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Abstract: We propose and study a general class of tests for group symmetry of a multi-
variate distribution, which encompasses different types of symmetry, such as ellipsoidal and
permutation symmetries among others. Our approach is based on supremum norms of spe-
cial empirical processes combined with bootstrap. We show that these tests are consistent
against any fixed alternative. This work generalizes the methodology of Koltchinskii and
Sakhanenko [7], developed for ellipsoidal symmetry to the case of group symmetry. It also
provides a unified approach to testing different types of symmetry of a multivariate distribu-
tion.
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1. Introduction

Let S be a compact group of linear transformations (operators) from Rd to Rd. A Borel probability
measure P on Rd is called S-symmetric if and only if there exist an affine nonsingular transformation A0

from Rd onto Rd and a S-invariant Borel probability measure Π0 such that P = Π0 ◦A0. In other words,
if X is a random vector with the distribution P, then there exists an affine nonsingular transformation
A0 such that the random vector Z = A0X is S-invariant, which in its turn means that Z d

= SZ for all
transformations S from the group S. Clearly, an affine transformation A0 is not unique, as one could
take instead SA0 for an arbitrary transformation S from the group S. But, on the other hand, one could
always fix A0 by normalizing it in any proper way.
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Obviously, we can define Π0 = Π0,P as the distribution of the random variable Z = A0X . The couple
(A0,Π0) will be called parameters (specifiers) of the S-symmetric probability measure P. We denote by
E(Rd) the set of all S-symmetric distributions on Rd.

We are interested in the following problem. Given an independent identically distributed (i.i.d.) sam-
ple (X1, ..., Xn) from the distribution P, defined on the probability space (Ω,Σ,P), construct and study
tests for S-symmetry of the distribution P .

Our group approach will unify the theory for different tests for different types of symmetry. Below
we give some examples of common in literature types of symmetry S with corresponding choices of A0.

Example 1. Let S = {S : S(x1, ..., xd) = (±x1, ...,±xd)}. Then S-invariant probability
measure Π0 is a so called sign change symmetrical measure. Probability measure P is S-
symmetric if there exists an affine transformation A0 in the form A0x = x − θ0 with some
θ0 ∈ Rd such that P = Π0 ◦ A0. In this case, P is often called diagonally or reflectively
symmetrical measure.

Let |x| denote the Euclidean norm of a vector x ∈ Rd. If E|X| < +∞, one can define
θ0 = θ0(P ) := EX =

∫
Rd xP (dx). Obviously, the parameter θ0 and the transformation A0

are uniquely defined for any P such that the corresponding X is integrable (not necessarily
S-symmetric). We can also define in such a generality Π0 as the distribution of the random
variable Z = A0X .

Example 2. Let S be the group of all orthogonal transformations in Rd. Then S-symmetrical
probability measure P is often called ellipsoidally symmetric or elliptically symmetric or
elliptically contoured measure and Π0 is spherically symmetric one. In this case, if E|X|2 <
+∞, one can define θ0 = θ0(P ) as the mean EX =

∫
Rd xP (dx) and V0 = V0(P ) as the

square root of the covariance operator of X, so that A0x = A0(P )x = V −1
0 (x − θ0) for

any x from Rd. Define Π0 as the distribution of the random variable Z = A0X . As in
the previous case, these parameters are defined for any P such that the corresponding X is
square-integrable (not necessarily S-symmetric).

We refer to the papers [1–9] for results on ellipsoidal and spherical symmetry testing.

Example 3. Let d = 2 and let Sk be a group of all transformations translating a regular
polygon with k vertices centered at 0 into itself. Clearly, Sk is a subgroup of the group of all
orthogonal transformations. Thus, an affine transformation A0 can be fixed in the same way
as in example 2.

Example 4. Let S be a group of all reflections about hyperplanes {x ∈ Rd : xk =

xl, } k, l = 1, ..., d. Then for each S ∈ S there exists a permutation (i1, ..., id) such that
S(x1, ..., xd) = (xi1 , ..., xid) for all x ∈ Rd. In this case S-invariant probability measure Π0

is called permutation symmetric measure.
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As in examples 2 and 3 we can define A0x = A0(P )x = V −1
0 (x − θ0) for any x from Rd, where

θ0 = θ0(P ) := EX =
∫
Rd xP (dx) and V0 = V0(P ) is the square root of the covariance operator of X,

provided E|X|2 < +∞ (also see [10,11]).
Tests for symmetry of a multivariate distribution play an important role in statistics and in various

fields of science. To name a few, in finance theory log-returns of assets are assumed to be ellipsoidally
symmetric. In genetics it is assumed that gene expression values are diagonally symmetrically dis-
tributed. In image analysis components are assumed to be spherically symmetric. In linear programming
it is assumed that the distribution of feasible solutions is permutation symmetric. In statistics sliced in-
verse regression method due to Li, see [12], works for ellipsoidally symmetric distributions. Also since
tests for normality are extended to tests for ellipsoidal symmetry, any research field that employs multi-
variate analysis based on normality assumption can benefit from relaxing this assumption to ellipsoidal
symmetry assumption. So clearly symmetry tests are needed in applications. See [13] for a detailed
survey on the use of symmetry in various scientific fields.

The rest of the paper is organized in the following way. We give notations and construct test statistics
with examples in Section 2. Main results and bootstrapped test statistics are given in Section 3, followed
by a detailed example in Section 4. The proofs are in Section 5. The closing remarks are in Section 6,
followed by technical details in Appendix.

2. Notations and Preliminaries

Let m denote the uniform distribution (the normalized Haar measure) on the group S. Given a
bounded Borel function f on Rd, we define

mf (y) :=

∫
S
f(Sy) m(dS), y ∈ Rd. (1)

It is easy to check that for a S-symmetric P distribution with specifiers (A0,Π0) we have∫
Rd

f(A0x)P (dx) =

∫
Rd

mf (y)Π0(dy) (2)

for any bounded Borel function f . Indeed,
∫
Rd f(z)Π0(dz) =

∫
Rd f(Sy)Π0(dy) for any S ∈ S . Since

S is a compact group, one can integrate the equality over S with respect to the uniform measure. Thus,∫
Rd

∫
S f(Sy)m(dS)Π0(dy) =

∫
Rd mf (y)Π0(dy) implies (2).

