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Abstract: In this note, we consider degenerations between complex 2-step nilpotent Lie algebras of
dimension 7 within the variety N 2

7 . This allows us to obtain the rigid algebras in N 2
7 , whose closures

give the irreducible components of the variety.
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1. Introduction

The study of degenerations (also called contractions in Physics) and the geometric classification
of varieties of different kinds of structures is an active research field. There are several works on
degenerations, orbit closures and geometric classifications of different algebras. We provide here
a list of references on many of them: Lie algebras (see, for example, [1–10]), Jordan algebras (see for
example [11–14]), Leibniz algebras (see [15–17]), pre-Lie algebras in [18], Novikov algebras in [19],
Filippov algebras in [20], binary Lie and nilpotent Malcev algebras in [21], and also for different
superalgebras (see [22–24]).

In particular for Lie algebras, the problem has been completely solved in dimension ≤4 and for
nilpotent Lie algebras in dimension ≤6. In dimension 7, the cases of 5-step and 6-step nilpotent Lie
algebras have been studied by Burde in [2]. Another related and interesting problem is the study of
rigid 2-step nilpotent within the variety of 2-step nilpotent Lie algebras. This has been done in [25–27].
The aim of this work is to consider complex 2-step nilpotent Lie algebras of dimension 7. This is a
step forward in order to obtain the complete picture of degenerations of nilpotent Lie algebras in
dimension 7. In this variety, there are three rigid Lie algebras.

2. The Variety N 2
n

Let V be a complex n-dimensional vector space with a fixed basis {e1, . . . , en}. Identify a Lie

algebra structure on V, g, with its set of structure constants
{

ck
ij

}
∈ Cn3

,

(
[ei, ej] =

n

∑
k=1

ck
i,jek

)
. Since

every set of structure constants must satisfy the polynomial equations given by the skew-symmetry

and the Jacobi identity: ck
i,j + ck

j,i = 0 and
n

∑
l=1

(
cl

j,kcr
i,l + cl

k,ic
r
j,l + cl

i,jc
r
k,l

)
= 0, the set of n-dimensional

Lie algebras is an affine variety in Cn3
, denoted by Ln. The group G = GL(n,C) acts on Ln via change

of basis:
g · [X, Y] = g

(
[g−1X, g−1Y]

)
, X, Y ∈ g, g ∈ G.

The variety N 2
n is the closed subset of Ln given by all at most 2-step nilpotent Lie algebras.

This variety is endowed with the Zariski topology.

Symmetry 2018, 10, 26; doi:10.3390/sym10010026 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym10010026
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 26 2 of 7

3. Degenerations of Lie Algebras

Given two Lie algebras g and h, we say that g degenerates to h, and denoted by g→ h, if h lies in
the Zariski closure of the G-orbit O(g). An element g ∈ N 2

n is called rigid, if its orbit O(g) is open in
N 2

n . Since each orbit O(g) is a constructible set, its closures relative to the Euclidean and the Zariski
topologies are the same (see [28], 1.10 Corollary 1, p. 84). As a consequence, the following is obtained:

Lemma 1. Let C(t) be the field of fractions of the polynomial ring C[t]. If there exists an operator
gt ∈ GL(n,C(t)) such that lim

t→0
gt · g = h, then g→ h.

The previous Lemma gives the definition of a Lie algebra contraction. In general, a contraction is
a particular type of degeneration.

A nice result concerning degenerations is the fact that every n-dimensional (Lie) algebra
degenerates to the trivial one. Consider the operator gt = t−1 In, i.e., gt(ek) = t−1ek for 1 ≤ k ≤ n, then

lim
t→0

gt · [ei, ej] = lim
t→0

gt

(
[g−1

t (ei), g−1
t (ej)]

)
= lim

t→0
gt

(
[tei, tej]

)
= lim

t→0
t2

n

∑
k=1

ck
i,jgt(ek) = lim

t→0
t

(
n

∑
k=1

ck
i,jek

)
= 0

There are many invariants for the orbit closure of a Lie algebra. Among them, we mention the
ones that will be used in this work.

