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Abstract: We examine the problem of phase diffusion rate in a U(1) global phase symmetry
broken system, from the perspective of q-deformed oscillators where the deformation
parameter represents the anharmonicity. It is shown that broken phase symmetry states,
described by deformed coherent states, suffer phase diffusion at a rate determined by the
deformation parameter. Analytical discussions are given for the case of weak deformations,
while detailed numerical results are presented when strong anharmonicity is present
in the system.
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1. Introduction

For a long time, deformations of Lie algebras and studies of associated quantum groups [1–3]
had been considered to be a mere mathematical curiosity that may only be useful for developing
exactly solvable toy models, especially for statistical and many body physics, where exactly solvable
models are rare. In few cases, deformation parameter (q) is treated as a phenomenological fitting
parameter to explain some molecular spectral anomalies [4–7]. A wide literature concerning deformed
algebras has developed in the last few decades in different fields of physics. Many studies of nuclear
physics involving q-deformations are presented. For instance, rotational spectra of deformed nuclei is
calculated [8–10] using SUq(2) algebra, which is the q-analogue of the SU(2) [11]. Statistical mechanics
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of deformed systems are considered in various contexts too. Examples include the statistical properties
of qp-bosons in different dimensions [12], statistical distribution of a gas of q-bosons [13], and specific
heat of a q-deformed lattice [14]. Finally, some research in the field of chemical physics have focused
quantum groups [15], and the q-analogue of Hydrogen atom is studied in [16]. Quantum groups allow
for particles with intermediate statistics, between bosons and fermions, and as such is hardly accepted
for an interpretation of a physical event. On the other hand, recent efforts illuminate the link between
nonlinear interactions and parastatistical behavior of deformed particles [17, 18].

As the status of deformation parameters changed from being phenomenological to microscopical, one
intriguing question is how to characterize the life time of such deformed particles and to comprehend
how their life time depends on their intermediate quantum statistics. The answer of these questions can
be illuminating for efficient manipulations these particles.

We specifically focus on the case of deformed bosons, which are quanta of q-deformed harmonic
oscillators [19–22]. Various physical systems, such as excitons [23], magnons [24], trapped ions [25],
or colliding atoms in Bose-Einstein condensates (BECs) [26, 27] can be considered to be represented
by q-deformed oscillators. In these systems, deformation parameter depends on the microscopical
parameters of the system. For example in the case of Frenkel excitons, q depends on the excitation
density. As the mean spacing of excitons in the low dimensional, finite size, semiconductor gets smaller
relative to the Bohr radius of the excitons, exciton-exciton collisions, or bi-exciton processes, become
significant. This attributes to fermionic character to otherwise bosonic excitons. Similar deformation
happens to a Bose gas when it falls into Tonks-Girerdau regime where the cold bosonic atoms statistically
transmute to demonstrate fermionic behavior.

Without resorting to any quantum group studies, statistical transmutation of bosonic particles can
be formulated by various statistics changing transformations, typically Jordan-Wigner map [28] or
Holstein-Primakoff [29]. q-Deformed description however is beyond such mathematical tools and has
deeper fundamental significance. Deformation parameter is related to the total number of particles or
total angular momentum, which are conserved quantities associated with the symmetries of the many
body system. Usual treatments of many-body systems violates such conservation rules and thus are
symmetry breaking approaches. Violation of a conservation rule leads to quantum fluctuations. Particle
number or angular momentum are conjugate to angular variables and thus, recovery of the symmetry can
be traced via phase diffusion times. Representing nonlinear interactions via q-deformations can therefore
be viewed to be a symmetry recovering approach. q-Deformation and the q-parameter can be compared
to the rise of the Goldstone modes with inertial parameters, characterizing the time scales of the recovery
of the lost symmetry.

The phase diffusion of interacting bosons is studied in [30] for atomic BECs (Also see [31]). A
toy model [32, 33] of the phase dynamics in the condensate mode is used for analyzing dephasing
rates of coherent, squeezed and thermal-coherent condensates [34, 35], together with another dephasing
mechanism, the so called thin spectrum[36–38].

In this paper we aim to examine the problem of phase diffusion in a more general setting. We
assume an arbitrary nonlinear interaction among the particles in a system, that can be described as a
q-deformation on a phase symmetry breaking state of the system. We particularly consider a deformed
coherent state [39] and our analysis characterize the phase diffusion rate as a function of the strength



Symmetry 2009, 1 242

of anharmonicity. Similar coherent states, as well as squeezed states [19, 40], are also studied under
Jaynes-Cummings model [41] to investigate the interaction of a deformed radiation field with a two level
atom [20, 21] or to study emission spectra of excitons in quantum dots [23]. Our analysis, on the other
hand, focus on the quantum phase diffusion of a deformed bosonic field per se, due to recovery of a
broken symmetry, via self interactions of the field particles.