As a result, if a class F characterizes the distribution, i.e.∫
Rd

fdQ1 =

∫
Rd

fdQ2 for all f ∈ F

implies that Q1 = Q2, then P is S-symmetric if and only if (2) holds for all f ∈ F . In general, we
call P a F-asymmetric distribution if and only if there exists a function f ∈ F such that (2) does not
hold. This observation is the key idea behind the tests that we construct and study. Naturally, a class
F should be rich enough and possess good properties for further analysis. Let us describe it. Let F
be a semialgebraic subgraph class as introduced in [7]. Basically, for a function from such a class, its
subgraph can be constructed from a union of intersections of a finite number of subgraphs of polynomials
of a finite degree in Rd. The same should be true for a product of two functions from such a class. For
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instance, one can use polynomials of bounded degree or trigonometric functions of bounded frequency
as F . The precise definition can be found in Appendix. We will provide a few examples later on.

Let Pn be the empirical distribution based on the sample (X1, ..., Xn). Assume in what follows that
An = An(P ) is a n1/2-consistent estimator of A0 = A0(P ). And, furthermore, there exists such a
function γA : Rd → R that Eγ2

A(X) < +∞ and as n→∞

n1/2(An − A0) = n1/2

∫
Rd

γA(x)d(Pn − P ) + oP (1).

For example, assuming E|X|2 < +∞ let us define θn and Vn as

θn := θn(X1, . . . , Xn) := X̄n := n−1

n∑
i=1

Xi

and

V 2
n := V 2

n (X1, . . . , Xn) := n−1

n∑
i=1

(Xi − X̄)(Xi − X̄)T ,

where all vectors are columns and superscript T denotes transposition. Then one can define Anx =

An(X1, ..., Xn)x = V −1
n (x − θn) in examples 2-4 and Anx = x − θn in example 1 for any x ∈ Rd.

Under the condition E|X|4 < +∞, Vn is a n1/2-consistent estimator of V0. Weaker moment assumptions
on P can be imposed if other statistics are considered for estimation of θ0, V0, such as a sample median
and an M -estimator for the covariance matrix. See, e.g., [14].

The scaled residuals of the observations (X1, ..., Xn) are defined as

Zj := Zj,n := AnXj, j = 1, . . . n.

Let Πn denote the empirical distribution based on the sample (Z1, ..., Zn).

Our approach to the problem of testing for S-symmetry will be to use the sup-norms of the stochastic
process

ξn(f) := n1/2
(∫

Rd

f(Anx)Pn(dx)−
∫
Rd

mf (y)dΠn(y)
)

= n−1/2

n∑
j=1

[
f(Zj)−mf (Zj)

]
, f ∈ F

as test statistics
Tn(F) := sup

f∈F
|ξn(f)|.

Such functionals can be viewed as ”measures of asymmetry“ of the empirical distribution because of the
relationship (2).

Note that a nonsingular affine transformation of the data (X1, . . . , Xn) results in an orthogonal trans-
formation of the scaled residuals. If a class F is invariant with respect to all orthogonal transformations
(i.e. for all f ∈ F and any orthogonal transformation O we have f ◦ O ∈ F), then the test statistic
defined as the sup-norm of the process ξn is affine invariant. This is the case in the following examples.

Example 1.1. Consider S from example 1. Let

H :=
{
{x ∈ Rd : 〈x, u〉 ≤ c} : u ∈ Sd−1, c ∈ R

}
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be the class of all half-spaces in Rd, where Sd−1 denotes the unit sphere in Rd. Consider the class

F := {IH(x) : H ∈ H}.

For f(·) = IH(·), we have mf (y) = 1
2d

∑
εi=±1

IH(ε1y1, ..., εdyd) =: 1
2d

∑
εi=±1

IH(εy), y ∈ Rd. The process

ξn becomes

ξn(H) =
n−1/2

2d

n∑
j=1

∑
εi=±1

(IH(Zj)− IH(εZj)), H ∈ H.

The test statistic is represented as

Tn(F) := sup
H∈H
|ξn(H)| = n−1/2

2d
sup
H∈H

∣∣∣∣ n∑
j=1

∑
εi=±1

(IH(Zj)− IH(εZj))

∣∣∣∣.
Example 1.2. Consider S from example 1. Let H be the class of all half-spaces in Rd as in the

previous example. Let
f(x) =

∑
εi=±1

(−1)|ε|IεH(x)

for εH = {x : 〈x, εu〉 ≤ c} with |ε| = ε1 + ...+ εd. Then we have mf (y) = 0. The process ξn becomes

ξn(H) = n−1/2

n∑
j=1

∑
εi=±1

(−1)|ε|IεH(Zj), H ∈ H

and the test statistic looks like

Tn(F) = n−1/2 sup
H∈H

∣∣∣∣ n∑
j=1

∑
εi=±1

(−1)|ε|IεH(Zj)

∣∣∣∣.
In one-dimensional case d = 1 this test statistic becomes

Tn := n−1/2 sup
c∈R

∣∣ n∑
j=1

(I(Zj≤c) − I(−Zj≤c))
∣∣.

One gets the expression that resembles a well known test for symmetry based on the empirical distribu-
tion function Pn,

T̃n = n−1/2 sup
x≤0
|n(Pn(x) + Pn(−x)− 1)|.

See, for instance the discussion in the paper [15].

Example 2.1. Consider S from example 2. Let

C := {{v ∈ Sd−1 : 〈v, l〉 ≥ c} : l ∈ Sd−1, c ∈ R+}

be the class of ”caps“ on the unit sphere Sd−1. Consider the class

F := {IC(
x

|x|
)I{0<|x|≤t} : C ∈ C, t > 0}.
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For f(·) = IC( ·|·|)I{0<|·|≤t}, we have mf (ρ) = m(C)I(0,t](ρ), ρ > 0. The process ξn becomes now

ξn(C, t) = n−1/2

n∑
1

(IC(
Zj
|Zj|

)−m(C))I{0<|Zj |≤t}, C ∈ C, t > 0.

The test statistic Tn(F) := supt>0,C∈C |ξn(C, t)| can also be represented as

Tn(F) = n−1/2 max
1≤j≤n

sup
C∈C

∣∣∣ j∑
k=1

(IC(
Z[k]

|Z[k]|
)−m(C))

∣∣∣,
where Z[j], j = 1, . . . , n, is the rearrangement of Z1, . . . , Zn, such that |Z[1]| ≤ · · · ≤ |Z[n]|. These tests
were studied in [7] and [9].

