. So,
in order to handle such types of information, Atanassov [6] developed intuitionistic fuzzy sets (IFSs),
which were assigned by TMD and FMD. Atanassov et al. [7] further enlarged IFSs and developed
the interval valued IFS (IVIFSs). However, the shortcoming of FSs, IVESs, IFSs and IVIFSs are that
they cannot deal with unreliable or indefinite information. To solve such problems, Smarandache [8,9]
developed neutrosophic sets (NSs). In neutrosophic set, every member of the domain set has TMD,
an indeterminacy-membership degree (IMD) and FMD, which capture values in 0™, 1*[. Due to the
containment of subsets of ]0~, 1*[ in NS, it is hard to utilize NS in real world and engineering problems.
To make NSs helpful in these cases, some authors developed subclasses of NSs, such as single valued
neutrosophic sets (SVNSs) [10], interval neutrosophic sets (INSs) [11,12], simplified neutrosophic sets
(SNSs) [13,14] and so forth. In recent years, INSs have gained much attention from the researchers
and a great number of achievement have been made, such as distance measures [15-17], entropies of
INS [18-20], correlation coefficient [21-23]. The theory of NSs has been extensively utilized to handle
MADM and MAGDM problems.

For the last many years, information aggregation operators [24-27] have stimulated much
awareness of authors and have become very dominant research topic of MADM and MAGDM
problems. The conventional aggregation operators (AGOs) proposed by Xu, Xu and Yager [28,29] can
only aggregate a group of real numbers into a single real number. Now these conventional AGOs were
further extended by many authors, for example, Sun et al. [30] proposed the interval neutrosophic
number Choquet integral operator for MADM and Liu et al. [31] developed prioritized ordered
weighted AGOs for INSs and applied them to MADM. In addition, some decision-making methods
were also developed for MADM problems, for example, Mukhametzyanov et al. [32] developed a
statistically based model for sensitivity analysis in MADM problems. Petrovic et al. [33] developed
a model for the selection of aircrafts based on decision making trial and evaluation laboratory and
analytic hierarchy process (DEMATEL-AHP). Roy et al. [34] proposed a rough relational DEMATEL
model to analyze the key success factor of hospital quality. Sarkar et al. [35] developed an optimization
technique for national income determination model with stability analysis of differential equation in
discrete and continuous process under uncertain environment. These methods can only give a ranking
result, however, AGOs can not only give the ranking result, but also give the comprehensive value of
each alternative by aggregating its attribute values.

It is obvious that, different aggregation operators have distinct functions, a few of them can reduce
the impact of some awkward data produced by predispose DMs, such as power average (PA) operator
proposed by Yager [36]. The PA operator can aggregate the input data by designating the weight
vector based on the support degree among the input arguments, and can attain this function. Now the
PA operator was further extended by many researchers into different environments. Liu et al. [37]
proposed some generalized PA operator for INNs, and applied them to MADM. Consequently, some
aggregation operators can include the interrelationship between the aggregating parameters, such as
the Bonferroni mean (BM) operators developed by Bonferroni [38], the Heronian mean (HM) operator
introduced by Sykora [39], Muirhead Mean (MM) operator [40], Maclaurin symmetric mean [41]
operators. In addition, these aggregation operators have also been extended by many authors to deal
with fuzzy information [42-46].
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For aggregating INNs, some AGOs are developed by utilizing different T-norms (TNs) and
T-conorms (TCNs), such as algebraic, Einstein and Hamacher. Usually, the Archimedean TN and TCN
are the generalizations of various TNs and TCNs such as algebraic, Einstein, Hamacher, Frank, and
Dombi [47] TNs and TCNs. Dombi TN and TCN have the characteristics of general TN and TCN by a
general parameter, and this can make the aggregation process more flexible. Recently, several authors
defined some operational laws for IFSs [48], SVNSs [49], hesitant fuzzy sets (HFSs) [50,51] based on
Dombi TN and TCN. In practical decision making, we generally need to consider interrelationship
among attributes and eliminated the influence of awkward data. For this purpose, some researchers
combined BM and PA operators to propose some PBM operators and extended them to various
fields [52-55]. The PBM operators have two characteristics. Firstly, it can consider the interaction
among two input arguments by BM operator, and secondly, it can remove the effect of awkward data
by PA operator. The Dombi TN and TCN have a general parameter, which makes the decision-making
process more flexible. From the existing literatures, we know that PBM operators are combined with
algebraic operations to aggregate IFNs, or IVIFNSs, and there is no research on combining PBM operator
with Dombi operations to aggregate INNs.

In a word, by considering the following advantages. (1) Since INSs are the more précised class by
which one can handle the vague information in a more accurate way when compared with FSs and all
other extensions like IVFSs, IFSs, IVIFSs and so forth, they are more suitable to describe the attributes
of MADM problems, so in this study, we will select the INSs as information expression; (2) Dombi TN
and TCN are more flexible in the decision making process due to general parameter which is regarded
as decision makers’ risk attitude; (3) The PBM operators have the properties of considering interaction
between two input arguments and vanishes the effect of awkward data at the same time. Hence, the
purpose and motivation are that we try to combine these three concepts to take the above defined
advantages and proposed some new powerful tools to aggregate INNs. (1) we define some Dombi
operational laws for INNs; (2) we propose some new PBM aggregation operators based on these new
operational laws; (3) we develop a novel MADM based on these developed aggregation operators.

The following sections of this article are shown as follows. In Section 2, we review some basic
concepts of INSs, PA operators, BM operators, and GBM operators. In Section 3, we review basic
concept of Dombi TN and TCN. After that, we propose some Dombi operations for INNs, and discuss
some properties. In Section 4, we define INDPBM operator, INWDPBM operator, INDPGBM operator
and INWDPGBM operator and discuss their properties. In Section 5, we propose a MADM method
based on the proposed aggregation operators with INNSs. In Section 6, we use an illustrative example
to show the effectiveness of the proposed MADM method. The conclusion is discussed in Section 7.

2. Preliminaries

In this part, some basic definitions, properties about INSs, BM operators and PA operators
are discussed.

