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Abstract: Firstly, the relationships among strictly diagonally dominant (SDD) matrices,
doubly strictly diagonally dominant (DSDD) matrices, eventually SDD matrices and eventually
DSDD matrices are considered. Secondly, by excluding some proper subsets of an existing eigenvalue
inclusion set for matrices, which do not contain any eigenvalues of matrices, a tighter eigenvalue
inclusion set of matrices is derived. As its application, a sufficient condition of determining
non-singularity of matrices is obtained. Finally, the infinity norm estimation of the inverse of
eventually DSDD matrices is derived.
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1. Introduction

Let n be a positive integer, n ≥ 2, J = {1, 2, · · · , n}, N be the set of all positive integers, C be
the set of all complex numbers, Cn×n be the set of all n× n complex matrices and I be the identity
matrix. Let A = [aij] ∈ Cn×n and σ(A) be the set of all eigenvalues of A. For i, j ∈ J , j 6= i,

denote ri(A) := ∑
t∈J ,t 6=i

|ait| and rj
i(A) := ri(A) − |aij|. A matrix A is called a strictly diagonally

dominant (SDD) matrix if, for each i ∈ J ,

|aii| > ri(A).

In addition, A is doubly strictly diagonally dominant (DSDD) if, for any i, j ∈ J , i 6= j,

|aii||ajj| > ri(A)rj(A).

Locating eigenvalue and bounding infinity norm of the inverse for nonsingular matrices are two
major problems in applied linear algebra [1–7]. The first problem is to find a set in the complex plane
to include all eigenvalues of matrices, as if the obtained set is on the right-hand side of the complex
plane. Then, one can conclude the positive definiteness of the corresponding matrix. Moreover,
the “eigenvalue localization” is very important for the convergence speed of algorithms on which
web searching engines are based. For the case of PageRank, see [4] and references therein. Another
problem is to bound the infinity norm for the inverse of nonsingular matrices, as it can be used to
estimate the condition number for the linear systems of equations [5], as well as linear complementarity
problems [6]. In general, it is not easy to discuss these two problems for an arbitrary given nonsingular
matrix. One traditional way for solving the two problems is to locate all eigenvalues or to bound the
infinity norm for some subclasses of nonsingular matrices.

In 2015, Cvetković [7] et al. extended the class of SDD matrices to the class of eventually SDD
(SDD∃) matrices, and proved that SDD∃ matrices are nonsingular.
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Definition 1 ([7], Definition 1). Let A = sI − B, where s ∈ C. A is called an SDD∃ matrix if sk I − Bk is
SDD for a positive integer k.

To bound the infinity norm for the inverse of SDD∃ matrices, Cvetković et al. [7] gave the
following results.

Theorem 1 ([7], Theorem 2). Let A ∈ SDD∃. Then, for two certain numbers s and k,

||A−1||∞ ≤ Ψs
k(A) =

||sk−1 I + sk−2B + · · ·+ sBk−2 + Bk−1||∞
min
i∈J
{|sk − (Bk)ii| − ri(Bk)}

.

It is worth noting in Theorem 1 that, from Examples 3 and 4 in [7] and the structure of Ψs
k(A),

which includes two parameters s and k, one can conclude that, if there exists two groups of different
numbers s and k, both such that A is an SDD∃ matrix, then the different selection of s and k will affect
the infinity norm bounds for the inverse of A.

According to the non-singularity of SDD∃ matrices, Liu et al. [8] obtained the following
eigenvalue inclusion set of matrices, which corrects Theorem 1 of [7].

Theorem 2 ([8], Theorem 2). Let A = sI − B ∈ Cn×n. For any given positive integer k,

σ(A) ⊆ Γs
k(A) =

⋃
i∈J

{
z ∈ C : |(s− z)k − (Bk)ii| ≤ ri(Bk)

}
.

In 2016, Liu [9] introduced the class of eventually DSDD (DSDD∃) matrices, and located all
its eigenvalues.