Example 2.2. Consider S from example 2. Let Gl denote the linear space of spherical harmonics of
degree less than or equal to l in Rd, and let Bl be the unit ball in Gl ∩ L2(Sd−1, dm). Denote

F := {I{0<|x|≤t}ψ(
x

|x|
) : ψ ∈ Bl, t > 0}.

Then for f ∈ F , we have f(x) = I{0<|x|≤t}ψ( x
|x|), x ∈ Rd, and mf (ρ) = m(ψ)I(0,t](ρ), where m(ψ) is

the average of ψ on Sd−1. In this case, the process ξn becomes

ξn(t, ψ) = n−1/2

n∑
1

(
I{0<|Zj |≤t}(ψ(

Zj
|Zj|

)−m(ψ))
)
, t > 0, ψ ∈ Bl.

The statistic Tn(F) := supt>0,ψ∈Bl |ξn(t;ψ)| becomes

Tn(F) = n−1/2 max
1≤j≤n

(dim(Gl)∑
s=1

( j∑
k=1

ψs(
Z[k]

|Z[k]|
)− δs1)

)2)1/2

,

where {ψs, s = 1, . . . , dim(Gl)} denotes an orthonormal basis of the space Gl, ψ1 ≡ 1, δij = 1 for i = j

and 0 otherwise, and dim of a set denotes the number of elements of the set. These tests were studied
in [7] and [9], where their superiority in level preservation and power performance over other tests both
theoretically and in a simulation study, was shown. A similar approach was used to test for multivariate
normality in [16]. The authors of [6] developed a different kind of tests for ellipsoidal symmetry based
on spherical harmonics.

Example 2.3. Consider S from example 2. Let H be the class of all half-spaces in Rd as in the
example 1.1. For f := IH , where H := {x ∈ Rd : 〈x, u〉 ≤ c}, we have mf (ρ) := γ( c

ρ
), where

γ(c) := m{v : 〈v, u〉 ≤ c}. The process ξn in this case is

ξn(u, c) := n−1/2

n∑
j=1

(
I{〈Zj ,u〉≤c} − γ(

c

|Zj|
)
)
, u ∈ Sd−1, c ∈ R

and the test statistic can be defined as

Tn := sup
c∈R

sup
u∈Sd−1

|ξn(u, c)|.
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This type of test statistics was systematically studied in papers [7,9,10].

Example 2.4. Consider S from example 2. Let

F :=
{ | · −t| − | · |

|t|
: t ∈ Rd, t 6= 0

}
.

For f(·) = |·−t|−|·|
|t| , we have mf (ρ) = ρβ(t)−1

|t| , where β(t) :=
∫
Sd−1 |v − t|m(dv). Thus, the process ξn

becomes

ξn(t) := n−1/2|t|−1

n∑
i=1

(
|Zi − t| − |Zi|β(t)

)
, t ∈ Rd

and the test statistic can be chosen as

Tn(F) := sup
t∈Rd,t6=0

|ξn(t)|.

Example 2.5. Consider S from example 2. Consider the class

F := {ei〈t,x〉, x ∈ Rd : |t| ≤ 1}.

For f(·) = ei〈t,·〉 we have mf (ρ) = cd
Jd/2−1(ρ|t|)
(ρ|t|)d/2−1 , ρ > 0, where Jl denotes the Bessel function of the l-th

order, the constant cd depends only on d. The process ξn becomes

ξn(t) = n−1/2

n∑
j=1

(
exp{i〈t, Zj〉} − cd

Jd/2−1(|Zj||t|)
(|Zj||t|)d/2−1

)
, |t| ≤ 1

and the test statistic can be chosen as
Tn := sup

|t|≤1

|ξn(t)|.

Consider S from example 3. Due to similarity between examples 2 and 3, one can choose the same
classes of functions for Sk from example 3. We give just one of the examples as an illustration.

Example 3.1. Consider the class F from example 2.1. Then for f(·) = IC( ·|·|)I{0<|·|≤t}, we have

mf (y) = 1
k

k−1∑
l=0

IC(Oly/|y|)I(0,t](|y|) for all y ∈ Rd, where Ol is the rotation on angle 2πl/k, l =

0, ..., k − 1. In this case, the process ξn is

ξn(C, t) = n−1/2

n∑
j=1

(IC(
Zj
|Zj|

)− 1

k

k−1∑
l=0

IC(OlZj/|Zj|))I{0<|Zj |≤t}, C ∈ C, t > 0.

The test statistic Tn := supt>0,C∈C |ξn(C, t)| can be also represented as

Tn(F) = n−1/2 max
1≤j≤n

sup
C∈C

∣∣∣ j∑
m=1

(IC(
Z[m]

|Z[m]|
)− 1

k

k−1∑
l=0

IC(OlZ[m]/|Z[m]|))
∣∣∣,

where Z[j], j = 1, . . . , n is the rearrangement of Z1, . . . , Zn, such that |Z[1]| ≤ · · · ≤ |Z[n]|.
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Example 4.1. Consider S from example 4. Let H be the class of all half-spaces in Rd as in the
example 1.1. Denote

F := {IH(y)I(yj1 ≥ ... ≥ yjk) : H ∈ H, (j1, ..., jk) is any combination from (1, ..., d)}.

Then for f ∈ F such that f(y) := IH(y)I(yj1 ≥ ... ≥ yjk) for y ∈ Rd we have

mf (y) = mH,i1,...,ik(y) =
1

d!

∑
(i1,...,id)

IH((yi1 , ..., yid))I(yij1 ≥ ... ≥ yijk ),

where the summation is over all permutations (i1, ..., id) of (1, ..., d). In this case the process ξn is

ξn(H, i1, ..., ik) := n−1/2

n∑
j=1

(IH(Zj)I((Zj)j1 ≥ ... ≥ (Zj)jk)−mH,i1,...,ik(Zj)),

H ∈ H, (j1, ..., jk) is any combination from (1, ..., d)

and the test statistic can be defined as

Tn := sup
H∈H

sup
2≤k≤d

sup
(j1,...,jk)

|ξn(H, j1, ..., jk)|,

where the last supremum is taken over all combinations (j1, ..., jk) out of (1, ..., d). Well known and
frequently used Friedman’s rank tests are based on the similar choice of a class F . For reference see the
papers [17] and [11].

It is not hard to see that the function classes defined in examples 1.1, 1.2, 2.1–2.4, 3.1, 3.2, and 4.1
are semialgebraic subgraph. In addition, classes F characterize the distribution in the case of examples
1.1, 2.1, 2.3, 2.4, 3.1, 4.1 above.