2.1. The INSs and Their Operational Laws

Definition 1. Let Q) be the domain set [8,9], with a non-specific member in Q) expressed by 0. A NS NS in Qis
expressed by

§={ (3t 0) 15 0) fx5(2) ) |7 € O}, (1)

where, tA:S@)’ i==(v) and f<(0) respectively express the TMD, IMD and FMD of the element v € U to
the set N'S. For each point & € U, we have, t==(9), i< (0) fz<(0) €107, 1% [and 0~ < t==(9) +i=<(?) +

_ NS
f=(@) <37

The NS was predominantly developed from philosophical perspective, and it is hard to be applied
to engineering problems due to the containment of subsets of |0~,17[. So, in order to use it more easily
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in real life or engineering problem, Wang et al. [8] presented a subclass of NS by changing |0~,17[ to
[0,1] and was named SVNS, and is defined as follow:

Definition 2. Let Q) be the domain set [10], with a non-specific member in Q) expressed by . A SVNS SV in Q
is expressed by

SV = {(it50),i5; (), f570) )7 € O}, @

where t=(0), iz (0) and fsv( 0) express the TMD, IMD and FMD of the element 5 € Q to the set SV
respectively. For each point T € Q), we have, tW( 7), W( )’fW( 7), € [0,1] and 0 < tW( ) + IW( ) +

fir®) <3

In order to define more complex information, Wang et al. [9] further developed INS which is
define as follows:

Definition 3. Let Q) be the domain set and G € Q [11]. Then an INS IN in Q is expressed by

IN = {(3,TR;y (3), D1 (3), FL1y (7) )[7 € 0}, ©)

where, TR}y, (7), ﬁm (%) and FL;y(3) respectively, express the TMD, IMD and EMD of the element
7 € Q to the set IN. For each point o € U, we have, TRIN( ), IDIN( ), PLIN( ) € [0,1] and
0< rnaxIDIN( ) +maxID1N( ) +maxFL1N( ) <3.

For computational simplicity, we can use in = <{TR ,TR }, [ID ,1D }, [PL ,FL }> to
express an element in in an INS, and the element in is called an interval neutrosophic number (INN).

Where {TR , TR } C [0,1], [ID ,1ID } C [0,1], [FL ,TL ] C[0,1]and0 < TR +ID +FL <3.

Definition 4. Let ing = < {TRl, TR, }, [IDl, ID, }, [FLl, FL, ] > and  inp =

—L —U] [=L =U] [=L =U
<{TR2,TR2 , {IDZ,IDZ , {FLZ,FLZ }> be any two INNs [12], and { > 0. Then the operational
laws of INNs can be defined as follows:

— = —L —L —L—L =—U =—2U =—=—=U=—=2U —L—L —=U=—=U —L—L —=U=—=U
(1) imy @ iny = <{TR1 +TR, — TR, TR,, TR, + TR, — TR, TR, } {IDl ID,, 1D, IDZ}, {FLlFLZ,FLl FL, } > 5 (4)

(2) iny @ing = <[ﬁfﬁ§ﬁfﬁﬂ {ﬁﬂﬁ; 7ﬁfﬁ§,ﬁf+ﬁffﬁfﬁf] [FLl + Ly — FL.FLy, L. +FLy — L, PL;I]> 5)
— —1\¢ /—u\* —r1\% —u\*¢ —L\?¢
(3) in; = (TRl),(TR1> , 1—<l—ID1),1—<1—ID1> , 1—(1—FL1) 11— 1—FL1
— —\¢ —u\* —1\¢ /—u\?¢ —\¢ [=—u\¢
(4) ging = ( |1 (17TR1) 11— (17TR1> , <1D1> ,(ID1> ) (FL1> ,(FLl) . (7)

— —L —U] [=L =U]| [=L =U
Definition 5. Let in = < {TR ,TR }, [ID ,ID }, [FL ,FL } > [42], be an INN. Then the score function

S (i) and accuracy function A (i) can be defined as follows:

®)

— TR +TR" D +1D FL 4L
‘*):%H— “; +1- er ;
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—. TR +TR" D +1D TFL +FL"
(ii)A(ﬁ): el )

In order to compare two INNs, the comparison rules were defined by Liu et al. [36], which can be
stated as follows.

Definition 6. Let im = < [TRl, TR, }, [IDl,IDl }, [PLl,FLl ] > and  inp =
—L —U

< {TRZ, TRZ {IDZ, ID, ] {PLZ, FL, } > be any two INNs [42]. Then we have:

(1) IfS (1711

)>s
(2) IfS <:n1) S (1712) and A (il) > A (iz) , then ﬁl is better than iz, and denoted by ﬁl > iz;
(3) Ifs(im) =5

(1712) then ﬁl is better than ﬁz, and denoted by il > ﬁz;

~.

n (1 2), and A (il) =A (ﬁz), then §1 is equal to iz, and denoted by il = iz.

Definition 7. Let ing = TRy, TRy }, [IDl,IDl }, [FLl,FLl ]> and  inp =

<{TR2,TR2 ], [IDZ,IDZ ], {FLZ,FL2}> be any two INNs [15]. Then the normalized Hamming

distance between ny and ny is described as follows.

= = 1/|l==L =—=L| |=U ==U| |=L ==L| |=U =—=U| |=L ==L| |=U =—Uu
D(ml,mz) = g(‘TR1 ~TR, | + ‘TRl —TR, | + ‘IDl —TD, |+ ’1D1 —1D, |+ ‘FLl —FL,| + ‘FLl —FL, > (10)
2.2. The PA Operator
The PA operator was first presented by Yager [36] and it is described as follows.
Definition 8. For positive real numbers py(h = 1,2,...,1) [36], the PA operator is described as
!
py (1+T(pn))on
PA(@l/@Z/"'/@l) = ’ (1)

=1
% (14 T(on)
h=1

!

where, T(pp) = X sup(pn, py), and sup(pp, py) is the degree to which oy, supports ©,. The support
y=1h#y

degree (SPD) satisfies the following properties.

1) sup(pn py) = sup(y, on);
(2)  sup(pn py) € [0,1];
(3)  sup(pn 0y) = sup(pc, pa), if |on — oy| < e — 9al-

2.3. The BM Operator

The BM operator was initially presented by Bonferroni [38], and it was explained as follows:

Definition 9. For non-negative real numbers py(h = 1,2,...,1), and x,y > 0 [38], the BM operator is
described as

1 1 x+y
Y. ) pM) . (12)

BMx,y(plrpZI'-'rpl) = (lz _l
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The BM operator ignores the importance degree of each input argument, which can be given by
decision makers according to their interest. To overcome this shortcoming of BM operator, He et al. [52]
defined the weighted Bonferroni mean (WBM) operators which can be explained as follows:

Definition 10. For positive real numbers py(h = 1,2,...,1) and x,y > 0[52], then the weighted BM operator
(WBM) is described as

i l X, K. -
KpK ‘
WBMx'y(pl,m,-~-f@l)—(leZ X 1_%,1@%) : (13)

where § = (R, %y, ..., %) is the importance degree of every p(h = 1,2,...,1).