Lemma 2. Let g, h ∈ N 2
n . If g→ h, then the following relations must hold:

(a) dim O(g) > dim O(h),
(b) dim [g, g] ≥ dim [h, h],
(c) dim z(g) ≤ dim z(h), where z(g) is the center of g,
(d) dim Hk(g) ≤ dim Hk(h) for 0 ≤ k ≤ n, where Hk(g) is the k-th trivial cohomology group for g,
(e) dim a(g) ≤ dim a(h), where a(g) is the maximal abelian subalgebra of g.

Proof. The first relation follows from the Closed Orbit Lemma (see [29], I. Lemma 1.8, p. 53). The remaining
follow by proving that the corresponding sets are closed, using in some cases the upper semi continuity
of appropriated functions (see Ref. [30], §3, Theorem 2, p. 14). See also [2,5] for the proofs of (d) and (e),
respectively.

The Classification of Complex 7-Dimensional 2-Step Nilpotent Lie Algebras

We consider here the classification of indecomposable 2-step nilpotent Lie algebras over C of
dimension 7, given by Gong in [31]. For Lie algebras of dimension ≤6, we follow the book of Šnobl
and Winternitz [32].

In Table 1, we provide the isomorphism classes of Lie algebras in N 2
7 and the dimension of

every orbit.
By using Lemma 2, we can discard possible degenerations. We show in Table 2 the non-degeneration

reasons. To clarify this table, consider the Lie algebras (37B) and (27A). Since the dimension of
the orbits of (37B) and (27A) are 29 and 28, respectively, (37B) may degenerate to (27A) according
to Lemma 2(a). The centers of (37B) and (27A) are z ((37B)) = 〈e5, e6, e7〉 and z ((27A)) = 〈e6, e7〉,
respectively. Thus, we obtain that dim z ((37B)) = 3 > 2 = dim z ((27A)), which contradicts Lemma 2(c);
therefore, (37B) 6→ (27A).
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Table 1. 7-dimensional Lie algebras.

g Lie Product dim O(g)

(17) [e1, e2] = e7, [e3, e4] = e7, [e5, e6] = e7 21

(27A) [e1, e2] = e6, [e1, e4] = e7, [e3, e5] = e7 28

(27B) [e1, e2] = e6, [e1, e5] = e7, [e3, e4] = e6, [e2, e3] = e7 30

(37A) [e1, e2] = e5, [e2, e3] = e6, [e2, e4] = e7 24

(37B) [e1, e2] = e5, [e2, e3] = e6, [e3, e4] = e7 29

(37C) [e1, e2] = e5, [e2, e3] = e6, [e2, e4] = e7, [e3, e4] = e5 27

(37D) [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = e7, [e3, e4] = e5 30

n6,1 [e4, e5] = e2, [e4, e6] = e3, [e5, e6] = e1 24

n6,2 [e3, e6] = e1, [e5, e4] = e1, [e4, e6] = e2 25

n3,1 ⊕ n3,1 [e2, e3] = e1, [e5, e6] = e4 26

n5,1 [e3, e5] = e1, [e4, e5] = e2 22

n5,3 [e2, e4] = e1, [e3, e5] = e1 20

n3,1 [e2, e3] = e1 15

C7 [·, ·] = 0 0

Table 2. Non-degenerations.

g 6→ h Reason Lemma 2

n5,1 6→ n5,3; n6,1 6→ (17), n5,3; (37A) 6→ (17); n6,2 6→ (17); n3,1 ⊕ n3,1 6→ (17);
(c)

(37C) 6→ (17); (27A) 6→ (17); (37B) 6→ (27A); (27B) 6→ (17); (37D) 6→ (27A), (17)

(17) 6→ n5,1; n6,2 6→ n6,1; n3,1 ⊕ n3,1 6→ (37A), n6,1;
(b)

(27A) 6→ (37C), n6,1, (37A); (27B) 6→ (37B), (37C), (37A), n6,1

(37A) 6→ n6,1 (d)

(37A) 6→ n5,3 (e)

Next, we prove that the remaining possible degenerations are in fact degenerations. Since the
relation of degeneration is transitive, we consider only essential degenerations. For every essential
degeneration g→ h, we provide in Table 3, a parametrized basis of g.

To explain Table 3, consider the degeneration n3,1 ⊕ n3,1 → n6,2. Lie brackets of n3,1 ⊕ n3,1 are,
in our parametrized basis, given by:

[x3, x5] = tx1, [x3, x6] = x1, [x5, x4] = x1, [x4, x6] = x2.