We say the class of transformations S preserves the semialgebraic property if for any polynomial p on
Rd of degree less than or equal to r the set {(x, t) ∈ Rd+1 : p(Sx, t) ≥ 0} belongs to SAq,d+1,l for some
q and l (see Appendix for the definition). Classes S, defined in examples 1–4, preserve the semialgebraic
property.

Let
E(f ;A) :=

∫
Rd

[
f(Ax)−mf (Ax)

]
P (dx).

It follows from (2) that, for a S-symmetric distribution P and for all f

E(f ;A0) = 0.

Let W ◦
P denote the P -Brownian bridge, i.e. a centered Gaussian process indexed by functions in

L2(Rd; dP ) with the covariance

EW ◦
P (f)W ◦

P (g) = P (fg)− P (f)P (g).

We will frequently use integral notation for W ◦
P (f) :

W ◦
P (f) =

∫
Rd

f(x)W ◦
P (dx).
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As always, `∞(F) denotes the space of all uniformly bounded functions on F with the sup-norm
‖Y ‖F := supf∈F |Y (f)|, Y ∈ `∞(F).

A sequence of stochastic processes ζn : F 7→ R is said to converge weakly in `∞(F) (in the sense of
Hoffmann-Jørgensen) to the stochastic process ζ : F 7→ R if and only if there exists a Radon probability
measure γ on `∞(F) such that γ is the distribution of ζ and, for all bounded and ‖ · ‖F -continuous func-
tionals Φ : `∞(F) 7→ R, we have E∗Φ(ζn) →

∫
Φ(x)γ(dx), where E∗ stands for the outer expectation,

which is defined as E∗Ψ = inf{EU : U ≥ Ψ, Ψ : Ω → [−∞,∞] measurable and EU exists} for a
Ψ : Ω→ [−∞,∞]. See for instance [18].

We assume in what follows that the class F satisfies standard measurability assumptions used in the
theory of empirical processes (see [19] or [18]). We also need smoothness conditions (S) on P and F ,
which are given in Appendix.

3. Main Results

Theorem 1 Suppose that F is a semialgebraic subgraph class, the smoothness conditions (S) hold and
Eγ2

A(X) < +∞. Define a Gaussian stochastic process

ξP (f) := W ◦
P (f(A0·)−mf (A0·)) + E′A(f ;A0)(

∫
Rd

γA(x)W ◦
P (dx)),

whose distribution is a Radon measure in `∞(F). Then the sequence of stochastic processes

{ξn(f)− n1/2E(f ;A0) : f ∈ F}

converges weakly in the space `∞(F) to the process ξP . In particular, if P is S-symmetric with specifiers
(A0,Π0), then the sequence ξn converges weakly in the space `∞(F) to the process ξP .

Define the test statistics
Tn := ‖ξn‖F .

Given α > 0, let
tα := inf

{
t : P{‖ξP‖F ≥ t} ≤ α

}
.

Let H0 be the hypothesis that P ∈ E(Rd) and let Ha be the alternative that P 6∈ E(Rd). Also, denote by
Ha(F) the alternative that P is F-asymmetric.

Theorem 1 and the well-known theorem of Cirel’son on continuity of the distribution of the sup-norm
of Gaussian processes, see [20], imply the following.

Corollary 1 Suppose all conditions of Theorem 1 hold. Under the hypothesis H0

P{Tn ≥ tα} → α

and under the alternative Ha(F)

P{Tn ≥ tα} → 1 as n→∞.

In particular, if F characterizes the distribution, then under the alternative Ha, i.e. for a fixed S-
asymmetric distribution P ,

P{Tn ≥ tα} → 1 as n→∞.
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In most cases, however, the limit distributions of such statistics as Tn depend on the unknown pa-
rameters of the distribution P. Thus, to implement the test one has to evaluate the distribution of the test
statistic using, for instance, a bootstrap method. We describe below a version of the conditional bootstrap
for S-symmetry testing. It is a generalization of the bootstrap method proposed in [7].

Given P, let P s denote the S-symmetric distribution with specifiers (A0,Π0). It will be called the
S-symmetrization of P. Denote by P s

n the S-symmetric distribution with specifiers (An,Πn). Let (Xs
1 ,

... ,Xs
n) be an i.i.d. sample from the distribution P s

n, defined on a probability space (Ω̂, Σ̂, P̂ ). One can
construct such a sample using the following procedure. Take an i.i.d. sample (Y1, ..., Yn) from Πn, which
is a resampling from (Z1, ..., Zn). Define

Xs
j := A−1

n Yj, j = 1, ..., n.

Then conditionally on (X1, ..., Xn), (Xs
1 , ..., X

s
n) is an i.i.d. sample from the S-symmetric distribution

P s
n.

In particular, for S from example 1

Xs
j := θn + εjYj, j = 1, ..., n,

where (ε1, ..., εn) is a Rademacher i.i.d. sample, that is εj = −1 or 1 with probability 1/2, j = 1, ..., n,

independent of (Y1, ..., Yn).
For S from example 2 one can take an i.i.d. sample (U1, ..., Un) uniformly distributed on Sd−1 and

an i.i.d. sample (Y1, ..., Yn) from Π̃n, the empirical distribution based on (|Z1|, ..., |Zn|), independent of
(U1, ..., Un). In other words, (Y1, ..., Yn) is the resampling from the sample (|Z1|, ..., |Zn|). Then

Xs
j := θn + VnUjYj, j = 1, ..., n.

For S from example 3 let (ε1, ..., εn) be an i.i.d. sample uniformly distributed on {0, 1, ..., k − 1}
independent of (Y1, ..., Yn), then

Xs
j := θn + VnOjYj, j = 1, ..., n,

where Oj is a rotation on the angle 2π
εj
k

about 0.
Finally, for S from example 4 consider n independent permutations {i(j)1 , ..., i

(j)
d } of (1, ..., d), j =

1, ..., n, independent of (Y1, ..., Yn). Then

Xs
j := θn +RjYj, j = 1, ..., n,

where Rj is a reflection transformation such that Rj(x1, ..., xd) = (x
i
(j)
1
, ..., x

i
(j)
d

) for x ∈ Rd.

Let P̂n denote the empirical measure based on the sample (Xs
1 , ..., X

s
n), and let

Ân := An(Xs
1 , ..., X

s
n).