The paper is organized as follows: In Section 2, we introduce the particular q-deformed algebra we
are going to use. In Section 3, the phase diffusion of a coherent state due to interactions is reviewed,
using a toy model that reveals the essential physical mechanism of the phase collapse. In Section 4, we
calculate the phase diffusion rate of a deformed coherent state. Finally, we conclude in Section 5.

2. The q-Deformed Algebra

A limiting case of the q-deformed algebras present in the literature is the one originally used to
introduce the deformed coherent states in [39], which has the q-commutation relation

aqa
†
q − qa†

qaq = 1 (1)

between the deformed creation and annihilation operators a†
q and aq. Here, right hand side is simply taken

to be unity but in general it could be a q dependent operator as well. This more general consideration
is not expected give a qualitatively different result for our purpose. Deformation parameter is taken as
0 < q ≤ 1. For an arbitrary value of q, the eigenvalues of the operator n̂q = a†

qaq are seen not to be
integers (except for 0 and 1), and the following relations hold for its normalized eigenstates:

a†
q|[n]⟩ =

√
[n + 1]|[n + 1]⟩ (2)

aq|[n]⟩ =
√

[n]|[n − 1]⟩ (3)

a†
qaq|[n]⟩ = [n]|[n]⟩ (4)

with

[n] =
n−1∑
i=0

qi =
1 − qn

1 − q
(5)

where n is an integer.
The deformed operator aq can be thought to be obtained from the undeformed operator a, which

satisfies [a, a†] = 1, via
aq = af(n̂) (6)

where n̂ = a†a and f is the nonlinearity function. Note that [aq, n̂] = aq, [a†
q, n̂] = −a†

q. The deformed
commutation relations discussed above can be obtained by substituting

f(n̂) =

√
1

n̂

1 − qn̂

1 − q
(7)

One interesting fact is that even though the Hilbert space is infinite dimensional, i.e., there are
a countable infinity number of eigenstates |[n]⟩ corresponding to every nonnegative integer n, the
eigenvalues are bounded from above, as

limn→∞[n] → 1

1 − q
(8)
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except for q = 1, when one has the undeformed bosonic harmonic oscillator algebra. This finite upper
bound is describing Gentile parastatistical character of the q-bosons [42, 43].

Emphasizing the connection between the q parameter and the nonlinear interactions, alternate forms
of deformed coherent states can be considered. Analogous to quantum optical generation of squeezed
states and sub-Poissonian distributions via nonlinear optical systems, it is possible to deform coherent
states to get squeezed states or states with deformed Poisson distributions. A deformed coherent state
|α⟩q is introduced as the right eigenstate of the annihilation operator, so

aq|α⟩q = α|α⟩q (9)

for α a complex number. It has the expansion

|α⟩q =
1√

Eq(|α|2)

∞∑
n=0

αn√
[n]!

|[n]⟩ (10)

where

[n]! =
n∏

i=1

[n], (11)

and the q-exponential function is

Eq(x) =
∞∑

n=0

xn

[n]!
(12)

The deformed coherent state has the deformed-poisson distribution. In the limit q → 1; [n]! → n! and
Eq(x) → ex, so the distribution reduces to Poisson distribution. This is clearly seen in Figure 1.

Figure 1. The (normalized) amplitudes of number states |[n]⟩ in the coherent state |α = 3⟩,
for different values of the deformation parameter. Note that the horizontal axis is [n], not n,
and each value of n corresponds to a data point in the plot.
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For q = 0.98 the maximum possible value of [n] is [n]max = 1/(1−q) = 50, so the distribution of the
amplitudes still looks symmetric. (The deformed Poisson distribution is not significantly different from
the undeformed one.) However, for q = 0.90, the maximum possible value of [n] is [n]max = 10, and a
clear asymmetry is seen because of this upper limit. In this limit the variance is decreasing rapidly with
decreasing q.