The WBM operator has the following characteristics:

T
Theorem 1. (Reducibility) If the weight vector is K = (%, %, ey %) , then

h=1s=1,z#s
= BM*Y (91,02, -+, 9m)-

1 1 x+y
WBM*Y (01,02, .-., 1) =<112 )y pi@?) (14)

Theorem 2. (Idempotency) Let p, = o, (h =1,2,...,1). Then BM*Y (01, 02,...,91) = ©-
Theorem 3. (Permutation) Let (1, 02, ..., ©1) be any permutation of (Z1',Z5',...,Z;"). Then

WMB*Y (le, Zzl, e ,le) = WBM(pl, 2,4, pl). (15)

Theorem 4. (Monotonicity) Let p, > K,/ (h =1,2,...,1). Then

WBM™Y (01, 02,...,¢1) > WBM™Y (K1’,K2’, .. .,Kl/). (16)

Theorem 5. (Boundedness) The WBM™Y lies in the min and max operators, that is,

min(p1, 02, ..., 901) < WBM™ (91, 02,..., 1) < max(p1,02,.-.,91)- (17)

Similar to BM operator, the geometric BM operator also considers the correlation among the input
arguments. It can be explained as follows:

Definition 11. For positive real numbers oy (h = 1,2,...,1) and x,y > 0 [53], the geometric BM operator
(GBM) is described as

! 1

1
H H (xpn +ygps) -1 (18)

GBM™Y (o1, 92,..., 1)

The GBM operator ignores the importance degree of each input argument, which can be given
by decision makers according to their interest. In a similar way to WBM, the weighted geometric
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BM (WGBM) operator was also presented. The extension process is same as that of WBM, so it is
omitted here.

The definition of power Bonferroni mean (PBM) and power geometric Bonferroni mean (PGBM)
operators are given in Appendix A.

3. Some Operations of INSs Based on Dombi TN and TCN

Dombi TN and TCN

Dombi operations consist of the Dombi sum and Dombi product.

Definition 12. Let 3 and X be any two real numbers [47]. Then the Dombi TN and TCN among S and X are
explained as follows:

TD(%/ N) = 1; (19)
! N7
() ()}
N 1
Tp*(3,N) =1— T (20)
l Nt
e {(3) ()
where, | > 1,and (3, N) € [0,1] x [0,1].
According to the Dombi TN and TCN, we develop a few operational rules for INNs.
= =L =U| [=L =U] [=L =U =
Definition 13. Let in = <[TR ,TR }, {ID ,ID }, {FL ,FL ]>, ing =
=L =U]| [=L =U] [=L =U = =L =U] [=L =U] [=L =U
<|:TR1,TR1:|, ID1,1D1:|,|:FL1,FL1:|> and 1y = < TRz,TR2:|,|:ID2,ID2:|,|:FL2,FL2:|>

be any three INNs and ® > 0. Then, based on Dombi TN and TCN, the following operational laws are developed
for INNs.

- I
in@in, = |1- L - 1 -1, ! o
—L —L V) —u Y —u V) =LY —LV )
(1) | ol - ) | 5 R
1-TR: 1-TR: 1-TR: 1-TR: 1D ID1L.
_ 8 I (21)
1 1 1
1| 1 1
—u Y =u Y ) =LY =L\ v —u Y —u Y )
1-1D: 1-1D: 1-FL: 1-FL2 1-FL: 1-FL2
1+ —5 +| —g 1+ — +| —¢ 1+ — +| —3g
ID: D> FL: FL> FL. FL>
i:n] ®iz - < 1 ’ 1 1 7 1 - 1 7

T T

_I\Y N\ 7 —u\7 —u\NT\ 7 1 \7 L\ 7

TR{ TRy TR{ TR, 1-1D7 1-1Dy
(2) (22)
1_ 1 i 1_ 1 1 >
’ ’ ;
— v . ™ T L \7 L\ . v —u \7
v (L) ! v ((TH )+ T2 v () 2
kﬁy pﬁ%’ l—ﬁ{‘ 1—ﬁ% 1ﬁ¥ pﬁé’

==
<A
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Now, based on these new operational laws for INNs, we develop some aggregation operators to
aggregate IN information in the preceding sections.

4. The INPBM Operator Based on Dombi TN and Dombi TCN

In this part, based on the Dombi operational laws for INNs, we combine PA operator and BM
to introduce interval neutrosophic Dombi power Bonferroni mean (INDPBM), interval neutrosophic
weighted Dombi power Bonferroni mean, interval neutrosophic Dombi power geometric Bonferroni
mean (INDPGBM) and interval neutrosophic weighted Dombi power Bonferroni mean (INWDPGBM)
operators and discuss some related properties.

4.1. The INDPBM Operator and INWDPBM Operator

Definition 14. Let in; = < {TRZ- , TR; ], {IDI- ,ID; ], {FLZ- ,FL; ] >, (i=1,2,...,1), be a group of INNs,
and x,y > 0. If
_ _ Yy ¥ty
_ - I(1+T@n)) — I(1+T@n)) —
INDPBM™ (i, iny, ..., imy ) = LI [ Mini ®p I(Jri(ml))inj . (25)
=1 f:Bl(l +T(in)) El(l +T(in) )

i#]
then INDPBM™Y is said to be IN Dombi power Bonferroni mean (INDPBM) operator, where T(ﬁz) =

1 = = = = = =

<2 Sup(inz, ins). Sup (inz, ins> is the support degree for in, from ins, which satisfies the following
s=1,s#z
axioms: (1) Sup(ﬁz,ﬁs) € [0,1]; (2) Sup (ﬁz,ﬁs) = Sup (ES,EZ) (3) Sup (ﬁz,ﬁs) > Sup (ﬁu,ﬁb),
if D (iz,ﬁs) <D (ﬁa,ﬁb), in which D (ia,ﬁﬂ is the distance measure between INNs ﬁa and ih defined

in Definition 7.

In order to simplify Equation (25), we can give

A (1 + T(i‘z)) (26)

()
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I
and call A = (A, Ay, ..., AI)T is the power weight vector (PWV), such that A, > 0, @ A, = 1. It
z=1

turns Equation (25) into the following form

1
x+y
(i o = 1 ! =\ =\Y
INDPBM* (1711,1112,...,1711) = |z @ 1 (lA,'l i) ®p (lAjmj) : 27)
ij=
i#]
= — L —U] [=—L —U] [=—L —L )
Theorem 6. Let in; = TR;,TR; |, [IDZ- ,ID; |, [FLi,FLi } >, (i =1,2,...,1) be a group of INNs.

Then the value obtained by utilizing Equation (25) is expressed as

INDPBM ™ (ﬁlﬁz,....ﬁe)
P

1
4
2 e ) —
- VA T Al > il : LA R VA Y Lo A
x+y py= w V = ) x+y
" 1A, :’L IA/ :’L i
1-TR, 1-TR,
1 1]
7 I
2 _ ! 2 )
TSV P b T D 3 4 RISV P i o l T '
x+y = =Y =Y x+y =t =) =Y 28
= IN = | A | =2 I N — | A == (28)
1D; D, ID; D;
X
y

- I+ l%_l IZ r 7 1- 1+ ZZT_I pvas
4y | i a q x i A A
Hi H; H; H;

Proof. Proof of Theorem 6 is given in Appendix B. [

M-
=
M <

=

-

|

513l
o+
N

-

| R

EllS

—

M\

M\
“<

In order to determine the PWV A, we firstly need to determine the support degree among INNs.
In general, the similarity measure among INNs can replace the support degree among INNs. That is,

Sup (iiﬁm) —1- D(ﬁ,ﬁm) (i,m=1,2,...,1). (29)

