
symmetryS S

Review

Supersymmetric Higher Spin Models in Three
Dimensional Spaces

Ioseph L. Buchbinder 1,2, Timofey V. Snegirev 1,3,* and Yurii M. Zinoviev 4,5

1 Department of Theoretical Physics, Tomsk State Pedagogical University, 634061 Tomsk, Russia;
joseph@tspu.edu.ru

2 National Research Tomsk State University, 634050 Tomsk, Russia
3 Department of Higher Mathematics and Mathematical Physics, National Research Tomsk Polytechnic

University, 634050 Tomsk, Russia
4 Institute for High Energy Physics of National Research Center “Kurchatov Institute”, 142281 Protvino,

Moscow Region, Russia; Yurii.Zinoviev@ihep.ru
5 Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow Region, Russia
* Correspondence: snegirev@tspu.edu.ru

Received: 2 December 2017; Accepted: 25 December 2017; Published: 29 December 2017

Abstract: We review the component Lagrangian construction of the supersymmetric higher spin
models in three-dimensional (3D) Minkowski and anti de Sitter (AdS) spaces. The approach is based
on the frame-like gauge-invariant formulation, where massive higher spin fields are realized through
a system of massless ones. We develop a supersymmetric generalization of this formulation to the
Lagrangian construction of the on-shell N = 1, 3D higher spin supermultiplets. In 3D Minkowski
space, we show that the massive supermultiplets can be constructed from one extended massless
supermultiplet by adding the mass terms to the Lagrangian and the corresponding corrections to the
supertransformations of the fermionic fields. In 3D AdS space, we construct massive supermultiplets
using a formulation of the massive fields in terms of the set of gauge-invariant objects (curvatures) in
the process of their consistent supersymmetric deformation.
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1. Introduction

As soon as the supersymmetry (see, e.g., the books [1–3]) has been discovered, it aroused an
immediate interest in finding the supersymmetric generalization of the known theories. In a short
time, there appeared the supersymmetric extensions of such famous theories as the standard model,
the Einstein’s gravity and string theory. Construction of supersymmetric models and the study of
their properties on classical and quantum levels became one of the most attractive trends in modern
theoretical physics.

In the last few decades, there was an essential progress in the higher spin field theory (see,
e.g., the reviews [4–6]). The purpose of this review is to describe a recent development of Lagrangian
construction for massless and massive supersymmetric higher spin models in three-dimensional
Minkowski and anti de Sitter spaces.

In the papers [7,8], the massless N = 1 supersymmetric higher spin field theory was formulated
in four-dimensional (4D) Minkowski space. The basic results of these papers were the global on-shell
N = 1 supertransformations leaving invariant the pair of (Fang)-Fronsdal Lagrangians for free
massless higher spin-(s, s + 1/2) fields [9,10]. The off-shell formulation of such a system was given
in [11,12], where the N = 1 superfield extension of (Fang)-Fronsdal Lagrangians in 4D Minkowski
space was obtained. Later on, this result was generalized for 4D AdS space [13]. In both cases,
the constructed superfield models, up to elimination of auxiliary fields, reduce to the sum of spin-s
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and spin-(s + 1/2) (Fang)-Fronsdal Lagrangians, thus describing N = 1, 4D massless higher spin
supermultiplets. Later, making use the same technique, the off-shell formulation of 4D,N = 2 massless
higher spin supermultiplets was found [14].

There exist much fewer results in the study of supersymmetric massive higher spin models.
The reason is that shifting from massless component formulation to the massive one, we have to
introduce the very complicated higher derivative corrections to the supertransformations. Moreover,
the higher the spin of the fields entering the supermultiplet, the higher the number of derivatives
one has to consider. The problem of the supersymmetric description of the 4D massive higher
spin supermultiplet was resolved explicitly only in 2007 for the case N = 1 on-shell Poincare
superalgebra [15]. The solution was based on the generalization of the gauge-invariant formulation of
the massive higher spin fields [16–18] to the case of massive supermultiplets. In such a formulation,
the massive supermultiplets are described as a system of the appropriate massless ones coupled by local
symmetries. On the other hand, this system of massless supermultiplets should be invariant under the
initial massless supertransformations corrected in a certain way. In [15], it was shown that to obtain the
massive deformation, it is enough to add the non-derivative corrections to the supertransformations
for the fermions only. Complicated higher derivative corrections to the supertransformations reappear
if one tries to fix all local symmetries breaking gauge invariance (attempts to develop the off-shell
superfield formulation of the massive 4D higher spin supermultiplets were considered for some
examples in [19–21]). Surprisingly, in 4D, the above results are still the main results in massive
supersymmetric higher spin theory till now.

Taking into account the difficulties in constructing the Lagrangian formulation for 4D massive
higher spin supermultiplets, it is natural to study the same problems in a simpler case, for example
to consider the massive higher spin supermultiplets in three dimensions. Indeed, in the last few
years, much attention in the supersymmetric higher spin theory has been focused on 3D spaces where
higher spin theory is much more simple (see, e.g., [4,22]). Here, it is important to emphasize that
in general, a supersymmetry in different dimensions is realized quite differently. The matter is that
the supersymmetry operates with spinor fields, which are formulated separately for each space-time
dimension. Therefore, the 3D supersymmetry is an independent type of symmetry and should be
considered by itself.

It is known that in 3D, the massless higher spin fields (k ≥ 3/2) do not propagate any physical
degrees of freedom, and one of the reasons to study such models can be the possibility to consider
their deformation to a massive theory. In turn, the massive higher spin fields in 3D do propagate two
physical degrees of freedom [23]. It is important to note that massive higher spin fields can be realized
in different ways. One of the possibilities is to generate the mass for 3D massless gauge fields by
adding a Chern–Simons-like term [24] generalizing 3D topologically massive gravity [25]. Note that
such a description is based on the higher derivative parity odd Lagrangians. The existence of such
Lagrangians is a very specific feature of the three-dimensional theories, so they do not admit any
straightforward generalization to higher dimensions. Recently for these models, the off-shell N = 1
and N = 2 superfield extensions have been constructed in 3D Minkowski space [26,27].

In our work, we use another possibility to describe massive higher spin fields similar to the one
used in higher dimensions [28]. There are two main ingredients in this formalism. The first one is the
gauge-invariant formulation for the massive bosonic and fermionic fields (for the non-gauge-invariant
description, see [29]). The main idea is to begin with the appropriately chosen set of massless fields
and then glue them together in such a way as to keep all (though modified) their gauge symmetries.
This guarantees the correct number of the physical degrees of freedom and the absence of Ghosts.
Moreover, such a formalism nicely works both in flat Minkowski space, as well as in anti de Sitter space.
Let us stress once again that it is the usage of the gauge-invariant description for massive higher spin
bosonic and fermionic fields that allowed one of us to construct massive higher spin supermultiplets
in D = 4 [15]. The second ingredient is the frame-like formalism, which is just the higher spin
generalization of the rather well-known frame-like formalism for gravity. It has a number of very
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convenient features. In particular, being completely antisymmetric on the world indices, it allows
one to use the language of differential forms admitting, e.g., a coordinate-free description for the
background Minkowski and anti de Sitter spaces (see below). For the three dimensions, this possibility
has been realized in the papers [30,31]. The goal of this review is to present the general methods of
supersymmetric Lagrangian construction for massive higher spin fields in 3D Minkowski and AdS
spaces. These methods are based on the gauge-invariant description of the massive fields [30,31] and
are realized in the component approach for the case of on-shell N = 1 supersymmetry. The main
content of this review is based on the papers [32,33].

The review is organized as follows. In the rest of the Introduction, we fix our notations and
conventions on 3D field variables. In Sections 2 and 3, we present the Lagrangian formulation of 3D
free bosonic and fermionic higher spin fields, respectively. In Section 4, we construct the Lagrangian
formulation for higher spin supermultiplets in 3D Minkowski space. Here, we show that it is possible
to construct one extended massless supermultiplet and then smoothly deform it into the massive
one. Another approach is used in Section 5 for the construction of the massive supermultiplets in 3D
AdS. It is based on the Lagrangian formulations in terms of the explicitly gauge-invariant objects and
their consistent supersymmetric deformation. Such an approach is more elegant, but it requires the
introduction of the so-called extra fields.

Notations and conventions: In this review, we use a language of differential forms where all the
objects are some p-forms Ω (p = 0, 1, 2, 3). It is defined as:

Ω = θµ1 ...θµp Ωµ1...µp , θµθν = −θνθµ

In particular, the derivative is defined as one-form d = θµ∂µ.
In 3D, it is more convenient to use a frame-like multispinor formalism where all the objects have

totally symmetric local spinor indices. To simplify the expressions, we will use the condensed notations
for the spinor indices such that, e.g.,

Ωα(2k) = Ω(α1α2 ...α2k)

Furthermore, we always assume that spinor indices denoted by the same letters and placed on
the same level are symmetrized, e.g.,

Ωα(2k)ζα = Ω(α1 ...α2k ζα2k+1)

In flat space, usual derivative d commutes d ∧ d = 0, while for AdS space, we use the following
normalization of the covariant derivative:

D ∧ Dζα = −λ2Eα
βζβ

Basis elements of 1, 2, 3-form spaces are eα(2), Eα(2), E, respectively, where the last two are defined
as the double and triple wedge product of the frame eα(2):

eαα ∧ eββ = εαβEαβ, Eαα ∧ eββ = εαβεαβE.

Furthermore, we write some useful relations for these basis elements:

Eα
γ ∧ eγβ = 3εαβE, eα

γ ∧ eγβ = 4Eαβ.

Further on, the sign of wedge product ∧ will be omitted.
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2. Free Higher Spin Bosonic Models

In this section, we review the Lagrangian description of the arbitrary spin bosonic fields in
three-dimensional Minkowski and its cosmological extension AdS spaces [30]. Both for massless
and massive fields, we present the gauge-invariant formulation using the frame-like field variables.
These fields generalize the tetrad and Lorentz connection in the frame formulation of gravity. Such an
approach allows us to construct gauge-invariant objects (we will call them curvatures) similar to the
gravitational curvature and torsion and use them to simplify many constructions.

