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Abstract: The effector functions of T lymphocytes are responsible for most autoimmune disorders and
act by directly damaging tissues or by indirectly promoting inflammation and antibody responses.
Co-stimulatory and co-inhibitory T cell receptor molecules are the primary pharmacological targets
that enable interference with immune-mediated diseases. Among these, selective CD28 antagonists
have drawn special interest, since they tip the co-stimulation/co-inhibition balance towards efficiently
inhibiting effector T cells while promoting suppression by pre-existing regulatory T-cells. After having
demonstrated outstanding therapeutic efficacy in multiple models of autoimmunity, inflammation
and transplantation, and safety in phase-I studies in humans, selective CD28 antagonists are currently
in early clinical development for the treatment of systemic lupus erythematous and rheumatoid
arthritis. Here, we review the available proof of concept studies for CD28 antagonists in autoimmunity,
with a special focus on the mechanisms of action.
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1. Introduction

Autoimmunity arises when self-antigens or modified self-antigens are presented to T lymphocytes
in the absence of appropriate retro control. T cells become activated after integration of three types of
signals. T cell receptor (TCR) signaling triggered by a peptide antigen/HLA complex presented
by an antigen-presenting cell (signal 1). This is either reinforced or dampened by engagement
of co-stimulatory/co-inhibitory molecules (signal 2) and cytokines (signal 3) that regulate T cell
differentiation into pathogenic effector T cells (Teff), anti-inflammatory regulatory T cells (Treg),
or memory T cells.
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Whereas many T cell costimulatory/co-inhibitory systems have been identified, one of the most
important checkpoints controlling initial T cell differentiation is the interaction of CD80/86 on antigen
presenting cells (APC), with CD28 and CTLA-4 on T cells acting as a rheostat to turn T cells on and
off (Figure 1). Signal 1 plus CD28-mediated co-stimulation results in T cell activation, proliferation,
the synthesis of anti-apoptotic genes, and pro-inflammatory responses, and enhances IL-2 mRNA
transcript stability and IL-2 secretion, which is necessary for effector T cell and Treg expansion [1].
CTLA-4 is upregulated on naïve T cells shortly after activation or constitutively expressed on Treg cells.
It prevents CD28-mediated signals by two major mechanisms: [1] it can act by down-regulating CD80
and CD86 on antigen presenting cells (APCs) by trans-endocytosis, thereby altering the level of CD28
engagement [2]. In particular, follicular T helper cell (Tfh) differentiation is regulated by graded control
of CTLA-4 by the strength of CD28 engagement [3]. (2) CTLA-4 has also been described to act directly
in a cell-intrinsic manner by recruiting phosphatases opposing TCR and CD28-mediated signals [4],
and by inhibiting TCR–CD28-mediated raft expression [5]. The clearest proof indicating that CTLA-4
is a major checkpoint for T cells comes from the observation that knocking out ctla4 in mice leads to
a lethal lymphoproliferative syndrome [6,7], whilst in humans some immune dysregulation (such
as Graves’ disease, autoimmune hypothyroidism, and type 1 diabetes) [8] and lymphoproliferative
diseases [9] result from genetic alterations that cause CTLA-4 deficiency.
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CD86 and therefore inhibit binding of CD28. By doing so, CTLA4-Ig molecules have the capacity to 
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Figure 1. While many T cell co-stimulatory systems have been described, the main molecules driving
de novo T cell responses are CD28 and CTLA-4. CD28 binds to CD80/86 expressed on antigen-presenting
cells and “warms up” T cells (through the activation of pro-inflammatory, pro-survival, and activating
and proliferation factors), whereas CTLA-4 “cools it down” by counteracting CD28-mediated events,
by eliminating CD80 molecules on antigen-presenting cells and by activating negative regulators.