Define the bootstrapped scaled residuals as

Ẑj := Ẑj,n := ÂnX
s
j , j = 1, . . . , n.
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Let Π̂n denote the empirical distribution based on the sample (Ẑ1, . . . , Ẑn).

The bootstrap version of ξn is the process

ξ̂n(f) := n1/2(

∫
Rd

f(Ânx)P̂n(dx)−
∫
Rd

mf (y)dΠ̂n(y))

= n−1/2

n∑
j=1

[
f(Ẑj)−mf (Ẑj)

]
, f ∈ F .

Let BL1(`∞(F)) denote the set of all functionals Φ : `∞(F) 7→ R such that |Φ(Y )| ≤ 1 for all
Y ∈ `∞(F) and |Φ(Y1)−Φ(Y2)| ≤ ‖Y1 − Y2‖F for all Y1, Y2 ∈ `∞(F). Given two stochastic processes
ζ1, ζ2 : Ω× Ω̂×F 7→ R, we define the following bounded Lipschitz distance:

dBL(ζ1, ζ2) := sup
Φ∈BL1(`∞(F))

|Ê∗Φ(ζ1)− Ê∗Φ(ζ2)|,

where E∗ denotes the outer expectation.
Now we are going to consider a bootstrap version of Theorem 1.

Theorem 2 Suppose that F is a semialgebraic subgraph class, the smoothness conditions (S) hold and
Eγ2

A(X) < ∞. Then the sequence of stochastic processes {ξ̂n} converges weakly in the space `∞(F)

to a version ξ̂P s of the process ξP s (defined on the probability space (Ω̂, Σ̂, P̂)) in probability P. More
precisely,

dBL(ξ̂n; ξ̂P s)→ 0 as n→∞ in probability P.

In particular, if P is S-symmetric, ξ̂n converges weakly to a version of the process ξP .

Define test statistics
T̂n := ‖ξ̂n‖F .

Given α > 0, let
t̂n,α := inf

{
t : P̂{T̂n ≥ t} ≤ α

}
.

In other words, t̂n,α is a (1−α)-quantile of the distribution of T̂n conditional on the sample (X1, ..., Xn).
Then Theorems 1 and 2 imply the following.

Corollary 2 Suppose all the conditions of Theorems 1 and 2 hold. Under the hypothesis H0

P{Tn ≥ t̂n,α} → α

and under the alternative Ha(F)

P{Tn ≥ t̂n,α} → 1 as n→∞.

In particular, if F characterizes the distribution, the bootstrap test is consistent against any asymmetric
alternative (subject to the smoothness conditions (S)): under the alternative Ha

P{Tn ≥ t̂n,α} → 1 as n→∞.

Thus, our method provides tests that are consistent against any S-asymmetric alternative.
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4. Detailed example

In this section we provide an example for which we verify all the assumptions and supply a step-by-
step computational algorithm. Let d = 2 and consider the problem of testing whether P is elliptically
contoured measure (Example 2). For a vector x ∈ R2 let (r, ϕ) ∈ [0,∞)×[0, 2π) be its polar coordinates.
For a fixed integer l let

F := lin({I{0<r≤t} cos(kϕ), I{0<|x|≤t} sin(kϕ) : 1 ≤ k ≤ l, t > 0}),

where lin(G) denotes the linear span of G with all the functions bounded by 1, see Example 2.2. This
class F satisfies the following assumptions.
1. It characterizes distribution only for l = ∞. For a finite l it does not characterize the distribution,
since one might find two different distributions Q1,2 such that∫ t

0

∫ 2π

0

cos(kϕ)dQ1(r cosϕ, r sinϕ) =

∫ t

0

∫ 2π

0

cos(kϕ)dQ2(r cosϕ, r sinϕ)

and ∫ t

0

∫ 2π

0

sin(kϕ)dQ1(r cosϕ, r sinϕ) =

∫ t

0

∫ 2π

0

sin(kϕ)dQ2(r cosϕ, r sinϕ)

for all t > 0, 1 ≤ k ≤ l.
2. F is a semialgebraic subgraph class. Indeed, for (x1, x2) the sets

{(x1, x2, s) : I(0 < x2
1 + x2

2 ≤ t2) cos(karctan(x2/x1)) ≥ s ≥ 0

or I(0 < x2
1 + x2

2 ≤ t2) cos(karctan(x2/x1)) ≤ s ≤ 0}

can be represented as unions of finite number of intersections of polynomial sets of finite degree. For
instance, for k = 1 we have have the following representation

{1− s2 ≥ 0, t2 − x2
1 − x2

2 ≥ 0, s ≥ 0, x2
1 − s2(x2

1 + x2
2) ≥ 0}

∪{1− s2 ≥ 0, t2 − x2
1 − x2

2 ≥ 0, −s ≥ 0, s2(x2
1 + x2

2)− x2
1 ≥ 0}.

The representations for any 1 ≤ k ≤ l can be obtained similarly using trigonometric identities. Obvi-
ously, similar arguments work for sines, linear combinations of sines and cosines and products of any
two functions from F .
3. F is invariant with respect to all orthogonal transformations, which are rotations on the unit circle.
Indeed, for any rotation on an angle τ a vector (r, ϕ) is transformed into the vector (r, ϕ+ τ). So for any
t > 0, 1 ≤ k ≤ l we have f(r, ϕ+ τ) = I{0<r≤t} cos(k(ϕ+ τ)) or f(r, ϕ+ τ) = I{0<r≤t} sin(k(ϕ+ τ)),
where both functions belong to the linear span of F and are bounded by 1. So any linear combination of
such functions, which is bounded by 1, would also lie in F .
4. Condition (S2) holds. Indeed, F is uniformly bounded by 1. For any δ > 0 and any f ∈ F we have
ωf (·; δ) = Cδ for some constant C > 0, so that the measure of the set defined in (S2) is zero for δ < ε.

Also note that the group S of all orthonormal transformations of R2 preserves semialgebraic property.
Indeed, for any rotation on an angle τ the sets

{(x1, x2, s) : I(0 < x2
1 + x2

2 ≤ t2) cos(karctan(x2/x1) + τ) ≥ s ≥ 0

or I(0 < x2
1 + x2

2 ≤ t2) cos(karctan(x2/x1) + τ) ≤ s ≤ 0}
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are semialgebraic. The same holds for sines and linear combinations of sines and cosines.
We also require the following two conditions on P : (S1) holds and Eγ2

A(X) <∞. The first condition
is satisfied for absolutely continuous P with the uniformly bounded and continuously differentiable
Lebesgue density with the corresponding derivative approaching zero at infinity faster than |x|−3, x ∈
R2. For example, distributions with densities on a finite support and normal distributions satisfy (S1).
The last condition is satisfied if E|X|4 <∞.