3. Phase Collapse in a Bosonic System

In this section we consider a bosonic system

aa† − a†a = 1 (13)

in order to see the phase collapse in the context of a toy model [33]. In this (bosonic) limit, we get the
ordinary coherent state:

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩ (14)

Note that we denote the eigenstates of the number operator by |n⟩ instead of |[n]⟩ in order to emphasize
that we are studying bosons. The time evolution of the harmonic state under the effect of a harmonic
Hamiltonian

Hh = µa†a (15)

is trivial to solve, and is well known to give another coherent state, i.e.,

|α(t)⟩ = |e−
iµt
h̄ α(0)⟩ (16)

up to an overall phase factor. However, if the Hamiltonian is anharmonic this will not be the case. In
order to see this, consider the simplest Hamiltonian

Ha = µ1a
†a + µ2a

†aa†a (17)

The time dependent expectation value of the annihilation operator a is given by

⟨α|eiHa
h̄

tae−iHa
h̄

t|α⟩ = αe−|α|2
∞∑

n=0

|α|2n

n!
e−i

2µ2n

h̄
te−i

(µ1+µ2)

h̄
t (18)

= αe−|α|2e−i
(µ1+µ2)

h̄
t exp (|α|2e−i

2µ2
h̄

t) (19)

(20)

For small times t, this gives

⟨a⟩ ∼ α exp

[
−2|α|2µ2

2

h̄2 t2
]

(21)

so the state loses its coherent character at a time scale τc ∼ h̄
µ2|α| . However, due to the fact that energy

levels have constant spacing, time evolution is periodic and this expectation value will revive after a time
τr ∼ h̄

µ2
. Note that in the thermodynamic limit, where the number of particles |α|2 → ∞, the ratio of

revival time to collapse times diverges.
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The nonlinearity in the starting Hamiltonian could be represented by a deformation in the form

aq = a +
ϵ

4
aa†a (22)

with ϵ = 1 − q ≪ 1. To the first order, nonlinear interaction coefficient is found to be µ2 = µ1ϵ/2.
This suggests that for small values of µ2, aq can be interpreted as perturbed about the bosonic character.
A similar (perturbative) character is observed in [18] for Frenkel excitons for large system sizes. In
principle, an actual system may contain additional nonlinear interactions beyond simple two body
collisions, which is similar to a Kerr type nonlinearity in optics. Kerr nonlinearity is used to generate
optical squeezed states, and higher order nonlinear processes would cause more non-trivial deformations
of Poisson distribution. As in the case of phase-number squeezing, one would expect further changes in
the phase and number fluctuations, and thus related phase diffusion behavior depending on the amount of
deformation or nonlinearity present in the physical system. In the subsequent discussions, more general
q-deformation picture will be treated.

4. Time Evolution of a Coherent State in a Deformed Algebra

We now consider the time evolution of a coherent state for q ̸= 1 under the effect of a
harmonic Hamiltonian,

Hh = µ1a
†
qaq (23)

for a bosonic deformation which satisfies

ϵ = 1 − q ≪ 1 (24)

The time dependent annihilation operator in Heisenberg picture is

aq(t) = ei
Hh
h̄

taqe
−i

Hh
h̄

t (25)

so its time dependent expectation value is:

q⟨α|aq(t)|α⟩q =
α

Eq(|α|2)

∞∑
n=0

|α|2n

[n]!
ei

µ1
h̄

([n+1]−[n])t (26)

Although it is not possible to give an analytical form to this function, we can expand it for small values
of ϵ get an estimate about its time evolution. Substituting

[n]! = n! + O(ϵ) (27)

and
[n + 1] − [n] = (1 − ϵ)n = 1 − nϵ + O(ϵ2) (28)

one gets

q⟨α|aq(t)|α⟩q = αe−iµ1t/h̄
∞∑

n=0

|α|2n

n!
ei

µ1
h̄

t(nϵ+O(ϵ2)) + O(ϵ) (29)

The form of this lowest nontrivial order terms look familiar to the corresponding ones for interacting
bosons. Roughly ∼ |α| terms will contribute to the sum. The spacing between frequencies of each term
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is ∼ µ1ϵ/h̄. So, for small time scales, the expectation value of the order parameter will decay with a rate
proportional to the reciprocal of a collapse time τc = h̄

|α|µ1ϵ
. Of course this is a very crude approximation,

and the simple small t expansion used in the previous section does not apply as it requires us to include
higher order terms in ϵ.