The first biologics used to interfere with CD28-mediated signals were wild-type or high-affinity,
recombinant-soluble domains of CTLA-4 fused with an immunoglobulin Fc domain (e.g., many forms
of labscale CTLA4-Ig, abatacept, and belatacept). CTLA4-Ig molecules dock onto CD80 and CD86
and therefore inhibit binding of CD28. By doing so, CTLA4-Ig molecules have the capacity to also
inhibit binding of CTLA-4 to CD80/86 (and also of CD80 to PD-L1 [10]), which might perturb the
co-inhibitory function of membrane-bound CTLA-4. Indeed, a reduced accessibility of CTLA-4 for
CD80/86, with CTLA4-Ig or other reagents, led experimentally in vitro [11,12] and in vivo [13–15]
to a reduction of the suppressive functions of Treg cells. Therefore, we and others proposed [16,17]
that selectively targeting CD28 might share the benefit of CTLA4-Ig (blockade of CD28-mediated
signals) without perturbing the co-inhibitory CD80/86-CTLA4 axis required for the control of Treg cell
functions and for the control of effector T cells, particularly for highly differentiated effector memory T
cells (such as Th17 cells), which are tightly controlled by CTLA-4 [18]. Since then, the “selective CD28
blockade” proof of concept has been tested in experimental transplantation and autoimmune settings
and has also begun evaluation in humans.
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Blocking the CD28-CD80/CD86 pathway using anti-CD28 monoclonal antibodies (mAbs) has
been challenging due to the inadvertent stimulatory activity of most conventional anti-CD28 mAbs
(for review [19]). More precisely, because CD28 is expressed on cell membranes as homodimers,
anti-CD28 antibodies, which are also homodimeric molecules, induce a clustering of CD28 molecules,
which results in the phosphorylation of PI3K, a molecular signal also induced by engagement
of CD80/86 [20]. This occurs independently of the binding epitope, so that a given anti-CD28
antibody can be an antagonist of CD80/86 (if it binds to the MYPPPY domain recognized by
CD80/86) while still presenting agonistic properties. To date, all antibodies directed against CD28
were found to activate the receptor instead of only blocking access to its ligand. An exception is
the anti-rat JJ319 mAb, which in vivo rapidly induces internalization of CD28 and presents functional
antagonist properties [21]. To our knowledge, an antibody-inducing CD28 downmodulation has not
been identified in another species. “Superagonistic” anti-CD28 antibodies (such as the TGN1412
antibody [22]) bind to the laterally exposed C”D loop of CD28 and induce a non-physiological
engagement of CD28 resulting in polyclonal T cell activation and cytokine release even in the absence of
TCR stimulation [23]. To develop “antagonist-only” anti-CD28 antibodies, mutations in the Fc domain
have been introduced to prevent cross-linking of CD28 through Fc/FcγR interaction. However, while
this strategy was efficient in vivo in rodents [24,25], “Fc-silenced” anti-CD28 mAb still co-stimulated
human T cell proliferation and cytokine release in vitro [26], which halted their clinical development.

In our first studies specifically targeting CD28, we also introduced a strategy that aimed at
avoiding crosslinking CD28 and described a monovalent anti-CD28 antibody fragment (i.e., Fab or
scFv), presenting an “antagonist-only” action on T cells [16,20]. To increase the otherwise limited
in vivo half-life of monovalent antibody fragments, molecular fusions with alpha-1-antitrypsin [16]
or chemical conjugation with a polyethylene glycol (PEG) moiety have been proposed [17,27].
While single-chain-Fv-alpha-1-antitrypsin conjugates still presented a limited half-life in primates of
about 24 h [11], conjugation of a Fab’ antibody fragment with PEG resulted in a weeklong, clinically
compatible extension in primates and in humans [17,27,28]. These pegylated monovalent anti-CD28
antibodies presented a remarkable safety profile in pre-clinical models [19] and in humans [28].
To our knowledge, two “antagonist-only” anti-CD28 Fab’-PEG antibodies are currently in clinical
development: FR104 (OSE Immunotherapeutics, Nantes, France/ Janssen Inc. Springfield, PA, USA)
and the lulizumab (BMS-931699; Bristol Myers Squibb, New-York City, NY, USA).

Here, we review available preclinical experience with “antagonist only” anti-CD28 antibodies in
autoimmunity models and discuss what clinical benefit might be obtained from this novel therapeutic
approach in the corresponding human pathologies.

2. Models of Immune-Mediated Diseases of the Skin

The skin is a large and complex organ whose function by far exceeds a barrier against external
insults. The skin also tightly regulates inflammatory responses and supports immunity against infections,
allergens, and tumors. Diverse innate and adaptive inflammatory and regulatory immune cells
collaborate to maintain immune skin homeostasis [29]. Inflammatory skin disorders are quite diverse,
and result in a wide range of symptoms ranging in severity from mild itching and redness to serious
medical health complications in chronic conditions such as psoriasis. Psoriasis is a complex multifactorial
relapsing inflammatory skin disease characterized by erythematous scaly plaques [30]. Psoriasis lesions
are characterized by histological features such as a thickened epidermis caused by keratinocyte
proliferation (acanthosis), the retention of nuclei in the stratum corneum (parakeratosis) that arises
from an aberrant differentiation of keratinocytes, and inflammatory cell infiltrates in the epidermis
and dermis. Despite intensive research and the identification of the significant role of Th17 cells,
the underlying pathogenic mechanisms remain to be fully understood. Whilst the pharmacological
treatment of psoriasis has substantially progressed over the last decade, novel drugs currently do
not satisfy long-term efficacy and safety requirements [31,32]. Blocking costimulation at the origin
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of the expansion/activation of pathogenic effector T cells while preserving natural co-inhibition and
regulatory T cell functions might result in long-term remission.