Definition 2 ([9], Definition 3.2.1). Let A = sI − B, where s ∈ C. A is called an DSDD∃ matrix if sk I − Bk

is DSDD for a positive integer k.

Remark 1. From Definition 2, a meaningful discussion is concerned:

Is sK I − BK DSDD if sk I − Bk with k < K has this property?

Unfortunately, the answer is negative. Let

B =

 1 0 1
1 4 1
1 1 4

 , s = 0, and K = 2.

It is easy to validate that, if k = 1, then sk I − Bk = −B is DSDD, and that sK I − BK = −B2 is
not DSDD.

Theorem 3 ([9], Theorem 3.3.1). Let A = sI − B ∈ Cn×n. For any given positive integer k,

σ(A) ⊆ Ωs
k(A) =

⋃
i,j∈J ,i 6=j

Ωs
i,j(Bk),

and

Ωs
i,j(Bk) =

{
z ∈ C : |(s− z)k − (Bk)ii||(s− z)k − (Bk)jj| ≤ ri(Bk)rj(Bk)

}
.

Note here that, when k = 1, the sets Ωs
i,j(Bk) in Theorem 3 are ovals, while the sets Ωs

i,j(Bk) with
k ≥ 2 are lemniscates; see [10] (pp. 35–52), for details.
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As everyone knows that SDD matrices are DSDD matrices and DSDD matrices are
nonsingular, hence,

{SDD} ⊆ {DSDD} ⊆ {Nonsingular}. (1)

By Label (1), and Definitions 1 and 2, the following two relations hold clearly:

{SDD} ⊆ {SDD∃} ⊆ {DSDD∃} ⊆ {Nonsingular}

and

{SDD} ⊆ {DSDD} ⊆ {DSDD∃} ⊆ {Nonsingular}.

Besides SDD matrices, DSDD matrices, SDD∃ matrices and DSDD∃ matrices, there are many
other subclasses of nonsingular matrices; see [11] for details.

The outline of the rest of this paper is as follows. In Section 2, by some existing criteria for
non-singularity of matrices, a new eigenvalue localization set of matrices is derived. That is, a tighter
eigenvalue localization set is obtained by excluding some proper subsets from Ωs

i,j(Bk) in Theorem 3,
which is proved to not include any eigenvalues of matrices. In Section 3, the infinity norm for the
inverse of DSDD∃ matrices is given. Finally, some concluding remarks are given in Section 4 to
summarize this paper.

2. Eigenvalue Localization of Matrices

Firstly, a lemma in [12] is listed, which is very useful for deriving a new eigenvalue inclusion set.

Lemma 1 ([12, Corollary 1]). Let A = [aij] ∈ Cn×n. If for each i, j ∈ J , j 6= i, either

|aii||ajj| > ri(A)rj(A)

or
(|aii|+ rt

i (A))|att| < |ait|(|ati| − ri
t(A))

for some t 6= i and t ∈ J , then A is nonsingular.

Lemma 2. Let A = sI − B ∈ Cn×n. For any given positive integer k,

σ(A) ⊆ ∆s
k(A) =

⋃
i,j∈J ,j 6=i

[
Ωs

i,j(Bk)\∆s
i (Bk)

]
,

where

∆s
i (Bk) =

⋃
t∈J ,t 6=i

∆s
i,t(Bk),

and

∆s
i,t(Bk) =

{
z ∈ C :

(
|(s− z)k − (Bk)ii|+ rt

i (Bk)
)
|(s− z)k − (Bk)tt| < |(Bk)it|

(
|(Bk)ti| − ri

t(Bk)
)}

.