Given a random sample (X1, ..., Xn) from a distribution P let us describe a step-by-step testing algo-
rithm.
1. Obtain θn, Vn. In our example θn is the sample mean and Vn is the square root of the sample covari-
ance for the sample (X1, ..., Xn).
2. Calculate residuals Zj = V −1

n (Xj − θn), j = 1, ..., n.
3. Find the test statistics, which can be simplified as follows

Tn(F) = n−1/2 max
1≤j≤n

( l∑
k=1

[( j∑
i=1

cos(kϕi)
)2

+
( j∑
i=1

sin(kϕi)
)2
])1/2

,

where ϕi is the polar coordinate of Zi.
4. Choose a number of bootstrap repetitions, say M . On practice we often take a large number, for
instance M = 10000. Then the next four steps are repeated M times.
4.1. Generate a sample (Xs

1 , ..., X
s
n). In this example, first, generate a sample (U1, ..., Un) from a uniform

distribution on the unit circle, independent of (|Z1|, ..., |Zn|). Secondly, resample with replacement from
(|Z1|, ..., |Zn|) to obtain (R1, ..., Rn). Thirdly, Xs

j = θn + VnRjUj, j = 1, ..., n.
4.2. Obtain θ̂n, V̂n. In our example θ̂n is the sample mean and V̂n is the square root of the sample
covariance for the sample (Xs

1 , ..., X
s
n).

4.3. Calculate residuals Ẑj = V̂ −1
n (Xs

j − θ̂n), j = 1, ..., n.
4.4. Find the bootstrapped test statistics, which can be simplified as follows

T̂n(F) = n−1/2 max
1≤j≤n

( l∑
k=1

[( j∑
i=1

cos(kϕ̂i)
)2

+
( j∑
i=1

sin(kϕ̂i)
)2
])1/2

,

where ϕ̂i is the polar coordinate of Ẑi.
5. Based on (T̂

(1)
n , ..., T̂

(M)
n ) find the empirical (1−α)-quantile of the distribution of T̂n(F), conditional

on (X1, ..., Xn). Let us denote it as t̂n,α,M .
6. If Tn(F) ≥ t̂n,α,M then reject H0 : P is elliptically contoured distribution, at the significance level α.

5. Proofs

We use ideas and methods of the work [7]. Their technique was developed for ellipsoidal symmetry
and is needed to be adjusted for group symmetry. Basically one should change V −1(x − θ) to Ax

throughout the proofs. However, there are technical difficulties associated with using transformations A
instead of (θ, V ), they are hidden in the proofs of lemmas. We give a few details for completeness.

Let SP denote a subset of all nonsingular linear transformations in Rd. Given a transformation A ∈
SP denote τAf(·) := f(A·). For a function f on Rd, let

f̃(x) := f(x)−mf (x), x ∈ Rd.
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Given a class G of functions on Rd, define G̃ := {g̃ : g ∈ G},

Gaff := {τAg : A ∈ SP}.

Now the process ξn is represented as

ξn(f) = n1/2

∫
Rd

τAn f̃dPn, f ∈ F

and the process ξ̂n as

ξ̂n(f) = n1/2

∫
Rd

τÂn
f̃dP̂n, f ∈ F .

Clearly,

E(f ;A) =

∫
Rd

τAf̃dP.

Define
Es(f ;A) =

∫
Rd

τAf̃dP
s.

Given a function g on Rd, we can write∫
Rd

g(x)P s
n(dx) =

∫
Rd

∫
S
g(A−1

n Sy)m(dS)Πn(dy)

=

∫
Rd

Mg(An;x)Pn(dx), (3)

where
Mg(A;x) :=

∫
S
g(A−1SAx)m(dS).

A similar computation shows that∫
Rd

g(x)P s(dx) =

∫
Rd

Mg(A0;x)P (dx) =

∫
Rd

Mg(A0;x)P s(dx). (4)

Let
Γ(g;A) :=

∫
Rd

Mg(A;x)P (dx).

Given a class G of functions, define

G2 := {gh : g ∈ G, h ∈ G},

M(G) := {Mg(A, ·) : g ∈ G, A ∈ SP}.

We reformulate the following versions of lemmas from [7] that describe smoothness properties of the
functions introduced above and Donsker properties of the classes of functions given above. The con-
vergence of transformations is with respect to the operator norm on the set of all linear transformations.
Smoothness conditions are used in the proof of Lemma 1. Properties of Vapnik-Chervonenkis subgraph
classes are used in the proof of Lemma 2. See [18] for details on Vapnik-Chervonenkis, Glivenko-
Cantelli, and Donsker classes of functions.
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Lemma 1 Suppose that P and F satisfy the smoothness conditions (S). Then the following statements
hold:
(C1) If A→ A0 then

sup
f∈F

∫
Rd

|f̃A − f̃A0|2P (dx)→ 0

and
sup
f∈F

∫
Rd

|f̃A − f̃A0|2P s(dx)→ 0.

(C2) The function E(f ;A) is differentiable at the point A0 for any f ∈ F , and the Taylor expansion of
the first order

E(f ;A) = E(f ;A0) + E′A(f ;A0)(A− A0) + o(|A− A0|)

holds uniformly in f ∈ F .
(C3) Similarly, the function Es(f ;A) is differentiable at the point A0 for any f ∈ F , and the Taylor
expansion of the first order

Es(f ;A) = Es(f ;A0) + (Es)′A(f ;A0)(A− A0) + o(|A− A0|)

holds uniformly in f ∈ F .
(C4) The function Γ(g;A) is continuous with respect to A at A0 uniformly in g ∈ ((F̃)aff)2.

(C5) The function Γ(g;A) is differentiable at the pointA0 for any g ∈ (F̃)aff , and, moreover, the Taylor
expansion of the first order

Γ(g;A) = Γ(g;A0) + Γ′A(g;A0)(A− A0) + o(|A− A0|)

holds uniformly in g ∈ (F̃)aff . Moreover, the matrix-valued function A 7→ Γ′A(τAf̃ ;A0) is continuous at
A0 uniformly in f ∈ F .
(C6) if A→ A0, then for all δ > 0

sup
{∫

Rd

|MτB f̃
(A;x)−MτB f̃

(A0;x)|2P (dx) : B ∈ SP , |B − A0| ≤ δ
}
→ 0

and
sup
f∈F

∫
Rd

|MτAf̃
(A0;x)−MτA0

f̃ (A0;x)|2P (dx)→ 0.