CTLA4-Ig (Abatacept, Bristol Myers Squibb, New-York City, NY, USA) has been previously
evaluated in a phase 1 open-label dose-escalation study in psoriasis vulgaris [33]. Forty-six percent
of all study patients achieved a 50% or greater sustained improvement in clinical disease activity,
with progressively greater effects observed in the highest-dosed cohorts. Recently, Abatacept
demonstrated efficacy in a double-blind placebo-controlled phase III trial in psoriatic arthritis patients
but with only modest benefit on psoriatic skin lesions [34]. Due to the mixed mechanism of action of
CTLA4-Ig on both costimulatory and co-inhibitory pathways, as well as the greater sensitivity of Th17
to co-inhibition by CTLA-4 [35], several groups evaluated the efficacy of selective CD28 antagonists in
the context of skin inflammation (DTH, Transplantation) and, more particularly, psoriasis.

Humanized mouse skin transplantation models provide a useful method for directly assessing
human skin as a T cell target. FK734, an Fc-silenced anti-CD28 mAb, demonstrated preclinical efficacy in
a humanized model in which human psoriasis plaque from patients were grafted onto immunodeficient
SCID mice [25]. FK734 could reduce the epidermal thickness and the magnitude of human lymphocytic
infiltrates in these transplanted human psoriasis plaques. It was also efficient at preventing human
skin (from healthy volunteers) allograft rejection in humanized mice, in which it reduced endothelial
injury and thrombosis, as well as human T cell skin infiltration [26]. However, as previously described,
this FK734 antibody shared both antagonist and agonist properties, and its clinical development
was stopped. While models of skin grafts on humanized mice are usually alloimmune rather than
autoimmune, they are particularly stringent and offer ‘human-specific’ mechanistic insights that cannot
be gained elsewhere. In the context of transplantation, it is important to note that CTLA4-Ig has
not gained a large amount of traction due to the comparatively high acute rejection rates in renal
transplantation [36,37]. In a recent experimental study examining alloimmune responses against
human skin, FR104 was compared directly to CTLA4-Ig [15]. Of interest, both agents blocked T cell
proliferation and activation in vitro, yet in vivo in a humanized model only FR104 demonstrated
potent suppression of T cell responses against human skin. This was associated with a reduction
in the expression of the cutaneous lymphocyte antigen (CLA) molecule on circulating T cells, thus
reducing their access to skin. Infiltration of human skin grafts with CD8+ effector T cells has previously
been shown to be important for the destructive alloimmune response in this model [38]. Much of
the enhanced effectiveness of FR104 over CTLA4-Ig may be attributed to its ability to maintain
immune regulation, as evidenced by the preservation of FOXP3+ cell infiltration into skin, both in
this model and others [39]. Indeed, CLA+ regulatory T cell (Treg) infiltration into skin has previously
been shown to be beneficial for the protection of skin against T cell responses [40]. An intriguing
aspect of these findings in this and other humanized models is that direct CD28 blockade, but not
CTLA4-Ig treatment, is able to terminate immune responses that are known to be mediated by
memory phenotype T cells [41]. This may be because depriving the evolving alloimmune response
of CTLA-4-mediated co-inhibition results in an inability to terminate T cell activation [42]. In both
autoimmune and alloimmune pathology, the skew towards effector activity is associated with reduced
immune regulatory activity. Maintaining the ability of Tregs to exert activity through one of their
principal effector molecules, CTLA-4, is therefore important [43,44]. In support of this is the finding
that human skin transplants receive enhanced protection from alloimmune destruction when adoptive
Treg therapy is combined with FR104, but not CTLA4-Ig. In vitro, this effect manifests as effector T cell
resistance to Treg-mediated suppression when under the direct influence of CTLA4-Ig, but not FR104.
The ability to maintain suppression in the presence of direct CD28 blockade highlights the role that
Treg-expressed CTLA-4 plays in promoting co-inhibition through parallel mechanisms.