Proof. Let λ ∈ σ(A). Given k, suppose that λ /∈ ∆s
k(A), i.e., for any i, j ∈ J , i 6= j, λ /∈[

Ωs
i,j(Bk)\∆s

i (Bk)
]
, which is equivalent to that λ /∈ Ωs

ij(Bk) or λ ∈ ∆s
i (Bk) =

⋃
t∈J ,t 6=i

∆s
i,t(Bk), then

|(s− λ)k − (Bk)ii||(s− λ)k − (Bk)jj| > ri(Bk)rj(Bk),
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or for some t ∈ J , t 6= i,(
|(s− λ)k − (Bk)ii|+ rt

i (Bk)
)
|(s− λ)k − (Bk)tt| < |(Bk)it|(|(Bk)ti| − ri

t(Bk)).

Then, by Lemma 1, we have (s − λ)k I − Bk is nonsingular, i.e., (s − λ)k is not an eigenvalue
of Bk. On the other hand, because λ ∈ σ(A), there is a vector x, x 6= 0, such that Bx = (s − λ)x.
Furthermore, we have Bkx = (s− λ)kx, which implies that (s− λ)k is an eigenvalue of Bk. This is
a contradiction. Hence, λ ∈ ∆s

k(A). The conclusion holds.

By the arbitrariness of s ∈ C and k ∈ N in Lemma 2, the following eigenvalue localization theorem
is obtained easily.

Theorem 4. Let A = sI − B ∈ Cn×n. Then,

σ(A) ⊆ ∆(A) =
⋂

s∈C

⋂
k∈N

∆s
k(A).

For all i, j ∈ J , i 6= j, the relationship

Ωs
i,j(Bk)\∆s

i (Bk) = Ωs
i,j(Bk) ∩ ∆s

i (Bk) ⊆ Ωs
i,j(Bk)

holds, hence the following comparison theorem for Theorem 3, Lemma 2 and Theorem 4 is given easily.

Theorem 5. Let A = sI − B ∈ Cn×n. Given an arbitrary positive integer k, then

∆(A) ⊆ ∆s
k(A) ⊆ Ωs

k(A) ⊆ Γs
k(A).

Note here that, from the proof of Lemma 2, it can be seen that ∆s
i,t(Bk) does not contain any

eigenvalues of A, and that ∆s
k(A) is derived by excluding some proper subsets ∆s

i,t(Bk) from Ωs
i,j(Bk).

Hence, ∆s
i,t(Bk) is called an exclusion set of ∆s

k(A). By Theorem 5, one can exclude some regions that
do not include any eigenvalues of matrices to locate them more precisely.

Taking s = 0, k = 1 in Theorem 4, the following result, which is also Theorem 4 in [12], is
deduced immediately.

Corollary 1. Let A = [aij] ∈ Cn×n. Then,

σ(A) ⊆ ∆(A) =
⋃

i,j∈J ,j 6=i

[
Ωi,j(A)\∆i(A)

]
,

where

∆i(A) =
⋃

t∈J ,t 6=i

∆i,t(A),

and

Ωi,j(A) =
{

z ∈ C : |z− aii||z− ajj| ≤ ri(A)rj(A)
}

,

∆i,t(A) =
{

z ∈ C :
(
|z− aii|+ rt

i (A)
)
|z− att| < |ait|(|ati| − ri

t(A))
}

.

Next, based on Lemma 2 and the fact that det(A) = 0 if and only if 0 ∈ σ(A) for a matrix A,
the following condition such that det(A) 6= 0 is given easily.
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Corollary 2. Let A = sI − B ∈ Cn×n. If there is a positive integer k such that for any i, j ∈ J , i 6= j, either

|sk − (Bk)ii||sk − (Bk)jj| > ri(Bk)rj(Bk),

or for some t 6= i and t ∈ J ,(
|sk − (Bk)ii|+ rt

i (Bk)
)
|sk − (Bk)tt| < |(Bk)it|

(
|(Bk)ti| − ri

t(Bk)
)

,

then A is nonsingular.

Note here that, if taking s = 0 and k = 1, then Corollary 2 is reduced to Lemma 1. That is to say,
Corollary 2 is a generalization of Lemma 1.