Example 1. Let in; = ([0.3,0.7),[0.2,0.4],(0.3,0.5]),im, = ([0.4,0.6],[0.1,0.3],(0.2,0.4]) and in; =
([0.1,0.3],[04,0.6],[0.2,0.4]) be any three INNs, x = 1,y = 1,9 = 3. Then by Theorem 6
in Equation (28), we can aggregate these three INNs and generate the comprehensive value in =

—L —U] [=—L =—U] [=L =—U
<[TR ,TR ], {ID ,1ID ], {PL ,FL }> which is calculated as follows:
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Step1. Determine the supports Sup(ﬁi,i]-),i,j = 1,2,3 by using Equation (29), and then
we get Sup(§1,§2> = Sup<§2,§1> = 0.9,Sup<§1,ﬁ3> = Sup<§3,§1> =
0.933, Sup (ﬁz,ﬁ) = Sup(ﬁgﬁz) =1

— 3 — =
Step2.  Determine the PWV Because T(inz) = ) Sup (z’nz, ins) , and
s=1,5#z

T(EI): Sup(;\,;z)-%—Sup(;\,iz):l.g?ﬁﬂ'(;z):Sup(;z,;1)+Sl«p(;z,;3):l.9,T(;3): Sup(;3,§|)+Sup(;3,;z): 1.933,

T e
(T(im) +1) + (T(in2) +1) + (T(im3) +1) '
Ay = — <T(i2) i 1> — = 0.3346,
(7] 1) (7() 1) (7o) 1)
A3 = — (T(i3) ’ 1> — = 0.3385.
(T(im) +1) + (7(in2) +1) + (T(ims) +1)
Step 3.  Determine the comprehensive value in = <{TR ,Ti }, [ID ,E }, _FLL,FLU]> by using

W=

3?-3 2 1 1
VIl | 357 x U Yy, 1/ ——5 + — = 0.2590
ij=1 3Al<1”;;L) 3A]< ”&)
17&] — iR 1-TR;

Similarly, we can get n = ([0.2590,0.5525], [0.2221, 0.4373], [0.2334,0.4365)).

Theorem 7. (Idempotency) Let in; = <{TR1- , TR; }, [IDZ- ,1D; } [FLl- ,FL; } >, i =

1,2,...,1), be a group of INNs, if all ii(izl,Z,...,l) are equal, that is in;, = in =
{TR , TR ], {ID ,1D ], {PL ,FL }>,(i:1,2,...,l),. Then

INDPBM™Y (il,%, N .ﬁl) —n. (30)
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Proof. Proof of Theorem 7 is given in Appendix C. [
Theorem 8. (Commutativity) Assume that in', is any permutation of in, (u=1,2,...,1), then

INDPBM*Y (ﬁbﬁZ, . ,ﬁ,) — INDPBM*¥ (ﬁlﬁz, . ﬁ,). 31)

Proof. From Definition 14, we have

1
X+y
S — ! — —
INDPBM?‘ry(z‘rTfl,WZ,...,WE): % ). (ZA’iWi)XCz‘@D (lA’jo)y %
ij=1
17 ]
and

INDPBM"fy(ﬁlﬁz,...ﬁl)z % Zl; (ZAii:i)x@)D (lAﬁj)y

iji=1
i 7]
Because,
i (lA/iﬁi)x Xp (l/\l]ﬁ])y = ; (ZAZEZ)X ®p (l/\]ij)y,
ij=1 hj=1
i#] i#]

Hence, INDPBM*Y (ﬁlm:@ﬁl) — INDPBM*¥ (ﬁlﬁz,...ﬁl). 0

= =1 =—U] [=L =U] [=L =L )
Theorem 9. (Boundedness) Let in; = <[TRZ~ ,TR; }, [IDi ,ID; }, [FLi ,FL,} >, i = 1,2,...,])
—+ | [=L =U] ! [=L =U] | [=L =uUu =5
be a group of INNs, and in = <ma1x [TRi,TRi ],mz;la [IDi,IDi ], nin [PLi,FL,» }>,m =
1= 1= 1=

I [—L =—Uu | [=L =—U 1 [=L =Uu
<m1111 [TRi , TR; },malx [IDi,ID,» },malx [FLi ,FL; }>, Then
1= 1= 1=

—_—— —_ = = —+
in gINDPBM(inl,inz,...,inl> <in . (32)

Proof. Proof of Theorem 9 is given in Appendix D. [J

Now, we shall study a few special cases of the INDPBM*¥ with respect to x and y. (1) When
y — 0,7 > 0, then we can get

INDPBMX"’(R,EZ ...... in.)
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Yol

i X
[ A [17 ID; JY
B
(2) When x =1,y — 0, > 0, then we can get
INDPBM*® =n

-l

(33)

._.
T
/N

=
X1
X

1+(17-1x

-/
1/

(3) Whenx =y =1,7 > 0, then we can get

INDPBM *° (|=nlﬁzl=nl)
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S 69)

LI~
>
+
<

N n
=
=
—|T
S| -
<5l

L
—_
/—ﬁ
—|T
S|~
LBl
Sl
N

In the INDPBM operator, we can only take the correlation among the input arguments and cannot
consider the importance degree of input arguments. In what follows, the INWPDBM operator shall be
proposed to overcome the shortcoming of the INDPBM operator.

= =L =U] [=L =U] [=L =L
Definition 15. Let in; = {TRZ- , TR; ], {IDZ- ,ID; ], {FLZ- ,FL; ] >, (i=1,2,...,1), be a group of INNS,
then the INWDPBM operator is defined as

1 |
|2 —I ~ | =
S S, (T(inz +1))
z=1

|Wi(T(ﬁ)+1) = M; (36)

'Z:wz (T(R +1))

INWDPBM * (R,ﬁz,...,ﬁ. ) -

p— l f— p—
where, T(ini) = Z Sup (ini, inj),x,y >0,w = (wy,wy,... ,wl)T is the importance degree of the INN,

j=Li#j
1
such that 0 < w, <1(z=1,2,...,1)and ¥ w; = 1.
k=1
Theorem 10. Let in; = { |TR; , TR; ], {IDi ,ID; ], [FLZ- ,FL; ] >,(z =1,2,...,1) be a group of INNS.

Then the value obtained using Definition 15, is represented by

INDPBM*° (ﬁ,ﬁz ...... ﬁ.)
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+ y ) L i _ X : _
ey Iw(T(ln)+1) i} w (T(m)+1' (:] x+y i o (T(in) +1) {EJ tw, (TG +1) riJ
Zw (T(ln +1)) ™ Zw (T(m *1)'[ w, :IZ’W, lT(;, +1)'(1—ﬁ? :I;w,(T(;, +1)'l1—T:UR.
AN S FANERAL _ _ |
! e ry o |w|T ni) +1) (1 o) ] |w‘(r(ﬁ.)+1| f@] ! {ny ;‘, M[T(ﬁ)u) fﬁ] lw,(T(ﬁ)u) (l_ﬁ]’ (37)
Zw(T(m +1))l o) gw,[T(ﬁ, +1)'L D gw:(T(E,+1))L D gw,(T(ﬁ,A)'l D,
1- i 3 u + ) | [ 3 _ X . _ ! .
Xty i I (T(n)+1) (7 } tw, (T(in) +1) fﬂ] x+y i I (T(in) +1) (i] (TG +1) fﬂ]
ZW(T(m +1))l Z“’z!“;‘*l"l i Zw,[nﬁ,n))k L Zw,(T(in))L "

Proof. Proof of Theorem 10 is similar to Theorem 6. [

Similar to the INDPBM operator, the INWDPBM operator has the properties of boundedness,
idempotency and commutativity.