2.1. Massless Fields

It is well known that all massless fields with spin k ≥ 1 are gauge ones; therefore, the
gauge-invariant formulation for them is a natural form of description. As the gravity, which can
be described in terms of the metric gµν field or in terms of the frame field eµ

a and the Lorentz
connection ωµ

a,b, the massless higher spins can be described in two ways: metric-like or frame-like. In
4D Minkowski or AdS spaces, the metric-like approach leads to the Fronsdal formulation of massless
integer spin-k in terms of totally symmetric tensors ϕµ1µ2...µk subject to the double tracelessness
condition ϕσ

σ
ρ

ρµ5...µk , which becomes nontrivial for k ≥ 4. In the frame-like approach, such a field is
described by the generalized frame and Lorentz connection fields:

fµ
a1...ak−1 , Ωµ

a1...ak−1,b

(Actually, for 4D massless fields with spin k > 2, one should consider extra gauge fields Ωµ
a1...ak−1,b1...bt

where 2 ≤ t ≤ (k− 1). They do not enter the free Lagrangian, but do play a crucial role in the Vasiliev
interacting theory. However, in 3D, these extra fields are absent in the massless case). Here, µ is
the curved world index and a, b the flat tangent indices. World and flat indices are related by the
background Minkowski or AdS frame eµ

a. The flat indices of these generalized fields correspond to the
irreducible so(3, 1) Lorentz tensors. The Fronsdal formulation is recovered by eliminating the auxiliary
field Ωµ

a1...ak−1,b and considering symmetric combination:

ϕµ1...µk = e(µ1
a1 eµ2

a2 ...eµk−1
ak−1 fµk)a1a2...ak−1

In 3D, it is convenient to use a dual higher spin connection:

Ωµ
a1...ak−1 = εbc

(a1 Ωµ
a2...ak−1)b,c

where εabc is a totally antisymmetric tensor. Therefore, in 3D, the frame-like and Lorentz-like higher
spin gauge fields have the same index structure, and their local indices form irreducible so(2, 1) Lorentz
tensors. Due to the isomorphism so(2, 1) ∼ sp(2), it is very convenient to use multispinor formalism
in which our gauge fields take the form:

fµ
α1α2...α2k−2 , Ωµ

α1α2...α2k−2

where α = 1, 2 are spinor indices. Below, we make use of the language of differential forms, considering
the above higher spin field variables as one-forms (we omit index µ) and condensed notations for the
spinor indices given in the Introduction.

Spin-(k + 1) (k ≥ 1):

In the frame-like formalism, it is described by the physical one-form f α(2k) and the auxiliary
one-form Ωα(2k). The Lagrangian in 3D AdS looks like:
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L = (−1)k+1[kΩα(2k−1)βeβ
γΩα(2k−1)γ + Ωα(2k)D f α(2k)

+
kλ2

4
fα(2k−1)βeβ

γ f α(2k−1)γ] (1)

It is invariant under gauge transformations:

δΩα(2k) = Dηα(2k) + λ2

4 eα
βξα(2k−1)β

δ f α(2k) = Dξα(2k) + eα
βηα(2k−1)β

(2)

One can construct a pair of the gauge-invariant curvatures:

Rα(2k) = DΩα(2k) + λ2

4 eα
β f α(2k−1)β

T α(2k) = D f α(2k) + eα
βΩα(2k−1)β

(3)

Using these curvatures, the Lagrangian can be rewritten as follows:

L =
(−1)k+1

2
[Ωα(2k)T α(2k) + fα(2k)Rα(2k)] (4)

In order to obtain the formulation in 3D Minkowski space, one should put λ→ 0. Thus, kinetic
terms for higher spin fields are just the first line in (1) where D → d. Let us also present kinetic terms
for the lower spin fields. The frame-like formulation for them is just the first-order formalism.

Spin-1 is described by the physical one-form A and the auxiliary zero-form Bα(2). The Lagrangian
has the form:

L = EBαβBαβ − BαβeαβdA

and it is invariant under the gauge transformations with zero-form parameter ξ:

δA = dξ

Spin-0 is described by the physical zero-form ϕ and the auxiliary zero-form πα(2). The expression
for the Lagrangian looks like:

L = −Eπαβπαβ + παβEαβdϕ

As will be seen below, all these constructions play a role in the gauge-invariant formulation of the
massive bosonic fields.

2.2. Massive Fields

In the gauge-invariant form, the massive spin s field can be described as a system of the massless
fields with spins s, (s− 1), ..., 0. In the frame-like approach, the corresponding set of fields consists of:

(Ωα(2k), f α(2k)) 1 ≤ k ≤ (s− 1), (Bα(2), A), (πα(2), ϕ)
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The Lagrangian for the free fields with mass m in 3D AdS has the form:

L = ∑s−1
k=1(−1)k+1[kΩα(2k−1)βeβ

γΩα(2k−1)γ + Ωα(2k)D f α(2k)]

+EBαβBαβ − BαβeαβDA− Eπαβπαβ + παβEαβDϕ

+∑s−2
k=1(−1)k+1ak[−

(k+2)
k Ωα(2)β(2k)eα(2) f β(2k) + Ωα(2k)eβ(2) f α(2k)β(2)]

+2a0Ωα(2)eα(2)A− a0 fαβEβ
γBαγ + 2sMπαβEαβ A

+∑s−1
k=1(−1)k+1bk fα(2k−1)βeβ

γ f α(2k−1)γ + b0 fα(2)Eα(2)ϕ + 3a0
2

2 Eϕ2

(5)

where:

ak
2 =

k(s + k + 1)(s− k− 1)
2(k + 1)(k + 2)(2k + 3)

[M2 − (k + 1)2λ2]

a0
2 =

(s + 1)(s− 1)
3

[M2 − λ2]

bk =
s2M2

4k(k + 1)2 , b0 =
sMa0

2
, M2 = m2 + (s− 1)2λ2

(6)

Let us briefly discuss the structure of the Lagrangian (5). The first two lines are kinetic terms.
It is just the sum of the massless Lagrangians for spins s, (s− 1), ..., 0 where ordinary derivatives are
replaced by the AdS covariant ones. The third and the fourth lines contain cross-terms for neighboring
spins. These cross-terms couple the individual massless fields into the whole system describing the
massive spin-s field. The last line in (5) contains the mass terms. The coefficients in (6) are determined
by the invariance of the Lagrangian under the following gauge transformations:

δΩα(2k) = Dηα(2k) +
(k + 2)ak

k
eβ(2)η

α(2k)β(2)

+
ak−1

k(2k− 1)
eα(2)ηα(2k−2) +

bk
k

eα
βξα(2k−1)β

δ f α(2k) = Dξα(2k) + eα
βηα(2k−1)β + akeβ(2)ξ

α(2k)β(2)

+
(k + 1)ak−1

k(k− 1)(2k− 1)
eα(2)ξα(2k−2)

δΩα(2) = Dηα(2) + 3a1eβ(2)η
α(2)β(2) + b1eα

γξαγ (7)

δ f α(2) = Dξα(2) + eα
γηαγ + a1eβ(2)ξ

α(2)β(2) + 2a0eα(2)ξ

δBα(2) = 2a0ηα(2), δA = Dξ +
a0

4
eα(2)ξ

α(2)

δπα(2) =
Msa0

2
ξα(2), δϕ = −2Msξ

Comparing with the massless case in the previous subsection, one can see that we still have all the
gauge symmetries that our massless fields possessed modified so as to be consistent with the structure
of the massive Lagrangian. This gauge-invariant formulation of the massive theory in 3D AdS space
possesses some remarkable features. First, we can consider a flat limit λ→ 0 and immediately obtain
the description of the massive fields in 3D Minkowski space. Second, there is a correct massless limit
m → 0 without the gap in the number of physical degrees of freedom. In such a limit, our system
decomposes into two systems describing the massless spin-s and the massive spin-(s− 1) fields. At last,
in dS space, when λ2 < 0, one can consider the so-called partially massless limits ak → 0. In such a
limit, the system decomposes into the two subsystems describing the partially massless spin-s field
and the massive spin-k field.

Now, let us return to the general case of the 3D AdS massive spin-s field. Having at our disposal
the explicit expressions for the gauge transformations (7), we can construct the gauge-invariant
curvatures. After the change of the normalization:

Bα(2) → 2a0Bα(2r) πα(2) → b0πα(2) (8)
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the first part of the curvatures looks like:

Rα(2k) = DΩα(2k) +
(k + 2)ak

k
eβ(2)Ω

α(2k)β(2)

+
ak−1

k(2k− 1)
eα(2)Ωα(2k−2) +

bk
k

eα
β f α(2k−1)β

T α(2k) = D f α(2k) + eα
βΩα(2k−1)β + akeβ(2) f α(2k)β(2)

+
(k + 1)ak−1

k(k− 1)(2k− 1)
eα(2) f α(2k−2)

Rα(2) = DΩα(2) + 3a1eβ(2)Ω
α(2)β(2) + b1eα

γ f αγ − a0
2Eα

βBαβ + b0Eα(2)ϕ (9)

T α(2) = D f α(2) + eα
γΩαγ + a1eβ(2) f α(2)β(2) + 2a0eα(2)A

A = DA +
a0

4
eα(2) f α(2) − 2a0Eγ(2)B

γ(2)

Φ = Dϕ + 2MsA− b0eα(2)π
α(2)

There is a peculiarity when we try to construct the curvatures for the Bα(2) and πα(2) fields.
Namely, in order to achieve gauge invariance for them, we should introduce the so-called extra fields
Bα(4), πα(4) with the following gauge transformations:

δBα(4) = ηα(4) δπα(4) = ξα(4)

Then, the corresponding gauge-invariant curvatures look like:

Bα(2) = DBα(2) −Ωα(2) + b1eα
βπαβ + 3a1eβ(2)B

α(2)β(2)

Πα(2) = Dπα(2) − f α(2) + eα
βBαβ − a0

sM
eα(2)ϕ + a1eβ(2)π

α(2)β(2) (10)

In turn, to construct gauge-invariant curvatures for the Bα(4), πα(4), we should introduce the extra
fields Bα(6), πα(6), and so on. The procedure ends when we construct curvatures for Bα(2s−2), πα(2s−2).
Thus, the full set of extra fields is Bα(2k), πα(2k), 2 ≤ k ≤ s− 1 with the following gauge transformations:

δBα(2k) = ηα(2k) δπα(2k) = ξα(2k)

and the gauge-invariant curvatures:

Bα(2k) = DBα(2k) −Ωα(2k) + bk
k eα

βπα(2k−1)β +
ak−1

k(2k−1) eα(2)Bα(2k−2)

+ (k+2)
k akeβ(2)Bα(2k)β(2)

Πα(2k) = Dπα(2k) − f α(2k) + eα
βBα(2k−1)β +

(k+1)ak−1
k(k−1)(2k−1) eα(2)πα(2k−2)

+akeβ(2)π
α(2k)β(2)

(11)

In three dimensions, it is possible to rewrite the Lagrangian in terms of the curvatures only [34].
In the case of arbitrary integer spin field, the corresponding Lagrangian (5) can be rewritten in the
following simple form:

L = −1
2

s−1

∑
k=1

(−1)k+1[Rα(2k)Π
α(2k) + Tα(2k)Bα(2k)] +

a0

2sM
eα(2)Bα(2)Φ (12)

Thus, there are two approaches to the construction of the supersymmetric (or interacting in
general case) higher spin models. According to one of them, one can work with the explicit field
variables and the Lagrangian in the form (5). It is straightforward, but a rather cumbersome way.