Besides using human skin grafts on humanized mice as a surrogate model for skin inflammatory
disorders, novel experimental models of skin inflammation have been recently developed based on
clinical evidence in humans. Aldara cream, containing 5% Imiquimod (a TLR7 and TLR8 agonist),
is used in humans for topical treatment of genital and perianal warts, actinic keratosis, and superficial



Antibodies 2017, 6, 19 5 of 14

basal cell carcinoma. Several studies have, however, reported that Imiquimod application induces
psoriasis or exacerbates the disease in patients, and that psoriasis-like lesions occur at both the treated
area but also at distant skin sites that were unaffected before treatment [45–48]. Topical treatment of
mouse skin with Aldara was reported as a novel mouse skin inflammatory model with histology that
closely resembles psoriasis inducing acanthosis, parakeratosis, and a mixed inflammatory infiltrate
with a predominance of the IL23/IL-17 axis similar to humans [49–51]. We found that daily topical
application over 2 weeks to baboons also induced chronic erythema, as well as skin thickening and
scaling, with a histology which resembled psoriasis and lichenoid lesions, and with a predominance of
the IL-23/IL-17 molecular axis [52]. Skin inflammation resolved spontaneously after arrest of Aldara
application, allowing us to perform different cycles of Aldara over months to model relapse phases in
patients. A single administration of FR104 at 10 mg/kg was performed on day 0 of Aldara application.
FR104 significantly reduced skin erythema, skin thickening, and desquamation. Epidermal thickening
and proliferation, as well as T-cell and macrophage skin infiltrates, were also strongly decreased
in line with clinical improvement. The protective clinical and biological benefit of FR104 was still
observable during the second cycle of Aldara application performed two months after FR104 injection,
demonstrating that FR104 has a long-term action after a single administration.

To address the impact of selective CD28 blockade more specifically on memory T lymphocytes,
we used more conventional delayed-type hypersensitivity (DTH) models of skin inflammation. DTH is
clearly different from psoriasis as it is characterized as a type IV hypersensitivity reaction, but involves
cell-mediated immunity initiated by CD4 and CD8 antigen-specific memory Th1 lymphocytes secreting
IFNγ and the recruitment of macrophages [53]. Before the discovery of the importance of the IL-17 axis
in psoriasis, Th1 responses were considered as a hallmark of psoriasis in opposition to the Th2-bias
in atopic dermatitis. We previously developed a DTH model in baboons immunized twice with
Bacillus Calmette–Guérin (BCG) vaccine and then chronically challenged by intradermal injection of
tuberculin to induce erythema and skin inflammation characterized by infiltration by macrophages
and memory T lymphocytes [54]. Like the Aldara model, skin inflammation resolved spontaneously,
which allowed us to perform new skin antigen re-challenge every month to mimic relapse phases
in patients. FR104 dose-dependently suppressed memory T cell-induced skin inflammation [55],
with a very long-term antigen-specific hyporesponsiveness effect at 10 mg/Kg, even several months
after complete drug elimination. Interestingly, CTLA4-Ig (Belatacept, Bristol Myers Squibb, New-York
City, NY, USA) had no effect on this memory-driven model, once again demonstrating the advantage of
selectively targeting CD28 while sparing co-inhibition for long-term effect. Importantly, we found that
FR104 does not impair memory immunity against chronic latent virus infection, since no reactivation
against several viruses relevant to human immune-related complications have been observed in
treated animals, such as Hepatitis E virus (HEV), polyomavirus (SA12, SV40), Herpes virus (HVP-2),
Cytomegalovirus (CMV), and Lymphocryptovirus (LCV, closely related to human EBV).