Lemma 2 For a uniformly bounded semialgebraic subgraph classF , the classes (F̃)aff ,M((F̃)aff) and
M((F̃)2

aff) are uniformly Donsker and uniformly Glivenko–Cantelli.

Proof of Theorem 1. Define a process

ηn(f ;A) := n1/2(Pn − P )(τAf̃), f ∈ F , A ∈ SP .

(C1) and (F̃)aff being a P -Donsker class by Lemma 2 imply that we can use asymptotic equicontinuity
to obtain

lim
δ→0

lim sup
n→∞

P∗({ sup
|A−A0|≤δ

sup
f∈F
|ηn(f ;A)− ηn(f ;A0)| ≥ ε}) = 0
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for all ε > 0. Clearly,

ξn(f)− n1/2E(f ;A0) = ηn(f ;An) + n1/2
(
E(f ;An)− E(f ;A0)

)
= ηn(f ;A0) + n1/2(E(f ;An)− E(f ;A0)) + (ηn(f ;An)− ηn(f ;A0)).

If |An − A0| ≤ δ, we have

sup
f∈F
|ξn(f)− n1/2E(f ;A0)− ηn(f ;A0)− n1/2(E(f ;An)− E(f ;A0))|

≤ sup
|A−A0|≤δ

sup
f∈F
|ηn(f ;A)− ηn(f ;A0)|. (5)

Note that
ηn(f ;A0) = n1/2

∫
Rd

τA0 f̃d(Pn − P ).

Using (5) and n1/2-consistency of An we obtain

ξn(f)− n1/2E(f ;A0) = n1/2

∫
Rd

τA0 f̃d(Pn − P ) + n1/2(E(f ;An)− E(f ;A0)) + op(1) (6)

as n→∞ uniformly in f ∈ F . It follows from (C1) and n1/2-consistency of An that

n1/2(E(f ;An)− E(f ;A0)) = n1/2E′A(f, A0)(An − A0) + op(1), n→∞ (7)

uniformly in f ∈ F . Representations (6) and (7), the fact that (F̃)aff is a uniformly Donsker class from
Lemma 2 and (C1) imply that the sequence ξn(f)− n1/2E(f ;A0) converges weakly in the space `∞(F)

to the Gaussian stochastic process ξP . This implies the first statement of the theorem. If P is ellipsoidally
symmetric then E(f ;A0) = 0, which concludes the proof of Theorem 1.

Proof of Theorem 2. Define a process

η̂n(f ;A) := n1/2(P̂n − P s
n)(τAf̃), f ∈ F , A ∈ SP .

By Lemma 2, the class M(((F̃)aff)2) is uniformly Glivenko–Cantelli. This together with (C4) and
representations (3), (4) implies that∫

Rd

ghdP s
n →

∫
Rd

ghdP s as n→∞ a.s.

uniformly in g, h ∈ (F̃)aff . Similarly, since the classM((F̃)aff) is uniformly Glivenko–Cantelli, by (C5)
and representations (3), (4), we obtain∫

Rd

gdP s
n →

∫
Rd

gdP s as n→∞ a.s.

uniformly in g ∈ (F̃)aff .
Since (F̃)aff is a uniformly Donsker class, we can use Corollary 2.7 in [21] to prove that a.s. n1/2(P̂n−

P s
n) converges weakly in the space `∞((F̃)aff) to the same limit as n1/2(P̃n−P s), where P̃n is the empiri-

cal measure based on a sample from P s, i.e. to the P s-Brownian bridgeW ◦
P s . Asymptotic equicontinuity

and (C1) yield that for all ε > 0 P a.s.

lim
δ→0

lim sup
n→∞

P̂∗({ sup
|A−An|≤δ

sup
f∈F
|η̂n(f ;A)− η̂n(f ;An)| ≥ ε}) = 0. (8)
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Define
Ên(f ;A) :=

∫
Rd

τAf̃dP
s
n.

Since Ên(f ;An) = 0, we can write

ξ̂n(f) = η̂n(f ; Ân)+n1/2Ên(f ; Ân) = η̂n(f ;An)+n1/2(Ên(f ; Ân)−Ên(f ;An))+(η̂n(f ; Ân)−η̂n(f ;An)).

If |Ân − An| ≤ δ, we have

sup
f∈F
|ξ̂n(f)− η̂n(f ;An)− n1/2(Ên(f ; Ân)− Ên(f ;An))|

≤ sup
|A−An|≤δ

sup
f∈F
|η̂n(f ;A)− η̂n(f ;An)|. (9)

Note that
η̂n(f ;An) = n1/2

∫
Rd

τAn f̃d(P̂n − P s
n).

Using (8), (9) and standard asymptotic properties of the estimators An we obtain

ξ̂n(f) = n1/2

∫
Rd

τAn f̃d(P̂n − P s
n) + n1/2(Ên(f ; Ân)− Ên(f ;An)) + op(1) (10)

as n → ∞ uniformly in f ∈ F . Here and in what follows the remainder term op(1) converges to 0 as
n→∞ uniformly in f ∈ F in probability P× P̂.

Applying the asymptotic equicontinuity condition to the process n1/2(P̂n − P s
n) and using (C1), we

obtain
n1/2

∫
Rd

τAn f̃d(P̂n − P s
n) = n1/2

∫
Rd

τA0 f̃d(P̂n − P s
n) + op(1) (11)

as n→∞. Now we can write

n1/2(Ên(f ; Ân)− Ên(f ;An)) = n1/2(Ên(f ; Ân)− Es(f ; Ân))

−n1/2(Ên(f ;An)− Es(f ;An)) + n1/2(Es(f ; Ân)− Es(f ;An)). (12)

Note that by (3) and (4)

n1/2(Ên(f ;A)− Es(f ;A)) = n1/2(Pn − P )(MτAf̃
(An; ·)) + n1/2(Γ(τAf̃ ;An)− Γ(τAf̃ ;A0))

= n1/2(Pn − P )(MτAf̃
(A0; ·)) +

[
n1/2(Pn − P )(MτAf̃

(An; ·))− n1/2(Pn − P )(MτAf̃
(A0; ·))

]
+n1/2(Γ(τAf̃ ;An)− Γ(τAf̃ ;A0)).