Symmetry 2018, 10, 9 8 of 29

We will use it in Section 4 for the more simple case of 3D Minkowski space. According to the other
way, one can work in terms of the gauge-invariant curvatures and Lagrangian in the form of (12). It is
a more elegant way, and we use it in Section 5 to study the supersymmetric higher spin models in
3D AdS.

3. Free Higher Spin Fermionic Models

In this section, we review the Lagrangian description of arbitrary spin fermionic fields in
three-dimensional Minkowski and its cosmological extension AdS spaces [31]. As in the bosonic
case, we present the frame-like gauge-invariant formulation. It is a natural form of description for
massless fields, and for massive fields, the gauge-invariant formulation is realized as a system of
massless fields coupled by Stueckelberg symmetries.

3.1. Massless Fields

As in the integer spin case, all massless fields with half-integer spin (k + 1/2) ≥ 3/2 are gauge
ones and can be described according to the metric-like or the frame-like approaches. In 4D Minkowski
or AdS spaces, the metric-like approach leads to the Fang–Fronsdal formulation of the massless
half-integer spin-(k + 1/2) fields in terms of totally symmetric spin-tensors ψµ1µ2...µk ,α (here, α, β = 1, 2
is the spinor index) subject to the γ-tracelessness condition γσ

α
βψρ

ρσµ3...µk ,β, which becomes nontrivial
for k ≥ 3. In the frame-like approach, such a field is described by the generalized frame-like field

Φµ
a1...ak−1,α

(As in the bosonic case in 4D for the massless fields with half-integer spins (k + 1/2) > 3/2, one should
consider extra gauge fields Φµ

a1...ak−1,b1...bt ,α where 2 ≤ t ≤ (k− 1). They play a crucial role in Vasiliev
interacting theory. In 3D, these extra fields vanish in the massless case). Here, µ is the curved world
index and ai are Lorentz flat tangent indices. World and flat indices are related by the background
Minkowski or AdS frame eµ

a. Their flat indices correspond to the irreducible so(3, 1) Lorentz
spin-tensors. The Fang–Fronsdal spin-tensors are recovered by considering symmetric combination:

ψµ1...µk ,α = e(µ1
a1 eµ2

a2 ...eµk−1
ak−1 Φµk)a1a2...ak−1,α

Again, due to the isomorphism so(2, 1) ∼ sp(2), it is more convenient to use the multispinor
formalism in which our gauge field takes the form:

Φµ
α1α2...α2k−1

Below, we make use of the language of differential forms, considering the higher spin field
variables as one-forms and using condensed notations for the spinor indices given in the Introduction.

Spin k + 3/2 (k ≥ 0):

In the frame-like formalism, it is described by physical one-form Φα(2k−1). The Lagrangian in 3D
AdS has the following form:

L = i
(−1)k+1

2
[Φα(2k+1)DΦα(2k+1) +

(2k + 1)λ
2

Φα(2k)βeβ
γΦα(2k)γ] (13)

It is invariant under the following gauge transformations:

δΦα(2k+1) = Dξα(2k+1) +
λ

2
eα

βξα(2k)β (14)
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The gauge-invariant curvature looks like:

F α(2k+1) = DΦα(2k+1) +
λ

2
eα

βΦα(2k)β (15)

Using this curvature, the Lagrangian can be rewritten as follows:

L = i
(−1)k+1

2
Φα(2k+1)F α(2k+1) (16)

The 3D Minkowski case corresponds to the flat limit λ→ 0. Let us also write out the kinetic term
for the spin-1/2 field.

Spin 1/2 is described by the physical zero-form φα. It is not a gauge field, and the Lagrangian
looks like:

L =
1
2

φαEα
βdφβ

3.2. Massive Fields

To describe the massive spin-(s + 1/2) field in the gauge-invariant form, we have to consider
a system of the massless fields with spins (s + 1/2), (s− 1/2), ..., 1/2. In the frame-like approach,
the corresponding set of fields consists of:

Φα(2k+1) 0 ≤ k ≤ (s− 1), φα

The Lagrangian for the free field with mass m1 in 3D AdS space looks like:

1
i L = ∑s−1

k=0(−1)k+1[ 1
2 Φα(2k+1)DΦα(2k+1)] + 1

2 φαEα
βDφβ

+∑s−1
k=1(−1)k+1ckΦα(2k−1)β(2)eβ(2)Φα(2k−1) + c0ΦαEα

βφβ

+∑s−1
k=0(−1)k+1 dk

2 Φα(2k)βeβ
γΦα(2k)γ − 3d0

2 Eφαφα

(17)

where:

ck
2 =

(s + k + 1)(s− k)
2(k + 1)(2k + 1)

[M1
2 − (2k + 1)2 λ2

4
]

c0
2 = 2s(s + 1)[M1

2 − λ2

4
] (18)

dk =
(2s + 1)
(2k + 3)

M1, M1
2 = m1

2 + (s− 1
2
)2λ2

The structure of Lagrangian (17) is the same as in the bosonic case. The first line is kinetic terms;
the second line is cross-terms; and the third line is mass terms. The coefficients in (18) are determined
by the requirement of the invariance of the Lagrangian under the following gauge transformations:

δΦα(2k+1) = Dξα(2k+1) +
dk

(2k + 1)
eα

βξα(2k)β

+
ck

k(2k + 1)
eα(2)ξα(2k−1) + ck+1eβ(2)ξ

α(2k+1)β(2) (19)

δφα = c0ξα

In such a formulation, we can take the correct massless limit m1 → 0 in AdS (λ2 > 0) and correct
partially massless limits ck → 0 in dS (λ2 < 0). Taking flat limit λ→ 0, we obtain the description of the
massive field in 3D Minkowski space. Note that the Lagrangian (17) describes the massive Majorana
left fermion carrying one physical degree of freedom.
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Let us return to the general massive fermion and reformulate the theory in terms of
the gauge-invariant curvatures. Having at our disposal the explicit expressions for the gauge
transformations (19), we can construct the gauge-invariant objects. After the change of normalization:

φα → c0φα (20)

they take the form:

F α(2k+1) = DΦα(2k+1) + dk
(2k+1) eα

βΦα(2k)β

+ ck
k(2k+1) eα(2)Φα(2k−1) + ck+1eβ(2)Φα(2k+1)β(2)

F α = DΦα + d0eα
βΦβ + c1eβ(2)Φαβ(2) − c0

2Eα
βφβ

Cα = Dφα −Φα + d0eα
βφβ + c1eβ(2)φ

αβ(2)

(21)

As in the case of integer spins, in order to achieve gauge invariance for Cα, we have introduced
extra zero-form φα(3) with the gauge transformations:

δφα(3) = ξα(3)

In turn, to construct gauge-invariant curvatures for the φα(3) field, we should introduce extra
zero-form φα(5), and so on. Iterations end at the case of φα(2s−1), so that the full set of extra fields we
should introduce is φα(2k+1), 1 ≤ k ≤ (s− 1) with the following gauge transformations:

δφα(2k+1) = ξα(2k+1)

The gauge-invariant curvatures for them have the form:

Cα(2k+1) = Dφα(2k+1) −Φα(2k+1) + dk
(2k+1) eα

βφα(2k)β

+ ck
k(2k+1) eα(2)φα(2k−1) + ck+1eβ(2)φ

α(2k+1)β(2)
(22)

Finally, the Lagrangian (17) can be rewritten in terms of these curvatures as follows:

L = − i
2

s−2

∑
k=0

(−1)k+1Fα(2k+1)Cα(2k+1) (23)

In the next sections, we study supersymmetric higher spin models. In 3D Minkowski space,
we use the gauge-invariant formulation in terms of the explicit fields and the Lagrangian in the
form (17). In 3D AdS space, we use the formulation in terms of the gauge-invariant curvatures and the
Lagrangian in the form (23).