3. Models for Neuroinflammatory Diseases

Experimental autoimmune encephalomyelitis (EAE) is an accepted model of the human
autoimmune component of the neurological disease multiple sclerosis (MS). EAE models in
genetically susceptible strains of inbred/SPF mice and rats and non-human primates are used for
translational research into the pathogenesis and therapy of MS [56]. New World primates, such as
the common marmoset (Callithrix jacchus), and Old World primates, such as the rhesus monkey
(Macaca mulatta) and the cynomolgus monkey (Macaca fascicularis), appear to be equally susceptible
to EAE, but differ dramatically in clinical and pathological presentation. While the EAE model in
marmosets approximates chronic MS in clinical and pathological presentation, the EAE models in both
macaque species more closely resemble acute post-infectious forms of human demyelinating disease,
such as acute disseminating encephalomyelitis. Because FR104 lacks cross-reactivity with marmoset
CD28, Haanstra et al. tested the EAE model in rhesus monkeys rather than testing in marmoset
models [57]. EAE was induced in 12 healthy adult male rhesus monkeys by a single intracutaneous
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immunization with recombinant human myelin oligodendrocyte glycoprotein (residues 1-125; rhMOG)
formulated with CFA (day 0). This model has been validated with the anti-α4β1 mAb Natalizumab,
which is clinically used for the treatment of MS [58]. The 12 monkeys were randomly assigned to
the treatment of control group (both n = 6). FR104, or the equivalent volume of the solvent vehicle,
were dosed via the intravenous route at 10 mg/kg on days 0, 7, 14, and 21. Pharmacokinetic assessment
showed that adequate trough levels (>50 µg/mL) of FR104 were achieved throughout the study and
that FR104 was remarkably non-immunogenic despite the usage of the strong bacterial adjuvant
CFA. The clinical effect was 100% as 6/6 placebo-treated monkeys succumbed to severe clinical EAE,
whereas 0/6 FR104-treated monkeys developed clinical symptoms. The dramatic clinical effect was
reflected at the pathological level, whereby cerebral inflammation and demyelination were strongly
suppressed. A potential adverse effect of strong immune suppression is the reactivation of latent
viral infections such polyoma- and herpes-viruses, which these monkeys are naturally infected with.
Overall, no significant reactivation of CMV or polyomavirus (SV40, SA12) was observed, but elevated
levels of the EBV-related Macaca lymphocryptovirus were detected in the FR104-treated monkeys [57].

An often-heard criticism against the preclinical relevance of animal disease models is that the
experimental treatment acts on the activation of naïve T cells, which is fundamentally different
from the situation in patients where the autoreactive T cells are antigen-experienced and often
constitutively activated. Recent work in the marmoset EAE model shows that the disease is not
driven by immunologically naïve T cells, but by antigen-experienced effector memory T cells present
in the pathogen-educated primate immune system. Although this observation needs to be replicated
for the rhesus monkey, it suggests that the primate model more closely resembles the clinical situation.

4. Arthritis Models

Type II collagen-induced arthritis (CIA) is an accepted model of human arthritic disease.
CIA models have been established in genetically susceptible strains of inbred/SPF mice and in
marmosets, rhesus monkeys, and cynomolgus monkeys. In the past two decades, the rhesus monkey
model of CIA has been used for a variety of purposes, including the analysis of critical autoimmune
mechanisms, the identification of biomarkers for the two main aspects of the disease, namely the
inflammation and erosion of the synovial joints, and, finally, the efficacy assessment of a broad
range of promising new treatments. These include small molecules, cytokines, mAbs, and gene
therapy. In a blinded and placebo-controlled preclinical study, Vierboom et al. compared FR104 versus
CTLA4-Ig (Abatacept) efficacy in a collagen-induced arthritis (CIA) monkey model [59]. CIA was
induced by intracutaneous immunization with chicken collagen type II (chCII) in complete Freund’s
adjuvant. FR104 and Abatacept were administrated at 10 mg/kg on day 0, 7, 14, 21, 28, 35, and
42. Both drugs significantly suppressed clinical symptoms of arthritis, C-reactive protein (CRP) and
IL-6 inflammatory biomarkers, and anti-collagen type II serum antibody responses (both IgM and
IgG). Joint inflammation, as well as bone and cartilage damage, were also significantly suppressed
with both FR104 and Abatacept. In contrast to Abatacept, however, only FR104 showed effective
suppression of chCII-induced peripheral blood monocytic cells proliferation, in particular in lymph
nodes. It is possible that the difference between Abatacept and FR104 lies in the better control by
FR104 of follicular T helper cells (Tfh) in the lymph nodes. Indeed, Tfh express high levels of PD-1
and ICOS, which, in addition to their respective ligands PD-L1 and ICOS-L, also interact with CD80
and CD28, respectively [10,60]. On one hand, Abatacept limits the co-inhibitory interaction between
PD-1 and CD80, and, on the other hand, FR104 blunts the co-stimulatory interactions between ICOS
and CD28 [27]. Ville et al. have shown in both mice and primates that Tfh responses and the release
of IL-21, in a situation where CD28-CD80/86 interactions are similarly inhibited, are more repressed
when PD-1/CD80 interactions are unopposed and CD28/ICOS interactions are blocked [61].
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5. Autoimmune Uveitis Model

