Editorial

Fuzzy Techniques for Decision Making

José Carlos R. Alcantud

BORDA Research Unit and IME, University of Salamanca, 37008 Salamanca, Spain; jcr@usal.es

Received: 22 December 2017; Accepted: 25 December 2017; Published: 27 December 2017

This book contains the successful invited submissions [1–21] to a Special Issue of *Symmetry* on the subject area of “Fuzzy Techniques for Decision Making”.

We invited contributions addressing novel techniques and tools for decision making (e.g., group or multi-criteria decision making), with notions that overcome the problem of finding the membership degree of each element in Zadeh’s original model. We could garner interesting articles in a variety of setups, as well as applications. As a result, this Special Issue includes some novel techniques and tools for decision making, such as:

- Novel contributions to methodologies, like discrete optimization with fuzzy constraints [3], COMET [5], or fuzzy bi-matrix games [7].
- New methodologies for hybrid models [12,15,18,20] inclusive of theoretical novelties [9].
- Applications to project delivery systems [6], maintenance performance in industry [8], group emergencies [10], pedestrians flows [11], valuation of assets [13], water pollution control [17], or aquaculture enterprise sustainability [19].
- A comparative study of some classes of soft rough sets [14].

Response to our call had the following statistics:

- Submissions (58);
- Publications (21);
- Rejections (37);
- Article types: Research Article (21);

Authors’ geographical distribution (published papers) is:

- China (11)
- Spain (4)
- Pakistan (2)
- Poland (1)
- Japan (1)
- Taiwan (1)
- Slovenia (1)

Published submissions are related to various settings like fuzzy soft sets, hesitant fuzzy sets, (fuzzy) soft rough sets, neutrosophic sets, as well as other hybrid models.

I found the edition and selections of papers for this book very inspiring and rewarding. I also thank the editorial staff and reviewers for their efforts and help during the process.
Conflicts of Interest: The authors declare no conflict of interest.

References
8. Carnero, M. Asymmetries in the Maintenance Performance of Spanish Industries before and after the Recession. Symmetry 2017, 9, 166. [CrossRef]
9. Tang, H. Decomposition and Intersection of Two Fuzzy Numbers for Fuzzy Preference Relations. Symmetry 2017, 9, 228. [CrossRef]
11. Xue, Z.; Dong, Q.; Fan, X.; Jin, Q.; Jian, H.; Liu, J. Fuzzy Logic-Based Model That Incorporates Personality Traits for Heterogeneous Pedestrians. Symmetry 2017, 9, 239. [CrossRef]
17. Liu, J.; Li, Y.; Huang, G.; Chen, L. A Recourse-Based Type-2 Fuzzy Programming Method for Water Pollution Control under Uncertainty. Symmetry 2017, 9, 265. [CrossRef]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).