4. Lagrangian Construction of Higher Spin Supermultiplets in 3D Minkowski Space

In this section, we show how to combine the bosonic and the fermionic higher spin fields into one
supermultiplet in 3D Minkowski space and restrict ourselves with N = 1 on-shell supersymmetry.
Our construction is based on the gauge-invariant formulation given above in terms of the field
variables. As we have shown in such a formulation, the massive field in the massless limit decomposes
into a system of massless fields. If we take such a decomposition for each field in the massive
supermultiplet, we obtain in general its decomposition into supersymmetric system of the massless
fields. Therefore, the main idea is to start with this supersymmetric system of the massless fields and
construct smooth massive deformation. In other words, we generalize the gauge-invariant formulation
to the supersymmetric case.
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4.1. 3D vs. 4D Supermultiplets

For the first time, the idea to construct the massive higher spin supermultiplets from the
supersymmetric system of massless fields was realized for 4D Minkowski space [15]. Moreover,
it was shown that this supersymmetric system of the massless fields is perfectly combined into the
system of the massless supermultiplets. Therefore, it is useful to consider how the familiar massive 4D
supermultiplets decomposes into the massless ones and then compare it with decomposition of the
more specific massive 3D supermultiplets. In both cases, it is used such that in the gauge invariant
formulation, massive bosonic and fermionic fields decompose into a set of the massless ones:

s m=0−−→ s⊕ (s− 1)⊕ ...⊕ 0 = ∑s
k=0 k

(s + 1
2 )

m=0−−→ (s + 1
2 )⊕ (s− 1

2 )⊕ ...⊕ 1
2 = ∑s

k=0(k +
1
2 )

(24)

Massive 4D,N = 1 supermultiplets with the half-integer spin-(s+ 1/2) as the highest one contain
four massive fields s + 1/2, s, s′ and s− 1/2. Recall that in 4D, massive bosonic spin-s has 2s + 1 d.o.f.,
and massive fermionic spin-(s + 1/2) has 2s + 2 d.o.f. All 4D massless fields have two d.o.f., except for
Spin 0, which has one. In the massless limit, the massive supermultiplet decomposes into massless
ones in the same way as (24). Simple counting of d.o.f. gives: s + 1

2
s s′

s− 1
2

 m=0−−→
s

∑
k=1

(
k + 1

2
k

)
⊕

s

∑
k=1

(
k′

k− 1
2

)
⊕
(

1
2

0, 0′

)
(25)

Therefore, to construct massive supermultiplets, we have to start with 2s + 1 massless ones
and find a massive deformation. However, in [15], it was shown that the crucial point in the whole
construction is the possibility to make a dual mixing of the massless supermultiplets by rotating fields
with spin k and spin k′:

(
k + 1

2
k

)
⊕
(

k′

k− 1
2

)
→

 k + 1
2

k k′

k− 1
2

 (26)

In such mixing, the massless bosonic fields with spin k and k′ must have equal spins, but opposite
parities. Thus, the structure of the decomposition of the 4D massive supermultiplets with higher
half-integer spin into the massless ones looks like: s + 1

2
s s′

s− 1
2

 m=0−−→
s

∑
k=1

 k + 1
2

k k′

k− 1
2

⊕( 1
2

0, 0′

)

Analogously, we obtain that the 4D massive supermultiplets with higher integer spin in the
massless limit has decomposition: s + 1

s + 1
2 s′ + 1

2
s

 m=0−−→
(

s + 1
s + 1

2

)
⊕

s

∑
k=1

 k′ + 1
2

k k
k− 1

2

⊕( 1
2
′

0, 0

)

Now, let us consider 3D massive supermultiplets decomposition in the massless limit and compare
it with 4D case. First of all, recall that all 3D massless bosonic and fermionic higher spin fields do
not propagate any degrees of freedom. Only massless fields with Spins 1, 1/2 and 0 propagate one
physical degree of freedom. In turn, 3D massive higher spin fields do propagate physical degrees of
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freedom, two and one d.o.f. for bosons and fermions, respectively. In the gauge-invariant formulation,
this is clearly seen from (24).

As in 4D, the minimal massless supermultiplets in 3D contain one boson and one fermion.
However, unlike 4D, massless higher spin fields in 3D do not have physical degrees of freedom,
which is why one can extend the massless supermultiplet adding such fields. In some sense, it plays an
analogous role as the mixing between two massless supermultiplets in the 4D case (26). As we will see
in 3D, one can construct extended the massless supermultiplet, which will correspond to the massless
decomposition of the massive supermultiplet.

Further in this section, we first of all construct minimal massless higher spin supermultiplets.
They will play the role of initial blocks for the construction of the extended massless supermultiplet.
Then, we fined a gauge-invariant massive deformation for them so that the resulting system describes
massive supermultiplets.

4.2. Massless Higher Spin Supermultiplets

Supermultiplet (k + 3
2 , k + 1), k ≥ 1:

It contains one fermionic field with spin (k + 3
2 ) and one bosonic field with spin (k + 1). In the

frame-like formulation, the corresponding field variables are the one one-form Φα(2k+1) for the fermion
and two one-forms Ωα(2k), f α(2k) for the boson. The Lagrangian describing this supermultiplet is just
the sum of their kinetic terms (see Sections 2.1 and 3.1 for details):

L0 = (−1)k+1[lΩα(2k−1)βeβ
γΩα(2k−1)γ + Ωα(2k)d f α(2k) +

i
2

Φα(2k+1)dΦα(2k+1)] (27)

It is not hard to show that the Lagrangian is invariant under the following global supertransformations:

δ f α(2k) = i(2k + 1)αkΦα(2k)βζβ, δΦα(2k+1) = αkΩα(2k)ζα (28)

Let us calculate commutator of the supertransformations on the bosonic field:

[δ1, δ2] f α(2l) = i(2k + 1)αk
2Ωα(2l−1)β(ζ1βζ2

α − ζ2βζ1
α) (29)

In the frame-like formulation, the right side of the commutator corresponds to the translations,
and it means that:

[Qα, Qβ] ∼ Pαβ

In what follows, we will not fix the normalization of supertransformations.

Supermultiplet (k + 1, k + 1
2 ), k ≥ 1:

It contains one fermionic field with spin (k + 1
2 ) and one bosonic field with spin (k + 1). In the

frame-like formulation, the corresponding field variables are one one-form Φα(2k−1) for fermion and
two one-forms Ωα(2k), f α(2k) for boson. The Lagrangian describing this supermultiplets has the form:

L0 = (−1)k+1[lΩα(2k−1)βeβ
γΩα(2k−1)γ + Ωα(2k)d f α(2k) − i

2
Φα(2k−1)dΦα(2k−1)] (30)

It is invariant under the following supertransformations:

δ f α(2k) = iβkΦα(2l−1)ζα, δΦα(2k−1) = 2kβkΩα(2k−1)βζβ (31)

Therefore, we have described the full set of the massless higher spin supermultiplets, but in the
massive case, we will also need the massless lower spin supermultiplets (1, 1

2 ) and ( 1
2 , 0).

Supermultiplet (1, 1
2 ):
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It contains the fermionic zero-form ψα, as well as the bosonic zero-form Bαβ and the one-form A.
The sum of their kinetic terms:

L0 = EBαβBαβ − BαβeαβdA +
i
2

φαEα
βdφα (32)

One can show that on the auxiliary field Bαβ equations, we have:

Eα
βdBβγ = Eγ

βdBβα (33)

Lagrangian (32) is invariant under the following supertransformations (Strictly speaking,
this Lagrangian is invariant up to the terms proportional to the auxiliary field Bαβ equation only (33).
Thus, there are two possible approaches here. On the one hand, one can introduce non-trivial
corrections to the supertransformations for this auxiliary field. Another possibility, which we will
systematically follow here and further on, is to use equations for the auxiliary fields in calculating
all variations.):

δA = iβ0φαeαβζβ, δφα = 4β0Bαβζβ (34)

Supermultiplet ( 1
2 , 0):

It contains the fermionic zero-form φα and two bosonic zero-forms παβ and ϕ. The sum of their
kinetic terms looks like:

L0 =
i
2

φαEα
βdφα − Eπαβπαβ + Eαβπαβdϕ (35)

Using the fact that on the auxiliary field παβ equations, we have:

Eα
γdπβγ =

1
2

εαβEγδdπγδ (36)

we can show that the Lagrangian is invariant under the following supertransformations:

δϕ =
iδ̃0

2
φαζα, δφα = δ̃0παβζβ. (37)

4.3. Massive Higher Spin Supermultiplets

Supermultiplet (s + 1
2 , s):

This supermultiplet contains spin-s + 1
2 fermion with mass m1 and spin-s boson with mass m.

In the massless limit, it decomposes into the system of the massless fields with spins:

(s +
1
2
), s, (s− 1

2
), (s− 1), ...,

3
2

, 1,
1
2

, 0

Correspondingly, we begin with the appropriate sum of the kinetic terms for all fields:

L = ∑s−1
k=1(−1)k+1[kΩα(2k−1)βeβ

γΩα(2k−1)γ + Ωα(2k)d f α(2k)]

+EBαβBαβ − BαβeαβdA− Eπαβπαβ + παβEαβdϕ

+ i
2 ∑s−1

k=0(−1)k+1Φα(2k+1)dΦα(2k+1) + i
2 φαEα

βdφβ

(38)
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This Lagrangian possesses the following supersymmetry:

δ f α(2k) = iβkΦα(2k−1)ζα + iαkΦα(2k)βζβ

δ f α(2) = iβ1Φαζα + iα1Φα(2)βζβ

δA = iα0Φαζα + iβ0eαβφαζβ, δϕ = − iδ̃0

2
φγζγ (39)

δΦα(2k+1) =
αk

(2k + 1)
Ωα(2k)ζα + 2(k + 1)βk+1Ωα(2k+1)βζβ

δΦα = 2β1Ωαβζβ + α0eβ(2)B
β(2)ζα

δφα = 4β0Bαβζβ + δ̃0παβζβ

These supertransformations are determined by the structure of the supertransformations for the
massless supermultiplets given above. Therefore, in some sense, the Lagrangian (38) describes the
“large” massless supermultiplet, which contains the full set of the massless fields.