Nevertheless, it is shown that the coherent states, which are defined as the right eigenstates of the
annihilation operator, do not stay coherent under time evolution due to a simple harmonic Hamiltonian
for a general value of q. The decay rate depends on the simplest parameters, the variance of the
undeformed Poisson distribution |α| =

√
N , Planck constant h̄, the energy scale in the Hamiltonian

µ1, and the parameter ϵ which, in a way, quantifies how much the commutation relations are deformed.
(Here, N = |α|2 is the expectation value of the number operator for the coherent state.) We give
numerical plots of time evolution in Figure 2 and Figure 3 to show how with increasing values of
ϵ the collapse gets faster, and for larger values when higher order terms become important this no
longer is the case. This happens at values of ϵ where the the second order term in the difference
[n] − [n + 1] = (1− ϵ)n = 1 − nϵ + n2−n

2
ϵ2 + ... (which is present in the exponential for the expression

of ⟨α|a(t)|α⟩) becomes important, i.e., around Nϵ ∼ 1. For the plots, we have used a relatively small
number of atoms, α = 3, so that the ratio of revival and collapse times is small enough to see the long
time behavior clearly on one plot. In this particular case higher order terms become important at ϵ at
the order of ∼ 0.1. In Figure 2 increasing values of ϵ correspond to larger nonlinearity and hence faster
decay. However, in Figure 3 it is seen that for even larger values of ϵ this is not the case. Even though
larger ϵ corresponds to larger nonlinearity, the variation of [n] decreases with increasing ϵ as clearly seen
in Figure 1. In this range this decrease dominates and decay gets slower for larger ϵ.

Figure 2. Expectation value of the annihilation operator aq versus time in units of h̄/µ,
where the initial state is a coherent state with α = 3. Value of ϵ is 0.02 for solid, 0.04 for
dashed and 0.06 for dotted line.
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Two distinct behaviors of the coherence time with the deformation parameter observed here indicate
a nontrivial effect of nonlinearities and some beautiful physics. The nonlinearity in the Hamiltonian
helps to recover the broken symmetry. As deformation increases, higher order nonlinear processes also
influence the transfer of quantum fluctuations between the amplitude and the phase. It is necessary to
examine them separately to assess their roles in quantum noise redistribution more clearly. However, the
effect we see here is more strongly related to the initial noise distribution. For a larger deformation, the
system we examine starts with more phase broadened initial state to evolve under nonlinear Hamiltonian.
Kerr type interaction is more forgiving for those less phase coherent states and allows them to be longer
lived. This observation reveals that with increasing deformation we have two competing effects. One
is the increase of efficiency of Kerr type squeezing of number fluctuations, or the quicker recovery of
broken symmetry, while the other is to prepare an initial state less prone to life shortening effects of
phase diffusion.

Figure 3. Expectation value of the annihilation operator aq versus time in units of h̄/µ,
where the initial state is a coherent state with α = 3. Value of ϵ is 0.06 for solid, 0.08 for
dashed and 0.10 for dotted line.
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Finally, Figure 4 is plotted in order to show that even though there is some revival, it is not exact.
The simple reason for this is that the energy difference between the levels is different and monotonously
goes to zero as n → ∞. One common example to this lossless but irreversible behavior is observed in
the Jaynes Cummings Model [44], which is intrinsically and strongly anharmonic. Our interpretation of
q-deformation with intrinsic nonlinearities shines some light on the irreversible dynamics and eventual
fate of the broken symmetry, which is the recovery of it. Though the system enjoys some brief moments
of revivals, it can be seen that these are progressively lower in amplitude and broader. That means,
only partial recovery of the initial phase coherence is possible, and longer lifetime of the revived states
occurs progressively.
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Figure 4. Expectation value of the annihilation operator aq versus time in units of h̄/µ,
where the initial state is a coherent state with α = 3 and ϵ = 0.02, for larger times. Revival
is observed, but it is not exact so that the expectation value does not go up to its initial value.
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5. Conclusions

Coherent states, which are considered as variational ground states in many different contexts, do
not respect the U(1) phase symmetry of Hamiltonians they are used for. In bosonic systems, any
anharmonicity causes the loss of the coherent nature in a time scale inversely proportional to the strength
of the anharmonicity. A q-deformed harmonic oscillator, though seemingly harmonic, necessarily has
an underlying anharmonicity quantified by the deviation of the parameter q from 1. Therefore deformed
coherent state must undergo phase diffusion even though the deformed Hamiltonian involves no terms
other than a†

qaq. We have shown that this indeed is the case, and the collapse time of the expectation
value of the annihilation operator, which is nonzero for coherent states, is inversely proportional to 1−q.
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44. Eberly, J.H.; Narozhny, N.B.; Sanchez-Mondragon, J.J. Periodic spontaneous collapse and revival

in a simple quantum model. Phys. Rev. Lett. 1980, 44, 1323–1326.

c⃝ 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license http://creativecommons.org/licenses/by/3.0/.


	Introduction
	The q-Deformed Algebra
	Phase Collapse in a Bosonic System
	Time Evolution of a Coherent State in a Deformed Algebra
	Conclusions