4.2. The INDPGBM Operator and INWDPGBM Operator
In this subpart, we develop INDPGBM and INWDPGBM operators.

Definition 16. Lef in; = ( |TR;, TR; }, {IDZ- ,ID; }, {FLi ,FL; } >, (i=1,2,...,1) be a group of INNs.
Then the INDPGBM operator is defined as

_ _ 2-1
I(T(in;)+1) (T (in;)+1)
T I
= = = 1 ! — L (Tlnz)+1) ¥ (T(inz)+1)
INDPGBM*Y (znl,mz,. . .,znl> =1 11 xin?=! + ym]?:l . (38)
Y ii=
i#j

Then, INDPGBM™Y is said to be an interval neutrosophic Dombi power geometric Bonferroni mean

— 1 — = — =
(INDPGBM) operator. Where T(inz> = Y Sup (inz, ins), Sup (inz, ins) is the support degree for n,
s=1,5#z

from ng, which satisfies the following axioms: (1) Sup (ﬁz,ﬁs) €[0,1);(2) Sup(ﬁz,ﬁs) = Sup (ﬁs,ﬁz);
(3) Sup (iz,ﬁs) > Sup (iu,ib), if D(ﬁz,§s> < D(ﬁa,ib) in which D(ng, ny) is the distance

measure between INNs in, and iny, defined in Definition 7.

In order to simplify Equation (38), we can describe

. (1+7(7:))

= / (39)

Zé(m(mz))

1
and call A = (A1, Ay, . ..,Al)T is the power weight vector (PWV), such that A; > 0, ¥ A, =1.

z=1

Then Equation (38) can be written as follows:
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= = = 1 ! —IA; =IA;
INDPGBM™Y (inl,inz,...,inl) i 1 (xm + yin; ]> . (40)

Theorem 11. Let in; = <{TRZ- ,TR; ], {IDI- ,ID; ], [PLZ- ,FL; ] >,(i =1,2,...,1) be a group of INNS.
Then the result obtained from Equation (38) is expressed as

INDPGBM *” (ﬁl,ﬁz ...... ﬁ)

B 1?1 ! X y 121 ! X y
=( ||1- 1+ ><+yX ;1 —+ — 1+[X+y>< ;1 o+ —
el 1)
TR TR TR R
s Lt e (S R
x+y i IA[ D J IA[ D ] X+Y i |A,[ D J IA[ D, J (41)
1-1D 11D, 1-1D/ 11D,
! X y 12-1 . X y
e R e e 1 I e A P e e
W IA[FL J IA[FLjJ W IA,[ FLJ |A,[ FL.J
1-FL 1-FL 1-FL 1-FLy
Theorem 12. (Idempotency) Let in; = < {TRi ,TR; }, [IDi ,ID; }, [FLi ,FL; } >, i =
1,2,. be a group of INNs, if all ini(i=1,2,...,1) are equal, that is ing = in =

2
—L —U —L —=U
{TR TR ] [ID ,1D ],{FL ,FL }>,(i—1,2,...,l),then

INDPGBM™Y (ilﬁz, . ﬁl) —n. (42)

Theorem 13. (Commutativity) Assume that ﬁu is any permutation of i, (u=1,2,...,1), then

INDPGBM*Y (zﬁ,ﬁz, o ,ﬁl) — INDPGBM™/ (Elﬁz, - ﬁl) . (43)
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Theorem 14. (Boundedness) Let in; = <[TR,»,TR,~ }, [IDi,IDi }, [FL,»,FLZ}>,(1 = 1,2,...,0)

=+ I [=L =Uu] | [=L=U] | [=L=U]\ =
be a group of INNs, and in = <ma11x [TRZ-,TRI-] min {ID ID; ],mi? {FL,-,FLI» }>,m =
1= =
I [=—L =—U 1 [=L =U 1 [=L =U
<m1n{TR TR; } malx[IDi,IDl- },malx[FLi,FLi ]>,then
1= 1=
= = = = =+
in < INDPGBM(ml,mz,. . .,znl) <in . (44)

Definition 17. Let in; = <[TRi ,TR; }, [IDi,IDi }, [FLi,FLi } >,(i =1,2,...,1) be a group of INN,
then the INWDPGBM operator is defined as

1
12—

INWDPGBMx/y(El,ﬁz,...ﬁ,) _ 1! ﬁ x;i“’“@)“) N yﬁél”“ () +1) . 45)
sty | 1 j
i,j=1
i

Theorem 15. Let in; = <[TRi ,TR; }, [IDi ,ID; ], [PLi ,FL,»]>,(1' =1,2,...,1) be a group of INNs.
Then the aggregated result from Equation (45) is expressed as

INWDPGBM " (E,ﬁz ...... ﬁl)

I’
| |- Py s X . R s .y
1 “[w %’ b 1 '”)*1' [1-TR TR I T('"J)*l 1 TRJ "y % |w(rﬁ)+1) !(1 =Y |wj(1(ﬁ,)+1) (ﬁ}
ufrir | zmm i ) /| el ® T
=) )) =
N { {
\ 1\ ( 0
( W y .
' | (46)
[ A X } y N=N : X
1{“5' E‘ IW(T in; +1j ( . 1 Iw, (T inj +1)( ID, YU ! x+y Ex |w(T(1n)+1) ( E Yoo ‘T i) +1 ’ ID '
ZWlT(m +1)L1 IDi ZW'T(IH +1)‘1 IDJ/ szlT(mz +1)L1 ﬁ T(in)+1 \1 ID
\ \ L \ =1
( i Y ; ]
Ny \a
Iz;lx ! X y /IZ;IX . X y
ey % Iw( T(n)+ 1)’ ) m (T(m)+1)‘ T } ' “LX*Y % IMT(FM)‘ = |wj(r(ﬂ)+1]( =
zw (in, +1)\1 L) ZW ) +1)L1 FL; | ‘Zw(i:n,m)b FLi ) ZWZ‘T(;I)H)LPET}
) Ve b =t )
\

5. MADM Approach Based on the Developed Aggregation Operator

In this section, based upon the developed INWDPBM and INWDPGBM operators, we will
propose a novel MADM method, which is defined as follows.
Assume that in a MADM problem, we need to evaluate u alternatives M = {1\711, Z\712, e, Mu}

with respect to v attributes C = {61,62, . ..,va}, and the importance degree of the attributes
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[%
is represented by @ = (wl,wz,...,a)v)T, satisfying the condition @, € [0,1], ¥ @, =1
h=1
The decision matrix for this decision problem is denoted by D = [zﬁ:gh} , where élvgh =
mxn

< {TRgh, TRgh} , [IDgh,IDgh} , [FLghFLgh} > is an INN for the alternative M, with respect to the

attribute éh, (¢=12,...,u;h=1,2,...,v). Then the main purpose is to rank the alternative and
select the best alternative.