To construct a massive deformation, we have to add the lower derivative terms. For the bosonic
terms, we take the ones corresponding to the gauge-invariant description of massive spin-s boson with
mass m (see Section 2.2):

Lb = ∑s−2
k=1(−1)k+1ak[−

(k+2)
k Ωα(2)β(2k)eα(2) f β(2k) + Ωα(2k)eβ(2) f α(2k)β(2)]

+2a0Ωα(2)eα(2)A− a0 fαβEβ
γBαγ + 2sMπαβEαβ A

+∑s−1
k=1(−1)k+1bk fα(2k−1)βeβ

γ f α(2k−1)γ + b0 fα(2)Eα(2)ϕ + 3a0
2

2 Eϕ2

(40)

Note that after such deformation, Equations (33) and (36) are also deformed. Now, they have
the form:

Eα
γdBβγ = Eβ

γdBαγ − a0

4
εαβeγδd fγδ

Eα
γdπβγ =

1
2

εαβEγδdπγδ +
sM
2

eαβdA

For the fermionic terms, we take the ones corresponding to the gauge invariant description of the
massive spin-s + 1/2 fermion with mass m1 (see Section 3.2):

1
i L f = ∑s−1

k=1(−1)k+1ckΦα(2k−1)β(2)eβ(2)Φα(2k−1) + c0ΦαEα
βφβ

+∑s−1
k=0(−1)k+1 dk

2 Φα(2k)βeβ
γΦα(2k)γ − 3d0

2 Eφαφα
(41)

Calculating the variations, we use auxiliary field equations:

eα
γΩα(2k−1)γ = −d f α(2k) − ak−1(k + 1)

k(k− 1)(2k− 1)
eα(2) f α(2k−2) − akeβ(2) f α(2k)β(2)

EBα(2) =
1
2

eα(2)dA− a0

4
Eα

γ f αγ, 2Eπα(2) = Eα(2)dϕ + 2sMEα(2)A

In this case, to find a massive deformation for the supertransformations, we have to add
corrections for the fermionic fields only. From the variations with one derivative, we found that
we must introduce the following set of the corrections to the supertransformations:

δΦα(2k+1) = γk f α(2k)ζα + δk f α(2k+1)βζβ

δΦα = δ0 f αβζβ + γ0 Aζα + γ̃0 ϕeα
βζβ (42)

δφα = ρ0 ϕζα
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Taking into account that all the coefficients in the Lagrangian are fixed, it is straightforward to find
solution for the parameters of the supertransformations, which appears to be valid when m1 = m only:

αk
2 = k(s + k + 1)α̂2, βk

2 =
(k + 1)(s− k)

2k(2k + 1)
α̂2

γk
2 =

s2(s + k + 1)
4k(k + 1)2(2k + 1)2 m2α̂2 (43)

δk
2 =

s2(s− k− 1)
2(k + 1)(k + 2)(2k + 3)

m2α̂2

δ̃0 = 4β0 =
√

2sα̂, α0 =
1
2

√
(s + 1)α̂, α̂2 =

αs−1
2

2s(s− 1)

γ0 = −2γ̃0 = s
√
(s + 1)mα̂, ρ0 = − (s + 1)

√
sm√

2
α̂

Supermultiplet (s, s− 1
2 ):

We need the same set of fields as in the previous case, except the field Φα(2s−1). Therefore,
we take the same massless Lagrangian (38) with this field omitted and the same set of initial
supertransformations (39) where now αs−1 = 0. As far as the low derivative terms, the bosonic
terms again have the same form (40), while the fermionic terms correspond to the gauge-invariant
description of the massive spin-s− 1/2 fermion (it coincides with (41), where Φα(2s−1) is omitted).
Since the structure of the bosonic and the fermionic terms is the same as in the previous case, the
correction to the supertransformations also look the same, that is:

δΦα(2k+1) = γk f α(2k)ζα + δk f α(2k+1)βζβ

δΦα = δ0 f αβζβ + γ0 Aζα + γ̃0 ϕeα
βζβ (44)

δφα = ρ0 ϕζα

Calculating all variations, we obtain the relation between masses m = m1 and the following
expressions for the parameters determining supertransformations:

αk
2 = k(s− k− 1)α̂2, βk

2 =
(k + 1)(s + k)

2k(2k + 1)
α̂2

γk
2 =

s2(s− k− 1)
4k(k + 1)2(2k + 1)2 m2α̂2 (45)

δk
2 =

s2(s + k + 1)
2(k + 1)(k + 2)(2k + 3)

m2α̂2

δ̃0 = 4β0 =
√

2sα̂, α0 =
1
2

√
(s− 1)α̂, α̂2 =

αs−2
2

(s− 2)

γ0 = −2γ̃0 = s
√
(s− 1)mα̂, ρ0 = − (s− 1)

√
s√

2
mα̂

Thus, we explicitly construct the Lagrangian description for the two massive supermultiplets
(s + 1/2, s) and (s, s − 1/2). Both of these massive supermultiplets have two bosonic and one
fermionic (left) degrees of freedom, i.e., they possess (1,0) supersymmetry. One can construct massive
supermultiplets possessing (1,1) supersymmetry with an equal number of bosonic and fermionic
degrees of freedom if one introduces one more massive fermion (right). In our previous work [32],
we have constructed the particular cases of such massive supermultiplets when supertransformations
take the form of diagonal superposition of two (1,1) supertransformations.
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5. Higher Spin Supermultiplets in 3D AdS Space

In this section, we study N = 1 supersymmetric construction for the higher spin models in
3D AdS space. As has been shown in [35], N -extended supersymmetry in 3D AdS space exists in
several incarnations. They are so-called (p, q) supersymmetries where p, q are integers and N = p + q.
The simplest (1, 0), which we restrict ourselves to, is naturally associated with 3D AdS supergroup:

OSp(1, 2)⊗ Sp(2)

so that we have supersymmetry in the left sector only. In practice, this means that the massive higher
spin supermultiplets, as well as the massless ones contain only one bosonic and one fermionic degrees
of freedom.

As in the previous section, our construction is based on the gauge-invariant description of the
higher spin fields, but in contrast to Minkowski space, we work in terms of the gauge-invariant
curvatures and the Lagrangians in the form (12) and (23). Below, we present a general scheme of our
higher spin supermultiplet construction and apply it to the massless and massive cases. At the end,
we demonstrate how 3D AdS superalgebra is realized in our construction. In particular, we show that
the higher spin supertransformations satisfy (1,0) superalgebra for which the commutation relation of
supercharges has the form:

{Qα, Qβ} ∼ Pαβ +
λ

2
Mαβ

where Pα(2) and Mα(2) are the generators of 3D AdS algebra.

5.1. Procedure of Curvature Deformation

Here, we present the general scheme of our higher spin supermultiplet constructions in 3D
based on the procedure of curvature deformation. As has been shown in Sections 2 and 3, the
Lagrangian description of the bosonic and fermionic higher spin fields can be reformulated in terms
of the gauge-invariant curvatures. To supersymmetrize the system of the bosonic and fermionic
fields, we covariantly deform the corresponding curvatures by a background non-dynamical gravitino
one-form Ψα, so such construction can be interpreted as a supersymmetric theory in terms of the
background fields of the supergravity. Due to some difference in the structure of the gauge-invariant
curvatures for the massless and massive case, we separately present the procedure of their deformation.

Massless fields:

Massless higher spin bosonic and fermionic fields are described by one-forms (see
Sections 2.1 and 3.1), which we denote as Ω and Φ, respectively. Let us also denote corresponding
gauge-invariant curvatures asR and F , which are two-forms. They have the form (schematically):

R = DΩ + (eΩ), F = DΦ + (eΦ)

Here, e ≡ eµ
αβ is a non-dynamical background 3D AdS frame. The Lagrangians then look as follows:

LΩ = ΩR, LΦ = ΦF (46)

We note again that in the massless theory, all curvatures are two-form, and so, in 3D AdS, there
is no possibility to rewrite the Lagrangian in terms of squares of them. It can be done in space-time
dimensions greater than or equal to four.

At the first step in the supersymmetric construction, we deform the curvatures by the terms
containing the background gravitino one-form Ψα:

∆R = (ΨΦ), ∆F = (ΨΩ)
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and require that the deformed curvatures transform covariantly, that is:

δR̂ = δ(R+ ∆R) ∼ F , δF̂ = δ(F + ∆F ) ∼ R

In turn, the covariant deformation of curvatures immediately defines the form of
the supertransformations:

δζ Ω =
δ(ΨΦ)

δΨα
ζα, δζ Φ =

δ(ΨΩ)

δΨα
ζα

where ζα is the parameter of local supertransformations:

δΨα = Dζα +
λ

2
eα

βζβ

Now, if we set Ψα = 0, this leaves us with the global supertransformations, i.e., with the
supertransformations, where the parameter satisfies the relation:

Dζα = −λ

2
eα

βζβ

Note that up to this point, the deformation procedures for the bosonic and fermionic curvatures
(and as a result, the parameters of these deformations) are completely independent. Their relation
appears when we consider a sum of the bosonic and fermionic Lagrangians:

L = ΩR+ ΦF (47)

and require that the sum be invariant under the global supertransformations obtained.

Massive fields:

In the gauge-invariant description of the massive bosonic and fermionic higher spin fields, the set
of field variables contain one-forms, as well as zero-forms (see Sections 2.2 and 3.2). We denote them
respectively as ΩA, BA for bosons and ΦA, φA for fermions. Let us also denote the corresponding
gauge-invariant curvatures as RA, BA and FA, CA (RA and FA are two-forms, BA and CA are
one-forms). Schematically, they have the following structure:

RA = DΩA + (eΩ)A + (eeB)A FA = DΦA + (eΦ)A + (eeφ)A (48)

BA = DBA + Ω + (eB)A CA = DφA + Φ + (eφ)A (49)

Note that in 3D terms (eeB)A and (eeφ)A in the expressions for the two-form, curvatures disappear
for higher spin components. This is typical for 3D higher spin models and is related to the fact that
the massless higher spin fields do not propagate any degrees of freedom. Unlike the massless case,
the Lagrangian for the massive higher spins can be presented as the sum of the quadratic expressions
in two-form and one-form curvatures (12) and (23):

LΩ = ∑RABA, LΦ = ∑FACA (50)

Let us turn to a realization of the supersymmetric construction. Deformation of the curvatures by
the terms containing the background gravitino one-form Ψα schematically can be written as:

∆RA = (ΨΦ)A + (eΨφ)A ∆FA = (ΨΩ)A + (eΨB)A (51)

∆BA = (Ψφ)A ∆CA = (ΨB)A (52)

Note here that the presence of (eΨφ)A and (eΨB)A terms in two-form curvatures is related to the
presence of (eeB)A and (eeφ)A ones. Hence, such terms in the deformations appear in the two-form
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curvatures for the low spin components only. The requirement of covariant deformation defines
uniquely supertransformations:

δζ ΩA = (
δ(ΨΦ)A

δΨα
+

δ(eΨφ)A

δΨα
)ζα δζ ΦA = (

δ(ΨΩ)A

δΨα
+

δ(eΨB)A

δΨα
)ζα (53)

δζ BA =
δ(Ψφ)A

Ψα
ζα δφA =

δ(ΨB)A

Ψα
ζα (54)

As in the massless case, we now set Ψα = 0, so that our supersymmetric Lagrangian for the given
supermultiplet is just the sum of the free bosonic and fermionic Lagrangians:

L = ∑[RABA +FACA] (55)

Remaining arbitrariness is fixed by the condition that the Lagrangian must be invariant under
the global supertransformations. Below, we demonstrate how such a general scheme can actually be
realized for the massless and massive supermultiplets in 3D AdS.