Finally, an example is given to validate Theorem 5, and show that the different selection of s and k
will affect the eigenvalue location and the determination of non-singularity of A = sI − B.

Example 1. Consider the matrix provided in [12]:

A =


14 0.01i 0 18− 2i
0 9 4 + i 0

0.01 + i 2 + i 11 0
10 + i 0 0.1 + i 10

 .

By computation, the spectrum of A is

σ(A) = {25.5919− 0.0647i, − 1.6930 + 0.0821i, 13.0618 + 0.9825i, 7.0393− 0.9999i}.

The eigenvalue inclusion set Γs
k(A), Ωs

k(A) and ∆s
k(A) with different s and k, and all eigenvalues

are drawn in Figure 1, where Γs
k(A), Ωs

k(A) and ∆s
k(A), respectively, are showed by black boundary,

yellow zone and its interior, and yellow zone. All eigenvalues are plotted by ‘+’.
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Figure 1. Comparisons of Γs
k(A), Ωs

k(A) and ∆s
k(A) with different s and k.

From Figure 1, it can be seen that:
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(1) Whether s = 10, k = 1, 2, 3 or s = 7, k = 2, it can be seen that

σ(A) ⊆ ∆s
k(A) ⊆ Ωs

k(A) ⊂ Γs
k(A)

obtained by Theorem 1 for the same k and s.
(2) When s = 10, if taking k = 1, k = 2 and k = 3, then differences of the three eigenvalue inclusion

sets ∆10
1 (A), ∆10

2 (A), ∆10
3 (A) are clear. This implies that, if s is the same, but k is different,

then these eigenvalue inclusion sets ∆s
k(A) are different in general.

(3) When k = 2, if taking s = 7 and s = 10, then the two eigenvalue inclusion sets ∆2
2(A) and ∆10

2 (A)

are also different, which implies that, if k is the same, but s is different, then these eigenvalue
inclusion sets ∆s

k(A) are also different in general.
(4) When s = 7 and k = 2, we can see that 0 ∈ ∆7

2(A). When s = 10 and k = 1, 2, 3, we can see that
0 /∈ ∆10

1 (A), 0 /∈ ∆10
2 (A) and 0 /∈ ∆10

3 (A). That is to say, we cannot determine the non-singularity
of A when s = 7 and k = 2, but we can do it when s = 10 and k = 1, 2, 3, respectively. When k
is the same one, the upper bounds Θ5

k(A) and Ψ5
k(A), respectively, are less than or equal to the

upper bounds Θ4
k(A) and Θ10

k (A), and Ψ4
k(A) and Ψ10

k (A). In addition, if taking s = 5 and k = 8,
the upper bound Θ5

8(A) = Ψ5
8(A) = 0.4657, which reaches the true value of ||A−1||∞.

Then, an interesting problem is considered naturally: how to choose s and k to minimize the
eigenvalue inclusion set ∆s

k(A) and determine the non-singularity of A = sI − B? Hence, it is essential
to study this question in the future.

3. Infinity Norm Bounds for the Inverse of DSDD∃ Matrices

Firstly, a lemma is listed, which is used to obtain the infinity norm bounds for the inverse of
DSDD∃ matrices.

Lemma 3 ([13]). If A ∈ DSDD, then

||A−1||∞ ≤ max
i,j∈J ,i 6=j

|aii|+ rj(A)

|aii||ajj| − ri(A)rj(A)
.

Theorem 6. Let A ∈ DSDD∃. Then, for two certain numbers s and k,

||A−1||∞ ≤ Θs
k(A) = max

i,j∈J ,i 6=j

(
|sk − (Bk)ii|+ rj(Bk)

)
||sk−1 I + sk−2B + · · ·+ sBk−2 + Bk−1||∞

|sk − (Bk)ii||sk − (Bk)jj| − ri(Bk)rj(Bk)
. (2)

Proof. Since A ∈ DSDD∃, there exists k ∈ N such that sk I − Bk ∈ DSDD. Obviously, A and sk I − Bk

are both nonsingular. By

sk I − Bk = (sI − B)(sk−1 I + sk−2B + · · ·+ sBk−2 + Bk−1),

we have
(sI − B)−1 = (sk I − Bk)−1(sk−1 I + sk−2B + · · ·+ sBk−2 + Bk−1).