Since, by Lemma 2,M((F̃)aff) is uniformly Donsker class and since (C5) and (C6) hold, it is easy to
prove the weak convergence of the processes{

n1/2(Ên(f ;A)− Es(f ;A)), f ∈ F , A ∈ B(A0)
}

in the space `∞(F × B(A0)), where B(A0) is a ball in SP with the center A0. Using the asymptotic
equicontinuity and (C6), we obtain

n1/2(Ên(f ; Ân)− Es(f ; Ân))− n1/2(Ên(f ;An)− Es(f ;An)) = op(1) as n→∞. (13)



Symmetry 2009, 1 197

It follows from (C3) and standard asymptotic properties of the estimators An, Ân that

n1/2(Es(f ; Ân)− Es(f ;An)) = n1/2(Es)′A(f, A0)(Ân − An) + op(1)

= (Es)′A(f, A0)n1/2

∫
Rd

γA(x)d(P̂n − P s
n) + op(1), n→∞, (14)

uniformly in f ∈ F . Relationships (10)-(14) along with, again, Corollary 2.7 in [21], imply the statement
of the theorem.

6. Conclusion

We propose and study a general class of tests for group symmetry, which encompasses different types
of symmetry, such as ellipsoidal and permutation symmetries. Our approach is based on supremum
norms of special empirical processes combined with bootstrap.

There are several advantages to our methodology. First, the test statistics are indexed by classes of
functions that are rich enough and still relatively simple to use. This provides some flexibility in choosing
a suitable class of functions, thereby giving an appropriate test. Secondly, these tests are consistent
against all possible asymmetric alternatives. Thirdly, they enjoy the property of affine invariance. Fourth,
these are bootstrap tests, which could be considered as a drawback but it is a way to deal with complex
nature of asymptotic null distribution of a non-bootstrap semiparametric test, and these tests have good
theoretical properties. Fifth, this approach gathers separate ideas and methods developed for various
types of symmetry under one umbrella. It provides a unified theory for studying statistical properties of
seemingly different tests for different types of symmetry.

7. Appendix

Definition of a semialgebraic set. For any polynomial p on Rm of degree less than or equal to r we
will call {x ∈ Rm : p(x) ≥ 0} a polynomial set of degree less than or equal to r in Rm. Let Pr,m denote
the class of all polynomial sets in Rm of degree less than or equal to r. Then any set from the union⋃
{A(B1, . . . , Bl) : B1, . . . , Bl ∈ Pr,m} is called a semialgebraic set of degree less than or equal to r

and order less than or equal to l, A(B1, . . . , Bl) being the minimal set algebra generated by B1, . . . , Bl.
Let SAr,m,l denote the class of all semialgebraic sets of degree less than or equal to r and order less than
or equal to l in Rm.

A class G of functions on Rd is a semialgebraic subgraph class if and only if for some r, l for all
functions g from G the set {(x, t) : g(x) ≥ t ≥ 0 or g(x) ≤ t ≤ 0} belongs to SAr,d+1,l and for all
functions g1, g2 from G the set {(x, y, t) : g1(x)g2(y) ≥ t ≥ 0 or g1(x)g2(y) ≤ t ≤ 0} belongs to
SAr,2d+1,l.

Conditions on P and F . We also introduce the following smoothness conditions on the distribution
P and the class F :

(S1) P is absolutely continuous with a uniformly bounded and continuously differentiable density p
such that for some CA > d+ 1

sup
x∈Rd

(1 + |x|)CA|p′(x)| < +∞,
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where p′ denotes the derivative of the density p.
(S2) The class F is uniformly bounded and for all ε > 0 and R > 0

sup
f∈F

mes
{
x ∈ Rd : |x| ≤ R and ωf (x; δ) ≥ ε

}
→ 0 as δ → 0.

Here mes denotes Lebesgue measure in Rd and

ωf (x; δ) := sup{|f(x1)− f(x2)| : |x1 − x| ≤ δ, |x2 − x| ≤ δ}.

The classes F characterize the distribution. The classes F characterize the distribution in the case
of the examples 1.1, 2.1, 2.3, 2.4, 3.1, 4.1 above. Indeed, this is a well-known property of the classes
used in examples 1.1, 2.3 and 4.1. As to the Example 2.4, we refer, e.g., to the paper [22] for similar
statements. To prove that this is the case in Example 2.1 (and in Example 3.1, similarly), consider
the map Rd \ {0} 3 x 7→ (|x|, x|x|) ∈ R+ × Sd−1. Since this map is a Borel isomorphism (even a
homeomorphism), it suffices to show that for any two finite measures P,Q in R+ × Sd−1 the condition

P ((0, t]× C) = Q((0, t]× C) for all t > 0, C ∈ C

implies P = Q. We will prove that, in fact, for any two finite measures P,Q on R+ × Rd the condition

P ((0, t]×H) = Q((0, t]×H) for all t > 0, H ∈ H,

where H is the class of all half-spaces in Rd, implies that P = Q (the previous statement then follows,
since one can consider two measures in R+ × Rd both supported in R+ × Sd−1). The condition

P ((0, t]×H) = Q((0, t]×H) for all t > 0, H ∈ H

is equivalent to the following one∫
R+

∫
Rd

I(0,t](u)I(−∞,c](〈l, x〉)P (du, dx)

=

∫
R+

∫
Rd

I(0,t](u)I(−∞,c](〈l, x〉)Q(du, dx)

for all l ∈ Sd−1, t > 0, c ∈ R. Using a standard approximation of Borel functions by simple functions,
we extend this to the equality∫

R+

∫
Rd

ϕ(u)ψ(〈l, x〉)P (du, dx) =

∫
R+

∫
Rd

ϕ(u)ψ(〈l, x〉)Q(du, dx)

that holds for all bounded Borel functions ϕ, ψ. If we set ϕ(u) := eisu and ψ(u) := eiu, we obtain that
the characteristic functions of P and Q are equal, which implies that P = Q.
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6. Manzotti, A.; Pérez, F.J.; Quiroz, A.J. A procedure for testing the null hypothesis of elliptical

symmetry. J. Multivariate Analysis 2002, 81, 2, 274-285.
7. Koltchinskii, V.; Sakhanenko, L. Testing for ellipsoidal symmetry of a multivariate distribution. In
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