5.2. Massless Supermultiplets

Supermultiplet (k + 1, k + 3/2):

The integer spin-(k + 1) field is described by two one-forms Ωα(2k), f α(2k), and half-integer
spin-(k + 3/2) is described by one one-form Φα(2k+1). The initial curvatures for these system are
defined by (3) and (15). Let us begin with the deformation of the curvatures for the integer spin.
There is a unique possibility:

∆Rα(2k) = iσkΦα(2k)βΨβ

∆T α(2k) = iαkΦα(2k)βΨβ

where we have two arbitrary parameters σk and αk. To construct covariant deformation, we write out
the corresponding supertransformations:

δΩα(2k) = iσkΦα(2k)βζβ

δ f α(2k) = iαkΦα(2k)βζβ

(56)

Explicit calculations of the covariant transformations for the deformed curvatures give us, on the
one hand:

δR̂α(2k) = iσkDΦα(2k)βζβ + i
λ2

4
αkeα

γΦα(2k−1)γβζβ − i
λ

2
σkeγβΦα(2k)γζβ

δT̂ α(2k) = iαkDΦα(2k)βζβ + iσkeα
γΦα(2k−1)γβζβ − i

λ

2
αkeγβΦα(2k)γζβ

and on the other hand:

δR̂α(2k) = iσkF α(2k)βζβ

= iσk[DΦα(2k)β +
λ

2
(eα

γΦα(2k−1)βγ + eβ
γΦα(2k)γ)]ζβ

δT̂ α(2k) = iαkF α(2k)βζβ

= iαk[DΦα(2k)β +
λ

2
(eα

γΦα(2k−1)βγ + eβ
γΦα(2k)γ)]ζβ
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Comparing these expressions, we obtain the relation on the parameters:

σk =
λ

2
αk

Now, let us turn to the curvature deformation for the half-integer spin fields. A unique possibility is:

∆F α(2k+1) = βkΩα(2k)Ψα + γk f α(2k)Ψα

where βk and γk comprise another pair of arbitrary parameters. The structure of the deformed
curvatures defines the form of the supertransformations:

δΦα(2k+1) = βkΩα(2k)ζα + γk f α(2k)ζα (57)

Explicit verification of the covariant transformation for the deformed curvatures gives, on the one hand:

δF̂ α(2k+1) = βkDΩα(2k)ζα + γkD f α(2k)ζα +
λ

2
eα

γ[βkΩα(2k−1)γζα + γk f α(2k−1)γζα]

and on the other hand:

δF̂ α(2k+1) = βkRα(2k)ζα + γkT α(2k)ζα

= βk[DΩα(2k) +
λ2

4
eα

β f α(2k−1)β]ζα + γk[D f α(2k) + eα
βΩα(2k−1)β]ζα

Comparing these expressions, we conclude that:

γk =
λ

2
βk

Therefore, we constructed the covariant supersymmetric deformation for the curvatures, but we
still have two free parameters αk and βk. To relate them, we construct the supersymmetric Lagrangian.
We choose the following form for it:

L =
(−1)k+1

2
[Ωα(2k)T α(2k) + fα(2k)Rα(2k) + iΦα(2k+1)F α(2k+1)] (58)

i.e., just the sum of the free Lagrangians for spin-(k + 1) and spin-(k + 3/2) fields.
Using supertransformations for fields and curvatures, we obtain for the Lagrangian variations:

δL =
(−1)k+1

2
[i(σk − (2k + 1)γk)Φ

α(2k)βζβTα(2k) + i(αk − (2k + 1)βk)Ωα(2k)F α(2k)βζβ

+i(αk − (2k + 1)βk)Φ
α(2k)βζβRα(2k) + i(σk − (2k + 1)γk) fα(2k)F α(2k)βζβ]

In order to achieve invariance, we must put:

αk = (2k + 1)βk

Thus, we showed in the explicit form how to use the curvature deformation procedure to construct
the supersymmetric Lagrangian formulation of the multiplet (k + 1, k + 3/2). The constructed model
contains one free parameter βk, which is related to the normalization of the superalgebra.

Supermultiplet (k + 1, k + 1/2):

In this supermultiplet, the integer spin is the same as in the previous case and described by a
pair of one-forms Ωα(2k), f α(2k), and half-integer spin-(k + 1/2) is described by one one-form Φα(2k−1).
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Supersymmetric construction for the given supermultiplet is analogous, and so, let us present the final
results only. The supersymmetric curvatures have the form:

R̂α(2k) = DΩα(2k) +
λ2

4
eα

β f α(2k−1)β + i
λ

2
βkΦα(2k−1)Ψα

T̂ α(2k) = D f α(2k) + eα
βΩα(2k−1)β + iβkΦα(2k−1)Ψα

F̂ α(2k−1) = DΦα(2k−1) +
λ

2
eα

βΦα(2k−2)β + 2kβk(Ω
α(2k−1)βΨβ +

λ

2
f α(2k−1)βΨβ)

They are covariant under the following supertransformations:

δΩα(2k) = i
λ

2
βkΦα(2k−1)ζα

δ f α(2k) = iβkΦα(2k−1)ζα

δΦα(2k−1) = 2kβk(Ω
α(2k−1)βζβ +

λ

2
f α(2k−1)βζβ)

The supersymmetric Lagrangian looks as follows:

L =
(−1)k+1

2
[Ωα(2k)T α(2k) + fα(2k)Rα(2k) − iΦα(2k−1)F α(2k−1)] (59)

where:

δRα(2k) = i
λ

2
βkF α(2k−1)ζα

δT α(2k) = iβkF α(2k−1)ζα

δF α(2k−1) = 2kβk(Rα(2k−1)βζβ +
λ

2
T α(2k−1)βζβ)

5.3. Massive Supermultiplets

Supermultiplet (s, s + 1
2 ):

For the realization of the given massive supermultiplets, let us first consider their structure at the
massless flat limit m, m1, λ → 0. In this case, the Lagrangian is described by the system of massless
fields with spins (s + 1

2 ), s, ..., 1
2 , 0 in three-dimensional flat space:

L = ∑s−1
k=1(−1)k+1[kΩα(2k−1)βeβ

γΩα(2k−1)γ + Ωα(2k)D f α(2k)]

+EBαβBαβ − BαβeαβDA− Eπαβπαβ + παβEαβDϕ

+ i
2 ∑s−1

k=0(−1)k+1Φα(2k+1)DΦα(2k+1) + 1
2 φαEα

βDφβ

(60)

It is the same extended massless supermultiplet, with which we start the construction of the
massive supermultiplets in Minkowski space. We have shown that this Lagrangian is supersymmetric.
If the equations of motion (33) and (36) are fulfilled, the Lagrangian is invariant under the
supertransformations (39):
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δ f α(2k) = iβkΦα(2k−1)ζα + iαkΦα(2k)βζβ

δ f α(2) = iβ1Φαζα + iα1Φα(2)βζβ

δA = iα0Φαζα + ic0β0eαβφαζβ, δϕ = − ic0δ̃0

2
φγζγ

δΦα(2k+1) =
αk

(2k + 1)
Ωα(2k)ζα + 2(k + 1)βk+1Ωα(2k+1)βζβ

δΦα = 2β1Ωαβζβ + 2a0α0eβ(2)B
β(2)ζα

δφα =
8a0β0

c0
Bαβζβ +

b0δ̃0

c0
παβζβ

Here, we take into account the normalization (8) and (20). Thus, requiring that massive theory has
a correct massless flat limit, we partially fix an arbitrariness in the choice of the supertransformations.
Parameters αk, βk, β0, α0, δ̃0 at this step are still arbitrary.

As in the massless case, we will realize supersymmetry deforming the curvatures by the
background gravitino field Ψα. We start with the construction of the deformations for the bosonic fields:

∆Rα(2k) = iρkΦα(2k−1)Ψα + iσkΦα(2k)βΨβ

∆T α(2k) = iβkΦα(2k−1)Ψα + iαkΦα(2k)βΨβ

∆Rα(2) = iρ1ΦαΨα + iσ1Φα(2)βΨβ + iρ̂0eα(2)φβΨβ

∆T α(2) = iβ1ΦαΨα + iα1Φα(2)βΨβ

∆A = iα0ΦαΨα + ic0β0eα(2)φ
αΨβ, ∆Φ =

ic0δ̃0

2
φαΨα

∆Bα(2k) = −iρ̂kφα(2k−1)Ψα − iσ̂kφα(2k)βΨβ

∆Πα(2k) = −iβ̂kφα(2k−1)Ψα − iα̂kφα(2k)βΨβ

The corresponding ansatz for the supertransformations has the form:

δΩα(2k) = iρkΦα(2k−1)ζα + iσkΦα(2k)βζβ

δ f α(2k) = iβkΦα(2k−1)ζα + iαkΦα(2k)βζβ

δΩα(2) = iρ1Φαζα + iσ1Φα(2)βζβ + iρ̂0eα(2)φβζβ

δ f α(2) = iβ1Φαζα + iα1Φα(2)βζβ (61)

δA = iα0Φαζα + ic0β0eα(2)φ
αζβ, δϕ = − ic0δ̃0

2
φγζγ

δBα(2k) = iρ̂kφα(2k−1)ζα + iσ̂kφα(2k)βζβ

δπα(2k) = iβ̂kφα(2k−1)ζα + iα̂kφα(2k)βζβ

All parameters are fixed by the requirement of covariant transformations of the curvatures. First
of all, we consider:

δR̂α(2k) = iρkF α(2k−1)ζα + iσkF α(2k)βζβ

δT̂ α(2k) = iβkF α(2k−1)ζα + iαkF α(2k)βζβ
(62)

It leads to relation M1 = M + λ
2 between mass parameters M1 and M and defines the parameters:
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αk
2 = k(s + k + 1)[M + (k + 1)λ]α̂2

βk
2 =

(k + 1)(s− k)
k(2k + 1)

[M− kλ]β̂2

σk
2 =

(s + k + 1)
k(k + 1)2 [M + (k + 1)λ]σ̂2

ρk
2 =

(s− k)
k3(k + 1)(2k + 1)

[M− kλ]ρ̂2 (63)

where:

β̂ =
α̂√
2

, ρ̂ =
sM
2
√

2
α̂, σ̂ =

sM
2

α̂, α̂2 =
αs−1

2

2s(s− 1)[M + sλ]

From the requirement that:

δB̂α(2k) = iρ̂kCα(2k−1)ζα + iσ̂kCα(2k)βζβ

δΠ̂α(2k) = iβ̂kCα(2k−1)ζα + iα̂kCα(2k)βζβ (64)

we obtain:
ρ̂k = ρk, σ̂k = σk, β̂k = βk, α̂k = αk

The requirement of covariant transformations for the remaining curvatures:

δR̂α(2) = iρ1F αζα + iσ1F α(2)βζβ − iρ̂0eα(2)Cβζβ

δT̂ α(2) = iβ1F αζα + iα1F α(2)βζβ

δÂ = iα0F αζα − ic0β0eαβCαζβ, δΦ̂ = − ic0 δ̃0
2 Cγζγ

(65)

gives the solution:

ρ̂0 = −1
8

c0
2β1, δ̃0 = 4β0 =

c0

a0
β1, α0 =

c0
2

4sMa0
β1

Now, let us consider the deformation of the curvatures for the fermions. We choose an ansatz in
the form:

∆F α(2k+1) =
αk

(2k + 1)
Ωα(2k)Ψα + 2(k + 1)βk+1Ωα(2k+1)βΨβ

+γk f α(2k)Ψα + δk f α(2k+1)βΨβ

∆F α = 2β1ΩαβΨβ + 2a0α0eβ(2)B
β(2)Ψα + δ0 f αβΨβ + γ0 AΨα + γ̃0 ϕeα

βΨβ

∆Cα = −8a0β0

c0
BαβΨβ −

b0δ̃0

c0
παβΨβ − ρ0 ϕΨα

∆Cα(2k+1) = −β̃kBα(2k+1)βΨβ − α̃kBα(2k)Ψα − δ̃kπα(2k+1)βΨβ − γ̃kπα(2k)Ψα

and the ansatz for the supertransformations in the form:
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δΦα(2k+1) =
αk

(2k + 1)
Ωα(2k)ζα + 2(k + 1)βk+1Ωα(2k+1)βζβ

+γk f α(2k)ζα + δk f α(2k+1)βζβ

δΦα = 2β1Ωαβζβ + 2a0α0eβ(2)B
β(2)ζα + δ0 f αβζβ + γ0 Aζα + γ̃0 ϕeα

βζβ (66)

δφα =
8a0β0

c0
Bαβζβ +

b0δ̃0

c0
παβζβ + ρ0 ϕζα

δφα(2k+1) = β̃kBα(2k+1)βζβ + α̃kBα(2k)ζα + δ̃kπα(2k+1)βζβ + γ̃kπα(2k)ζα

From the requirement that:

δF̂ α(2k+1) =
αk

(2k + 1)
Rα(2k)ζα + 2(k + 1)βk+1Rα(2k+1)βζβ

+γkT α(2k)ζα + δkT α(2k+1)βζβ (67)

we have the same relation between masses M1 = M + λ
2 . Besides, it leads to:

γk
2 =

(s + k + 1)
k(k + 1)2(2k + 1)2 [M + (k + 1)λ]γ̂2

δk
2 =

(s− k− 1)
(k + 1)(k + 2)(2k + 3)

[M− (k + 1)λ]δ̂2

where:
γ̂ =

sM
2

α̂, δ̂ =
sM√

2
α̂

In turn, the requirement that:

δĈα(2k+1) = β̃kBα(2k+1)βζβ + α̃kBα(2k)ζα + δ̃kΠα(2k+1)βζβ + γ̃kΠα(2k)ζα (68)

gives us:

γ̃k = γk, δ̃k = δk, α̃k =
αk

(2k + 1)
, β̃k = 2(k + 1)βk+1

At last, the requirement for the other curvatures:

δF̂ α = 2β1Rαβζβ − 2a0α0eβ(2)Bβ(2)ζα + δ0T αβζβ + γ0Aζα + γ̃0Φeα
βζβ

δĈα = 8a0β0
c0
Bαβζβ +

b0 δ̃0
c0

Παβζβ + ρ0Φζα
(69)

yields solution:

γ0 = −2γ̃0 =
c0

2

2a0
β1, ρ0 = − c0

2

4sMa0
β1

Now, all the arbitrary parameters are fixed.
The supersymmetric Lagrangian is the sum of the free Lagrangians:

L̂ = − 1
2 ∑s−1

k=1(−1)k+1[Rα(2k)Πα(2k) + Tα(2k)Bα(2k)] + a0
2sM eα(2)Bα(2)Φ

− i
2 ∑s−1

k=0(−1)k+1Fα(2k+1)Cα(2k+1) (70)

The Lagrangian is invariant under the supertransformations for curvatures up to equations of
motion for the fields Bα(2), πα(2):

Φ = 0, A = 0 ⇒ eγ(2)Π
γ(2) = DΦ− 2sMA = 0 (71)
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The Lagrangian (70) is a final solution for the massive supermultiplet (s, s + 1
2 ).

Supermultiplet (s, s− 1
2 ):

In this section, we consider another massive higher spin supermultiplet when the highest spin is
boson. The massive spin-s field was described in Section 3.1 in terms of massless fields. The massive
spin-(s − 1/2) field can be obtained for the results in Section 3.2 if one makes the replacement
s → (s− 1). Therefore, the set of massless fields for the massive field with spin s− 1/2 is Φα(2k+1),
0 ≤ k ≤ s− 2 and φα. The gauge-invariant curvatures and the Lagrangian have the forms (19) and (23),
where the parameters are:

ck
2 =

(s + k)(s− k− 1)
2(k + 1)(2k + 1)

[M1
2 − (2k + 1)2 λ2

4
]

c0
2 = 2s(s− 1)[M1

2 − λ2

4
] (72)

dk =
(2s− 1)
(2k + 3)

M1, M1
2 = m1

2 + (s− 3
2
)2λ2

Following our procedure, we should construct the supersymmetric deformations for the
curvatures. Actually, the structure of the deformed curvatures and supertransformations have the
same form as in the previous subsection for the supermultiplets (s, s + 1/2). There is a difference in
parameters (72) only. Therefore, we present here only the supertransformations for the curvatures.
The requirement of covariant curvature transformations for the bosonic fields:

δR̂α(2k) = iρkF α(2k−1)ζα + iσkF α(2k)βζβ

δT̂ α(2k) = iβkF α(2k−1)ζα + iαkF α(2k)βζβ

δR̂α(2) = iρ1F αζα + iσ1F α(2)βζβ − iρ̂0eα(2)Cβζβ

δT̂ α(2) = iβ1F αζα + iα1F α(2)βζβ

δÂ = iα0F αζα − ic0β0eαβCαζβ, δΦ̂ = − ic0δ̃0

2
Cγζγ

δB̂α(2k) = iρ̂kCα(2k−1)ζα + iσ̂kCα(2k)βζβ

δΠ̂α(2k) = iβ̂kCα(2k−1)ζα + iα̂kCα(2k)βζβ

gives us the relation M1 = M− λ
2 between masses M1 and M. Besides, it leads to:

σk
2 =

(s− k− 1)
k(k + 1)2 [M− (k + 1)λ]σ̂2

ρk
2 =

(s + k)
k3(k + 1)(2k + 1)

[M + kλ]ρ̂2

αk
2 = k(s− k− 1)[M− (k + 1)λ]α̂2

βk
2 =

(k + 1)(s + k)
k(2k + 1)

[M + kλ]β̂2 (73)

ρ̂k = ρk, σ̂k = σk, β̂k = βk, α̂k = αk

ρ̂0 = −1
8

c0
2β1, δ̃0 = 4β0 =

c0

a0
β1, α0 =

c0
2

4sMa0
β1

where:

β̂ =
α̂√
2

, ρ̂ =
sM
2
√

2
α̂, σ̂ =

sM
2

α̂, α̂2 =
αs−2

2

(s− 2)[M− (s− 1)λ]
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From the requirement of covariant supertransformations for the fermionic curvatures:

δF̂ α(2k+1) =
αk

(2k + 1)
Rα(2k)ζα + 2(k + 1)βk+1Rα(2k+1)βζβ

+γkT α(2k)ζα + δkT α(2k+1)βζβ

δF̂ α = 2β1Rαβζβ − 2a0α0eβ(2)Bβ(2)ζα + δ0T αβζβ + γ0Aζα + γ̃0Φeα
βζβ

δĈα =
8a0β0

c0
Bαβζβ +

b0δ̃0

c0
Παβζβ + ρ0Φζα

δĈα(2k+1) = β̃kBα(2k+1)βζβ + α̃kBα(2k)ζα + δ̃kΠα(2k+1)βζβ + γ̃kΠα(2k)ζα

one gets:

γk
2 =

(s− k− 1)
k(k + 1)2(2k + 1)2 [M− (k + 1)λ]γ̂2

δk
2 =

(s + k + 1)
(k + 1)(k + 2)(2k + 3)

[M + (k + 1)λ]δ̂2

γ̃k = γk, δ̃k = δk, α̃k =
αk

(2k + 1)
, β̃k = 2(k + 1)βk+1

γ0 = −2γ̃0 =
c0

2

2a0
β1, ρ0 = − c0

2

4sMa0
β1

where:
γ̂ =

sM
2

α̂, δ̂ =
sM√

2
α̂

Supersymmetric Lagrangian have the form (70), and it is invariant under the supertransformations
up to equations of motion for the auxiliary fields Bα(2), πα(2) (71).