In the following, we will use the proposed INWDPBM and INWDPGBM operators to solve this
MADM problem, and the detailed decision steps are shown as follows:

Step1. Standardize the attribute values. Normally, in real problems, the attributes are of two types,
(1) cost type, (2) benefit type. To get right result, it is necessary to change cost type of attribute
values to benefit type using the following formula:

dgp = < {FLgh, FLgh} , {1 —IDgp, 1 — IDgh} , [TRgh, TRgh] > (47)
Step2. Calculate the supports
Supp(igh,dfg,) —1- D(d;h,afgl), (§=1,2,...,u;h1=1,2,...,0), (48)

where, D <d~gh, ngl) is the distance measure defined in Equation (10).

Step3. Calculate T (d;,h)

~ u ~ ~
T(dgh): y Supp(dgh,dgl),(g:1,2,...,u;h,l:1,2,...,0). (49)
=1
I+ h

Step4. Aggregate all the attribute values zfgh (h =1,2,...,v) to the comprehensive value R¢ by
using INWDPBM or INWDPGBM operators shown as follows.

Rg = INWDPBM (dg1,dga, ., dgo ) (50)

or
Ry = INWDPGBM (dgl,dgz, . ..,dgv). (1)

Step5. Determine the score values, accuracy values of Rg ( g=12,..., u), using Definition 5.

Step 6. Rank all the alternatives according to their score and accuracy values, and select the best
alternative using Definition 6.

Step7. End.

This decision steps are also described in Figure 1.
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Start

Read the decision matrix

Figure 1. Flow chart for developed approach.

6. Illustrative Example

In this part, an example adapted from [42] is used to illustrate the application and effectiveness of
the developed method in MADM problem.

An investment company wants to invest a sum of money in the best option. The company
must invest a sum of money in the following four p0551b1e companies (alternatlves) (1) car company
M;; (2) food company My; (3) Computer company M3; (4) An arm company My, and the attributes
under consideration are (1) risk analysis Ci; (2) growth analysis Co; (3) environmental impact analysis
63. The importance degree of the attributes is @ = (0.35,0.4, 0.25)T. The four possible alternatives
]\7Ig (g =1,2,3,4) are evaluated with respect to the above attributes éh (h =1,2,3) by the form of INN,
and the IN decision matrix D is listed in Table 1. The purpose of this decision-making problem is to
rank the alternatives.

Table 1. The IN decision matrix D.

Alternatives/Attributes G G Cs
My (j0.4,0.5],[0.2,0.3],[0.3,0.4]) ([0.4,0.6],]0.1,0.3],[0.2,0.4])  ([0.7,0.9],]0.7,0.8], [0.4,0.5])
M, ([0.6,0.8],[0.1,0.2],[0.1,0.2]) ([0.6,0.7],[0.15,0.25],]0.2,0.3])  ([0.3,0.6],[0.2,0.3],[0.8,0.9])
M; ([0.3,0.6],[0.2,0.3],[0.3,0.4]) ([0.5,0.6],[0.2,0.3],[0.3,0.4]) ([0.4,0.5],[0.2,0.4],[0.7,0.9])
My ([0.7,0.8],0.01,0.1], [0.2,0.3]) ([0.6,0.7],]0.1,0.2],[0.3,0.4])  ([0.4,0.6],]0.5,0.6],[0.8,0.9])

6.1. The Decision-Making Steps
Step1. Since 51, 52 are of benefit type, and 63 is of cost type. So, 53 will be changed into benefit

type using Equation (47). So, the normalize decision matrix D is given in Table 2.
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Table 2. The Normalize IN decision matrix D.

Alternatives/Attributes G G Cs
M, ([0.4,0.5],[0.2,0.3],[0.3,0.4]) ([0.4,0.6],[0.1,0.3],[0.2,0.4]) ([0.4,0.5],[0.2,0.3],[0.7,0.9])
M, ([0.6,0.8],[0.1,0.2], [0.1,0.2]) ([0.6,0.7],[0.15,0.25],[0.2,0.3])  ([0.8,0.9],[0.6,0.7],(0.3,0.6])
M; ([0.3,0.6],[0.2,0.3],[0.3,0.4]) ([0.5,0.6],[0.2,0.3], [0.3,0.4]) ([0.7,0.9], [0.6,0.8],[0.4,0.5])
My ([0.7,0.8],[0.01,0.1],[0.2,0.3]) ([0.6,0.7],[0.1,0.2], [0.3,0.4]) ([0.8,0.9], [0.4,0.5],[0.4,0.6])

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Determine the supports Supp (@h,%l), (¢ =1,2,3,4h1 =1,2,3) by Equation (48) (for

simplicity we denote Supp (ngh, ng> with Sgh/ gl), we have

S111,12 = S112,11 =0.950; S112,13 = S113,12 =0.800; S111,13 = S113,11 =0.85; 5121,12 = S122,11 =0.933; S122,13 = S123.12 =0.717; S121.13 = S123.11 =0.683;
S131‘12 = S132‘11 =0.967; S132‘13 = S133,12 =0.733; S131‘13 = S133‘11 =0.700; S141,12 = S142,11 =0.902; S142.13 = S143,12 =0.783; S141,13 = S143.11 =0.752;

Determine T(@h) ;(§=1,2,3,4,h =1,2,3) by Equation (49), and we get

T}, = 1.800, T, = 1.750, T{; = 1.650, T3, = 1.617, T2, = 1.650, T2, = 1.400,
T3 = 1.667, T3, = 1.700, T3, = 1.433, T}, = 1.653, T}, = 1.685, Tj; = 1.535.

(@) Determine the comprehensive value of every alternative using the INWDPBM
operator, that is, Equation (50) (Assume that x = y = 1;y = 3), we have

Ry = ([0.3974,0.5195], [0.1823,0.3023], [0.3353,0.4796) );

Ra = ([0.6457,0.7954],[0.1700,0.2885], [0.2044, 0.3265]);
Rj3

([0.4846,0.6503], [0.2556,0.3711], [0.3376, 0.4394]);
Ry = ([0.6938,0.7953], [0.1062, 0.2154], [0.3069, 0.4278] ).

(b)  Determine the comprehensive value of every alternative using the INWDPGBM
operator, that is Equation (51), (Assume that x = y = 1,y = 3), we have

Ry = (]0.4026,0.5381], [0.1570,0.2977], [0.2998, 0.4520]);

R, = ([0.6654,0.8193], [0.1558, 0.2686], [0.1836,0.3035]);
R3 = ([0.5159,0.6732], [0.2366, 0.3473], [0.3265,0.4279] );

R4 = ([0.5159,0.8193], [0.0938,0.1952], [0.2862, 0.4037]).