Then,
||A−1||∞ ≤ ||(sk I − Bk)−1||∞||sk−1 I + sk−2B + · · ·+ sBk−2 + Bk−1||∞.

Since sk I − Bk ∈ DSDD, by Lemma 3, we have

||(sk I − Bk)−1||∞ ≤ max
i,j∈J ,i 6=j

|sk − (Bk)ii|+ rj(Bk)

|sk − (Bk)ii||sk − (Bk)jj| − ri(Bk)rj(Bk)
.

This implies that Label (2) holds. The proof is completed.
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Lemma 4. If A is SDD, then

max
i,j∈J ,i 6=j

|aii|+ rj(A)

|aii||ajj| − ri(A)rj(A)
≤ 1

min
i∈J
{|aii| − ri(A)} . (3)

Proof. Since A is SDD, i.e., |aii| > ri(A), i ∈ J , hence |aii||ajj| > ri(A)rj(A), i, j ∈ J , i 6= j. In order
to obtain Label (3), it is sufficient to show that for all i, j ∈ J , i 6= j, the following inequality holds:

|aii|+ rj(A)

|aii||ajj| − ri(A)rj(A)
≤ 1

min
{
|aii| − ri(A), |ajj| − rj(A)

} .

Indeed, if
|ajj| − rj(A) ≤ |aii| − ri(A),

then multiplying this inequality with rj(A) gives

|ajj|rj(A)− (rj(A))2 ≤ |aii|rj(A)− ri(A)rj(A),

i.e.,
|aii||ajj| − |aii|rj(A) + |ajj|rj(A)− (rj(A))2 ≤ |aii||ajj| − ri(A)rj(A).

This can be rewritten as(
|aii|+ rj(A)

)(
|ajj| − rj(A)

)
≤ |aii||ajj| − ri(A)rj(A),

i.e.,

|aii|+ rj(A)

|aii||ajj| − ri(A)rj(A)
≤ 1
|ajj| − rj(A)

=
1

min
{
|aii| − ri(A), |ajj| − rj(A)

} .

On the contrary, if
|aii| − ri(A) ≤ |ajj| − rj(A),

multiplying this inequality with |aii|, we get

|aii|2 − ri(A)|aii| ≤ |aii||ajj| − |aii|rj(A),

i.e.,
|aii|2 − |aii|ri(A) + |aii|rj(A)− ri(A)rj(A) ≤ |aii||ajj| − ri(A)rj(A),

which can be rewritten as(
|aii|+ rj(A)

)(
|aii| − ri(A)

)
≤ |aii||ajj| − ri(A)rj(A),

i.e.,

|aii|+ rj(A)

|aii||ajj| − ri(A)rj(A)
≤ 1
|aii| − ri(A)

=
1

min
{
|aii| − ri(A), |ajj| − rj(A)

} .

The proof is completed.

Next, a comparison for the bounds in Theorems 1 and 6 is given.

Theorem 7. If A ∈ SDD∃, then, for two certain numbers s and k,

Θs
k(A) ≤ Ψs

k(A). (4)
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Proof. Since A ∈ SDD∃, i.e., for some s ∈ C and some k ∈ N, sk I − Bk is SDD, then by Lemma 4,
we have

max
i,j∈J ,i 6=j

(
|sk − (Bk)ii|+ rj(Bk)

)
|sk − (Bk)ii||sk − (Bk)jj| − ri(Bk)rj(Bk)

≤ 1
min

{
|sk − (Bk)ii| − ri(Bk), |sk − (Bk)jj| − rj(Bk)

} .