5.4. Realization of (Super)Algebra

In this section, we analyze the commutators of the (super)transformations and show how the
(super)algebra is realized in our construction. All the considerations are valid both for the (s, s + 1/2)
supermultiplets and the for (s, s− 1/2) one.

5.4.1. Description of the AdS Transformations

Before we turn to the supersymmetric theory, let us discuss the conventional AdS3 algebra.
In the frame formalism, AdS space is described by the background Lorentz connection field ωα(2)

and the background frame field eα(2). The first of them enters implicitly through the covariant
derivative D, while the second one enters explicitly. Let ηα(2) and ξα(2) be the parameters of the
Lorentz transformations and the pseudo-translations, respectively. The theory of the massive spin-s
field has the following laws under these transformations:

δηΩα(2k) = ηα
βΩα(2k−1)β δη f α(2k) = ηα

β f α(2k−1)β (74)

δξΩα(2k) = (k+2)ak
k ξβ(2)Ωα(2k)β(2) +

ak−1
k(2k−1) ξα(2)Ωα(2k−2) + bk

k ξα
β f α(2k−1)β

δξ f α(2k) = ξα
βΩα(2k−1)β + akξβ(2) f α(2k)β(2) +

(k+1)ak−1
k(k−1)(2k−1) ξα(2) f α(2k−2)

(75)

here ak and bk are defined by (6). For the massive spin-(s± 1/2) field, the transformation laws look like:

δηΦα(2k+1) = ηα
βΦα(2k)β

δξ Φα(2k+1) = dk
(2k+1) ξα

βΦα(2k)β + ck
k(2k+1) ξα(2)Φα(2k−1)

+ck+1ξβ(2)Φα(2k+1)β(2)

(76)
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Here, ck and dk are defined by (18) for the spin-(s + 1/2) and (72) for the spin-(s− 1/2). To consider a
structure of the AdS3 algebra Sp(2)⊗ Sp(2) in the left sector only, we introduce the new variables for
the bosonic fields:

Ω̂α(2k) = Ωα(2k) +
sM

2k(k + 1)
f α(2k), f̂ α(2k) = Ωα(2k) − sM

2k(k + 1)
f α(2k) (77)

so that the variables Ω̂α(2k) correspond to the left sector. In terms of these variables, the
transformations (74) and (75) have the form:

δηΩ̂α(2k) = ηα
βΩ̂α(2k−1)β

δξ Ω̂α(2k) = (k+2)ak
k ξβ(2)Ω̂α(2k)β(2) +

ak−1
k(2k−1) ξα(2)Ω̂α(2k−2)

+ sM
2k(k+1) ξα

βΩ̂α(2k−1)β

(78)

Now, let us consider the commutators of these transformations. The direct calculations lead to the
following results:

[δη1 , δη2 ]Ω̂
α(2k) = (η2

α
βη1

β
γ − η1

α
βη2

β
γ)Ω̂α(2k−1)γ,

[δξ1 , δξ2 ]Ω̂
α(2k) =

λ2

4
(ξ2

α
γξ1

γ
β − ξ1

α
γξ2

γ
β)Ω̂α(2k−1)β,

[δη , δξ ]Ω̂α(2k) = 2
(k + 2)ak

k
ξβ(2)η

β
γΩ̂α(2k)βγ +

ak−1
k(2k− 1)

ξα
γηαγΩ̂α(2k−2)

+
sM

2k(k + 1)
(ξα

βηβ
γ − ηα

γξγ
β)Ω̂α(2k−1)

Comparison with (78) shows that we do have the AdS-algebra:

[Mα(2), Mβ(2)] ∼ εαβ Mαβ, [Pα(2), Pβ(2)] ∼ λ2εαβ Mαβ

[Mα(2), Pβ(2)] ∼ εαβPαβ

The analogous results have a place for the commutators in the fermionic sector, as well.

5.4.2. AdS Supertransformations

Let us consider the supersymmetric theory. The supertransformations for the massive higher spin
supermultiplets have the form of (61) and (66):

δΩα(2k) =
isM

2k(k + 1)
βkΦα(2k−1)ζα +

isM
2k(k + 1)

αkΦα(2k)βζβ

δ f α(2k) = iβkΦα(2k−1)ζα + iαkΦα(2k)βζβ

δΦα(2k+1) =
αk

(2k + 1)
Ωα(2k)ζα + 2(k + 1)βk+1Ωα(2k+1)βζβ

+
sM

2k(k + 1)(2k + 1)
αk f α(2k)ζα +

sM
(k + 2)

βk+1 f α(2k+1)βζβ

where the parameters αk and βk are defined by (63) for the (s, s + 1/2) supermultiplets and (73) for the
(s, s− 1/2) one. In terms of the new variables (77), the supertransformations look like:
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δΩ̂α(2k) =
isM

k(k + 1)
βkΦα(2k−1)ζα +

isM
k(k + 1)

αkΦα(2k)βζβ

δ f̂ α(2k) = 0

δΦα(2k+1) =
αk

(2k + 1)
Ω̂α(2k)ζα + 2(k + 1)βk+1Ω̂α(2k+1)βζβ

One can see that the f̂ α(2k) fields are inert under the supertransformations. This just means that we
have (1,0) supersymmetry. Let us calculate the commutator of two supertransformations. We obtain:

[δ1, δ2]Ω̂α(2k) = isMα̂2[
ak−1

k(2k− 1)
Ω̂α(2k−1)ζ1

αζ2
α +

2(k + 2)ak
k

Ω̂α(2k)γβζ1βζ2γ

+
sM

k(k + 1)
Ω̂α(2k−1)γζ1

αζ2γ + λΩ̂α(2k−1)γζ1
αζ2γ]− (1↔ 2)

[δ1, δ2]Φ̂α(2k+1) = isMα̂2[
ck

k(2k + 1)
Φα(2k−1)ζ1

αζ2
α + 2ck+1Φα(2k+1)γβζ1βζ2γ

+
2dk

(2k + 1)
Φα(2k)γζα

1 ζ2γ + λΦα(2k)γζα
1 ζ2γ]− (1↔ 2)

Here, we use the explicit expressions for αk and βk and the conditions:

2βk
2

(k + 1)
+

αk
2

k(k + 1)(2k + 1)
= α̂2[

sM
k(k + 1)

+ λ]

2βk+1
2

(k + 2)
+

αk
2

k(k + 1)(2k + 1)
= α̂2[

2dk
(2k + 1)

+ λ]

αk−1βk = (k + 1)α̂2ak−1, αkβk+1 = (k + 2)α̂2ak, αkβk = (k + 1)ckα̂2

Comparing the commutators of the supertransformations with (76), we obtain the (1,0) AdS3

superalgebra with the commutation relation:

{Qα, Qβ} ∼ Pαβ +
λ

2
Mαβ (79)

As we see, the algebra of the supertransformations is closed. It is worth emphasizing that we
did not apply the equations of motion to obtain the relation (79) both in the bosonic and in the
fermionic sectors. This situation is analogous to the one for the massless higher-spin fields in the
three-dimensional frame-like formalism. Recall that in the massive supermultiplet cases, the invariance
of the Lagrangians is achieved up to the terms proportional to the Spin-1 and Spin-0 auxiliary fields
equations only. Note that in dimensions d ≥ 4, one would have to use equations for the higher
spin auxiliary fields, as well (though in odd dimensions, there exist examples of the theories where
Lagrangians are invariant without any use of e.o.m [36]). The difference here comes from the well-known
fact that no massless higher spin fields in three dimensions have any local degrees of freedom.

6. Summary

In this review, we have presented and discussed the component supersymmetric formulations
of the higher spin fields in three dimensions. We applied these formulations for the Lagrangian
construction of the on-shell N = 1 massless and massive supermultiplets in 3D Minkowski and
AdS spaces. Although the off-shell formulation of 3D massless higher spin supermultiplets has been
known long enough, we discussed the on-shell massless formulation as well, since it is interesting
by itself. Besides, such a formulation is a base for the deformation to the massive higher spin
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supermultiplets. To generate the massive terms in the Lagrangians, we have used the approach based
on the gauge-invariant formulation of the massive higher spin fields where the massive fields are
described as the system of the massless ones coupled to each other in a special way.

In 3D Minkowski space, we generalized the gauge-invariant formulation of massive higher
spin fields to the case of the massive supermultiplets. In particular, we showed that the massive
supermultiplets can be constructed from the extended massless one. This extended massless
supermultiplet is defined, and its smooth mass deformation is explicitly constructed for the two cases
of the massive supermultiplets (s, s + 1/2) and the (s, s− 1/2). Both of these massive supermultiplets
have two bosonic and one fermionic (left) degrees of freedom, i.e., they possess (1,0) supersymmetry.

In 3D AdS space, the construction of theN = 1 massive supermultiplets with (1,0) supersymmetry
is realized by another more elegant way. We have used a technique of the gauge-invariant curvatures.
Namely, we found their supersymmetric deformation by the background gravitino field. This means
that the resulting theory describes the massive supermultiplets on the background of AdS supergravity.
Constructed higher spin supermultiplets have a correct flat limit.

In this work, we restrict ourselves to the free models only. Let us stress however that such a
gauge-invariant frame-like formalism is perfectly suited for the investigation of possible interactions.
On the one hand, the presence of gauge invariance allows one to work with the so-called constructive
approach requiring that the switching on an interaction must keep (though modified) all the initial
gauge symmetries. On the other hand, many known interacting models have a much simpler form,
namely in the frame-like formalism. As an instructive illustration, one can consider a paper [37] where
the authors considered a simple model containing just massless Spin-2 and Spin-3 and tried to rewrite
this in the metric-like formulation. Note that for the massless fields, switching on interaction leads to
the Chern–Simons-like models, while for the massive fields, to the Fradkin–Vasiliev type [34]. At the
same time, the construction of the interacting models containing both massless and massive fields is
still an open question.

One more possible application of our results is related to the supersymmetric models in the
context of the AdS/CFT correspondence. This class of models is investigated rather poorly, and one
of the reasons is that at the bulk side, the spectrum usually contains massive fields and/or massive
supermultiplets.
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