(a) Determine the score values of Rg( ¢ =1,2,3,4) by Definition 5, we have
S(Ry) = 1.8087, S(Ry) = 2.2259, S(R3) = 1.8656, S(R4) = 2.2164;

(b) Determine the score values of R¢(g = 1,2,3,4) by Definition 5, we have

S(Ry) = 1.8671, S(Ry) = 2.2866,S(R3) = 1.9254, S(R4) = 2.1781;

(@) According to their score and accuracy values, by using Definition 6, the ranking order
is Mp > My > M3 > Mj. So the best alternative is My, while the worst alternative
is ]\7[1 .
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(b) Accordmg to their score and accuracy values, by using Definition 6, the ranking order
is Mz > My > Mz > M. So the best alternative is My, while the worst alternative
is Ml

So, by using INWDPBM or INWDPGBM operators, the best alternative is M, while the worst
alternative is M.

6.2. Effect of Parameters vy, x and y on Ranking Result of this Example

In order to show the effect of the parameters x and y on the ranking result of this example, we set
different parameter values for x and y, and y = 3 is fixed, to show the ranking results of this example.
The ranking results are given in Table 3.

As we know from Tables 3 and 4, the score values and ranking order are different for different
values of the parameters x and y, when we use INWDPBM operator and INWDPGBM operator.
We can see from Tables 3 and 4, when the parameter values x =1 or 0 and y = 0 or 1, the best choice is
My and the worst one is M;. In simple words, when the interrelationship among attributes are not
considered, the best choice is M, and the worst one is M;. On the other hand, when different values
for the parameters x and y are utilized, for INWPBM and INWDPGBM operators, the ranking result is
changed. That is, from Table 4, we can see that when the parameter values x = 1,y = 1, the ranking
results are changed as the one obtained for x = 1 or 0 and y = 0 or 1. In this case the best alternative is
M, while the worst alternative remains the same.

Table 3. Ranking orders of decision result using different values for x and y for INWDPBM.

Parameter Values INWDPBM Operator Ranking Orders
x=1Ly=0,v=3 SS((Ilz{g)) i 12%3;596, SS((RZ)) :22;1212722" My > My > Mz > M;.
cryosaoy PRI ng
coayees SRISHOSR s,
P o s S A
SRR L R R
ctoymages YRTIRSEIIE G,
coyomas YRImRSR-T g,

Table 4. Ranking orders of decision result using different values for x and y for INWDPGBM.

Parameter Values INWDPGBM Operator Ranking Orders

R R Y
SRR o A
SRR ok R R
csyomgs YRS G,
SIS R N
SRR B R R
coyomas USSR T,




Symmetry 2018, 10, 459 21 of 32

From Tables 3 and 4, we can observe that when the values of the parameter increase, the score
values obtained using INWDPBM decrease. While using the INWDPGBM operator, the score values
increase but the best choice is M, forx =y > 1.

From Table 5, we can see that different ranking orders are obtained for different values of v. When
v = 0.5 and v = 2, the best choice is My by the INWPBM operator; when we use the INWPGBM
operator, it is My. Similarly, for other values of v > 2, the best choice is M, while the worst is M;.

Table 5. Ranking orders of decision result using different values for 7.

Parameter Values INWDPBM Operator INWDPGBM Operator Ranking Orders
f=Ly=19=05 S(Ry) = 1.6662, S(Ry) =2.1025,  S(Ry) = 1.7870, S(Ry) =2.2347, My > My > M3 > M;.
’ ’ S(R3) = 1.7606, S(Ry) = 2.1972; S(R3) = 1.9103,5(Ry) = 2.1812; M, > My > Mz > My,
imLy=19=2 S(Ry) = 1.7783, S(Ry) =2.2015,  S(Ry) = 1.8491, S(Ry) =2.2786, My > My > Mz > M;.
’ ’ S(R3) = 1.8408,S(Ry4) = 2.2091; S(R3) = 1.9213,5(Ry) = 21799; M, > M, > M3 > M.
ALy =1 = S(Ry) = 1.8229, S(Ry) = 2.2363, S(Ry) = 1.8740, S(Ry) = 22856, My > My > Mz > M;.
’ ’ S(R3) = 1.8803, S(Ry) = 2.2219; S(R3) = 1.9275,5(Ry) = 2.1751; M, > My > Ms > M.
fmly—1y=7 S(Ry) = 1.8375, S(Ry) = 2.2455, S(R1) = 1.8747, S(Ry) = 22763, Mp > My > Mz > M.
’ ’ S(R3) = 1.9037,S(Ry) = 2.2315; S(R3) = 1.9331,5(Ry) = 2.1669; M, > M, > Mz > M.
Y= ly=19=10 S(Ry) = 1.8418, S(Ry) = 2.2477, S(R1) = 1.8701, S(Ry) = 22698, My > My > Mz > M.
’ ’ S(R3) = 1.9160, S(Ry) = 2.2365; S(R3) = 1.9373,S(Ry) = 2.1622; M, > My > Ms > M.
fmLy=1q=15 S(Ry) = 1.8447, S(Ry) =2.2488,  S(Ry) = 1.8642, S(Ry) =2.2637, M, > My > Mz > M;.
’ ’ S(R3) = 1.9270, S(Ry) = 2.2409; S(R3) = 1.9414,5(Ry) = 2.1582; M, > My > M3 > M.
Y=Ly =120 S(Ry) = 1.8460, S(Ry) =2.2492,  S(Ry) = 1.8608, S(R;) =2.2604, M, > My > Mz > M;.
’ ’ S(R3) = 1.9328,S(Ry) = 2.2432; S(R3) = 1.9435,5(Ry) = 2.1562; M, > M, > Mz > M.

6.3. Comparing with the Other Methods

To illustrate the advantages and effectiveness of the developed method in this article, we solve
the above example by four existing MADM methods, including IN weighted averaging operator, IN
weighted geometric operator [12], the similarity measure defined by Ye [15], Muirhead mean operators
developed by Liu et al. [42], IN power aggregation operator developed by Liu et al. [37].

From Table 6, we can see that the ranking orders are the same as the ones produced by the existing
aggregation operators when the parameter values x = 1,y = 0,7 = 3, but the ranking orders are
different when the interrelationship among attributes are considered. That is why the developed
method based on the proposed aggregation operators is more flexible due the parameter and practical
as it can consider the interrelationship among input arguments.

Table 6. Ranking order of the alternatives using different aggregation operators.

Aggregation Operator Parameter Score Values Ranking Order
ST N SIS T
INWGA operator [12] No (( 3)) 1177278561’, 5((11;:)) :22;)693;: My > My > Mz > M.
S * _ * —
e DUCRIUDERE -G g
ity R e S
INWMM operator [42] P( E elS, 1) Z((l;% :: 112(;57‘;, és ((15 42)) :: 22 22;72;" My > My > Mz > M.
INWDMM operator [42] P(l\iels, 1) S((Rl )) __ 11(;%662’, S((Il?{j)) ::2137290;’ My > My > Ms > M;.
PrreNII LB SR I s s s
PopeirGn AR s
Do v SR SAT S
NI e Sl s e s
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From the above comparative analysis, we can know the proposed method has the following
advantages, that is, it can consider the interrelationship among the input arguments and can relieve
the effect of the awkward data by PWYV at the same time, and it can permit more precise ranking order
than the existing methods. The proposed method can take the advantages of PA operator and BM
operator concurrently, these factors makes it a little complex in calculations.