Furthermore, by ||sk−1 I + sk−2B + · · ·+ sBk−2 + Bk−1||∞ ≥ 0, Label (4) holds clearly.

Finally, an example is given to validate Theorem 7, and show that the different selection of s and k
will affect the infinity norm bounds for the inverse of A = sI − B.

Example 2. Consider the matrix provided in [7]:

A =


3.9 −1 −1 −1 1

1 5.9 1 1 −1
−1 −1 3.9 −1 1

1 1 1 5.9 −1
−1 −1 −1 −1 3.9

 .

By computations, ||A−1||∞ = 0.4657. Taking s = 4, 5 and 10 for k = 2, · · · , 10, respectively, we
can validate that sk I − Bk are all SDD matrices. Obviously, they are all DSDD matrices too. Thus, we
can use Theorems 1 and 6 to estimate ||A−1||∞. The numerical results are listed in Table 1.

Table 1. Comparisons of Ψs
k(A) and Θs

k(A) with different s and k.

Ψ4
k(A) Θ4

k(A) Ψ5
k(A) Θ5

k(A) Ψ10
k (A) Θ10

k (A)

k = 2 2.5392 2.5392 0.5319 0.5245 1.1173 0.9454
k = 3 0.6152 0.6152 0.4775 0.4774 0.7152 0.6472
k = 4 0.5118 0.5118 0.4682 0.4682 0.5939 0.5608
k = 5 0.4764 0.4764 0.4663 0.4663 0.5388 0.5224
k = 6 0.4690 0.4690 0.4658 0.4658 0.5094 0.5014
k = 7 0.4665 0.4665 0.4658 0.4658 0.4925 0.4887
k = 8 0.4659 0.4659 0.4657 0.4657 0.4823 0.4806
k = 9 0.4658 0.4658 0.4657 0.4657 0.4760 0.4754
k = 10 0.4657 0.4657 0.4657 0.4657 0.4721 0.4719

Numerical results in Table 1 show that:

(1) The upper bound Θs
k(A) obtained by Theorem 6 is less than or equal to the bound Ψs

k(A) obtained
by Theorem 1 for the same k and s.

(2) When s is the same, the upper bounds Θs
k(A) and Ψs

k(A) do not increase with the increase of k.
When k is the same one, the upper bounds Θ5

k(A) and Ψ5
k(A), respectively, are less than or equal

to the upper bounds Θ4
k(A) and Θ10

k (A), and Ψ4
k(A) and Ψ10

k (A). In addition, if taking s = 5 and
k = 8, the upper bound Θ5

8(A) = Ψ5
8(A) = 0.4657, which reaches the true value of ||A−1||∞.

Then, another interesting problem arises naturally: How to choose s and k to minimize the upper
bound Θs

k(A)? Hence, it is essential to study this question in the future.
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4. Conclusions

In this paper, by excluding some proper subsets of Ωs
k(A) that do not contain any eigenvalues of

A, we obtain a tighter eigenvalue localization set ∆s
k(A) than those in Theorems 2 and 3. Then, the

bound Θs
k(A) for the infinity norm of the inverse of DSDD∃ matrices is given. Numerical examples

show the effectiveness of the obtained results. However, there is a problem that has not been solved:
how can s and k be picked to minimize the eigenvalue localization set ∆s

k(A) and the infinity norm
bounds Θs

k(A)? This is a question worthy of further study.
Finally, the relationship between DSDD matrices and SDD∃ matrices is discussed. Consider again

the matrix A in Example 2. It is not difficult to validate that A is an SDD∃ matrix, but not a DSDD
matrix, which implies that an SDD∃ matrix is not necessarily a DSDD matrix, that is,

{SDD∃} * {DSDD}.

Then, another meaningful discussion is concerned: whether DSDD matrices are SDD∃ matrices
or not. That is, whether the relationship

{DSDD} ⊆ {SDD∃}

holds or not. This question is also interesting and worthy of further study.
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