When t→ 0, we obtain the Lie brackets of n6,2.
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Table 3. Degenerations.

g → h Parametrized Basis

n5,3 → n3,1 x1 = e1, x2 = e2, x3 = e4, x4 = e3, x5 = te5, x6 = e6, x7 = e7

n5,1 → n3,1 x1 = e1, x2 = e3, x3 = e5, x4 = te4, x5 = e2, x6 = e6, x7 = e7

(17)→ n5,3 x1 = e7, x2 = e1, x3 = e3, x4 = e2, x5 = e4, x6 = te6, x7 = e5

n6,1 → n5,1 x1 = e3, x2 = e1, x3 = e4, x4 = e5, x5 = e6, x6 = 1
t e2, x7 = e7

(37A)→ n5,1 x1 = e6, x2 = e7, x3 = −e3, x4 = −e4, x5 = e2, x6 = te1, x7 = e5

n6,2 → n5,1 x1 = e1, x2 = e2, x3 = e3, x4 = e4, x5 = e6, x6 = te5, x7 = e7

n6,2 → n5,3 x1 = e1, x2 = e3, x3 = e5, x4 = e6, x5 = e4, x6 = 1
t e2 x7 = e7

n3,1 ⊕ n3,1 → n6,2 x1 = − 1
t e4, x2 = e1 +

1
t2 e4, x3 = e6, x4 = e2 − 1

t e6, x5 = e5, x6 = 1
t e5 + e3, x7 = e7

(37C)→ n3,1 ⊕ n3,1 x1 = e5, x2 = t−1e1, x3 = te2, x4 = t2e7, x5 = te3 + t2e2, x6 = e4, x7 = e6

(37C)→ (37A) x1 = e1, x2 = e2, x3 = te3, x4 = e4, x5 = e5, x6 = te6, x7 = e7

(37C)→ n6,1 x1 = e5, x2 = e6, x3 = e7, x4 = e2, x5 = e3, x6 = e4, x7 = te1

(27A)→ n3,1 ⊕ n3,1 x1 = e6, x2 = e1, x3 = e2, x4 = e7, x5 = e3, x6 = e5, x7 = te4

(37B)→ (37C) x1 = e3, x2 = e1 +
i√
t
e2 +

i√
t3

e3 − 1
t e4, x3 = − i√

t
e3 + e4, x4 = e2 +

1
t e3, x5 = − 1

t e7, x6 = 1
t e6, x7 = e5 +

1
t2 e7

(27B)→ (27A) x1 = e3, x2 = e4, x3 = te1, x4 = −e2, x5 = 1
t e5 x6 = e6, x7 = e7

(37D)→ (37B) x1 = e2, x2 = e4, x3 = −e3, x4 = te1, x5 = e7, x6 = e5, x7 = te6
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Table 3 allows us to draw the Hasse diagram for essential degenerations (see Figure 1).
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4. The Irreducible Components

It is known (see for example [28]) that the irreducible components of a variety are closures of
single orbits or closures of infinite families of orbits. Since there are no infinite families of 7-dimensional
2-step nilpotent Lie algebras, the irreducible components of N 2

7 are the orbit closures of the rigid Lie
algebras: if g is a rigid Lie algebra inN 2

7 , then there exists an irreducible component C ofN 2
7 , such that

C ∩O(g) 6= ∅ is open; then, C ⊂ O(g). In the Hasse diagram, one can identify the rigid algebras as
those that have no entering arrows. Another proof of this fact can be found in [27].

With all this, we can state:

Theorem 1. The variety N 2
7 , of at most 2-step nilpotent Lie algebras of dimension 7, has three

irreducible components:

1. C1 = O((17)),
2. C2 = O((27B)),
3. C3 = O((37D)).
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Moreover, the Lie algebras (17), (27B), (37D) are rigid in N 2
7 .

Proof. It follows from Tables 2 and 3 and the Hasse diagram. Moreover, one obtains:

• O((17)) =
{
(17), n5,3, n3,1, C7},

• O((27B)) =
{
(27B), (27A), n3,1 ⊕ n3,1, n6,2, n5,1, n5,3, n3,1, C7},

• O((37D)) =
{
(37D), (37B), (37C), n3,1 ⊕ n3,1, (37A), n6,2, n5,1, n5,3, n3,1, C7}.
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