The score values and ranking orders by these methods are shown in Table 6.

7. Conclusions

The PBM operator can take the advantage of PA operator, which can eliminate the impact of
awkward data given by the predisposed DMs, and BM operator, which can consider the correlation
between two attributes. The Dombi operations of TN and TCN proposed by Dombi have the edge
of good flexibility with general parameter. In this article, we combined PBM with Dombi operation
and proposed some aggregation operators to aggregate INNs. Firstly, we defined some operational
laws for INSs based on Dombi TN and TCN and discussed some properties of these operations.
Secondly, we extended PBM operator based on Dombi operations to introduce INDPBM operator,
INWDPBM operator, INDPGBM operator, INWDPGBM operator and discussed some properties of
these aggregation operators. The developed aggregation operators have the edge that they can take
the correlation among the attributes by BM operator, and can also remove the effect of awkward data
by PA operator at the same and due to general parameter, so they are more flexible in the aggregation
process. Further, we developed a novel MADM method based on developed aggregation operators
to deal with interval neutrosophic information. Finally, an illustrative example is used to show the
effectiveness and practicality of the proposed MADM method and comparison were made with the
existing methods. The proposed aggregation operators are very useful to solve MADM problems.

In future research, we shall define some distinct aggregation operators for SVHFSs, INHFSs,
double valued neutrosophic sets and so on based on Dombi operations and apply them to MAGDM
and MADM.
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Appendix A. Basic Concept of PBM Operator

Definition A1. For positive real numbers pn(h =1,2,...,1) and x,y > 0 the aggregation mapping [54]

x Y
1 ! I(T(p;) +1 I(T(p;) +1
PBM™(p1,00,--001) = | 7—7 L 71( (e +1) pi| x 7,( (e) +1) ©j (A1)
i=1j=1 E (T(po) +1) E (T(po) +1)

i#]

is said to be power Bonferroni mean (PBM) mean operator.
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Definition A2. For positive real numbers py(h =1,2,...,1) and x,y > 0 the aggregation mapping [54]

12-1
I(T(p;)+1) I(T(p;)+1)
. 1 ! él(T(pa)Jrl) é(mm)ﬂ)
PBM™ (01,02, ..., 1) = R 1T X~ +yp; (A2)
i=1j=1
i#]

is said to be power geometric Bonferroni mean (PGBM) mean operator.

l
In Definitions Aland A2, T(p;) = )} supp(g;, i), and supp(g;, ;) is the SPD for p; from p;
j=Lj#
satisfying the axioms as;

(1) sup(pi, p;) =1 D(pi, pj), sosup(pi, ;) € [0,1];
(2)  sup(pi, pj) = sup(pj, i);
@) sup(pi,p;) = sup(pe, pa). if |pi — py| < loc — pal.

where D(g;, ;) is the distance measure among g; and ;.

Appendix B. Proof of Theorem 6

Proof. Since

and
IAin =( |1- L - ! -l L - ! - | L - L :
1+] 1A, ﬁ_'L ’ 1+] 1A, -ﬁ_JU 1+| 1A, llﬁj 1+[ 1A, 1__?’ 1+] 1A, 1__F=1L'i 1+] 1A, 1__F=L'j #
1-TR; 1-TR; ID; ID; FL; FL;
Let
—L —) —L —u —L —u —L —u
TRi TRi 1-1D;i 1-1D;i 1-FLi 1-FL; TRj TRj
8 = =|_'b|: —0 G =——1 d; = — 9= = — &= =L’bj: —
1-TR; 1-TR; ID; ID; FLi FL; 1-TR; 1-TR;
—L —u — —
1-1D; 1-1D; 1-FL; 1-FL;
¢ =—dj=—=9,=—= 'h —y]

ID; ID; FL; FL;
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then, we have

24 of 32

= 1 1 1 1 1 1
[Ajini ={ |1~ 1 | R 1 ' T 1 ,
1+(IA)ra 1+(IA )b [ [2+(1A)7 ¢ 1+(1A)7d | [ 1+(1A)7 g 1+(IA)7 b,
= 1 1 1 1 1 1
1Aing ={ 11~ 1o T T T | T T
1+(IA ) a;  1+(1A )by | [ 1+(1A; )¢, 1+(1A; )7 d; | | 1+(1A;)7 g; 1+(1A;)7 by
and
(IAiﬁi)xz 1 : [ ) : 1 1= 1 : 1 1= 1 - 1 1= 1 - 1 1= L - 1 ;
1+x;/(IAi)?ai 1+x;/(IAi)? b || 1+x;/(IAi)? C 1+x;/(IAi)? d || 1+ x;/(IAi)? g 1+x;/(IAi)? h,
(loyn;) = T ! — ! — ! A ! — [ ! Tl ! — )
1+ y’/(la;j)r 3; 1+ yy/(l“’j)’ bij| 1+ yV/(ij)y ¢ 1+ y’/(la;j)rdji | 1+ y’/(la)j)r 9 1+ y’/(la)j)r h,

Moreover, we have

1

1 1

=\¥ in) = !
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1 1
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<ll/ l+[2[ L 1/[1— 1 ‘D ] }l/ 1+ 1
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e
Jelfetaa] H{;AWJ/H
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Now, put
= — —Uu = =
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7
2 _ | 2 _ |
- il > X + y , +| L > X + y
X+y b=t = ' = v X+y &= = v = v
" N — | 1A —= " IA| — IA; | —%;
1-TRi 1-TR; 1-TR; 1-TR;
L i
7 '4
2 _ | 2 _ |
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This is the required proof of the Theorem 6. [

Appendix C. Proof of Theorem 7

Proof. Since all in; = in = <[TR ,TR ], {ID ,ID ], [FL ,FL }>,(1 =1,2,...,1), so we have
Supp(ﬁp,ﬁa =1,forallp,q=1,2,...,1,s0 Ay = %, forallp =1,2,...,1. Then
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Appendix D. Proof of Theorem 9

Proof. Since
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then, there are
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=—Uu- =u —uU+
FL <FL (n)<FL ,
foralli=1,2,...,I. We have
TR (in) = 1+[':+'y'x Y YR L1l |2 1+[':+‘y'x Y —t y R
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Then there are the following scores
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TR +TR ID +ID FL +FL
+1- +1- =
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Therefore according to the Definition 6, we have
n < INDPBM@L@,...EZ).

In a similar way, the other part can be proved. That is in < INDPBM (il,iz, . ,ﬁm) <

in . Hence
+

zn < INDPBM(znl,mz, ..,: ) <in
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