Autoimmune uveitis (AIU) is part of a wide range of diseases characterized by inflammatory
responses in the uvea, an anatomical layer of the eye located between the sclera and the retina
including the iris, ciliary body, and choroid. Inflammation can also extend to adjacent tissues,
such as the retina, optic nerve, and vitreous humor [62]. AIU affects people in their most productive
years from 20 to 50 years of age. It is among the leading causes of visual deficit and blindness [63]
(approximately 10% of all cases), and has a very significant impact on quality of life of these
patients. Moreover, some autoimmune diseases such as Behçet’s disease [64], reactive arthritis [65],
sarcoidosis [66], and Vogt-Koyanagi-Harada syndrome [67] may additionally exhibit uveitis along
with other clinical manifestations; however, eye disease exhibits particularities in these syndromes.

Current therapies for AIU rely mainly on immunosuppression strategies to control acute
inflammation and to ensure the maintenance of long-term remission. Corticosteroids are usually
the first line of treatment due to their effectiveness at controlling inflammation, both in the short
term and in the long term. However, a myriad of possible side effects (e.g., weight gain, gastric
ulceration, osteoporosis, fluid retention, hypertension, diabetes mellitus, and changes in mental
status), as well as ocular sequelae (e.g., acceleration of cataract formation and glaucoma), may be
observed [68]. Although a number of promising strategies are being developed, most have limited
efficacy, given the heterogeneous nature of AIU. Blockade of IL-2R with Daclizumab, for example,
is not effective in all cases of anterior uveitis [69]. Furthermore, whilst TNF-α antagonists are well
tolerated, they are only efficient in some specific cases of uveitis [70]. Altogether, the difficulties of
targeting cytokines in AIU highlight the non-redundant roles of different cytokines in the pathogenesis
of the disease.

A significant effort has been undertaken to discover new targets and molecules that would allow
for more precise manipulation of the immune system with the additional goal of mitigating side effects.
In this regard, the use of different animal models for uveitis [71] has been key in the development of
novel therapeutic approaches. Among the many animal models available, experimental autoimmune
uveitis (EAU) is the most accepted model for human AIU, since EAU shares key characteristics
with its human counterpart, such as the nature of antigens, T cell involvement, and histological
features. The disease model is initiated by immunization of rodents with ocular antigens—such as the
interphotoreceptor retinoid-binding protein (IRBP) or its immune-dominant epitopes—in the presence
of adjuvants [72]. This process leads to the onset of T-cell-mediated ocular inflammation, with cellular
features resembling those of human AIU. Infiltrating CD4+ T cells express a mainly T helper (TH) 1
phenotype [73], but Th17 cells were also shown to play an important role in the EAU pathogenesis [74].
Importantly, both TH subsets are able to independently promote the onset of the disease [75].

Using EAU to mimic human AIU, Papotto and colleagues showed that administration of
mPEG PV1 Fab’ (referred to as PV1 hereafter) during the initial phases of disease decreased ocular
tissue damage and disease incidence [76], corroborating previous findings that pointed to B7/CD28
blockade as a promising immunotherapeutic strategy for EAU [77]. The observed reduction in
ocular inflammation was accompanied by a decrease in the activation profile of CD4+ and CD8+

eye-infiltrating T lymphocytes, and T cells from secondary lymphoid organs also displayed a decrease
in CD69, CD25, PD-1, and Tim-3 activation markers [76]. Accordingly, Th1 and Th17 cell numbers
in the draining lymph nodes were lower in PV1-treated mice when compared with their untreated
counterparts. Of note, regulatory T cells (Treg) were also decreased in the secondary lymphoid
organs after PV1 administration [76], suggesting that the overall reduction in T cell activation and
cytokine production is not Treg-dependent, and does not result from anergy. In fact, antigen-specific
restimulation of draining lymph node cells in the presence of PV1 resulted in decreased IFN-γ
production, indicating that CD28 blockade by PV1 impairs TH1 lymphocyte ability to secrete cytokines
upon antigen reencounter [76].
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Altogether, CD28 blockade in AIU is a promising immunotherapeutic strategy, as it seems to
act directly in the effector TH subsets responsible for the pathogenesis of the autoimmune uveitis.
It is important, however, to better understand the mechanisms of action of CD28 blockade, to ensure
specificity and avoid undesired interactions with other co-stimulation pathways.

6. Lupus Nephritis

Lupus is a prototypic autoimmune disease resulting from a loss of tolerance to self-antigens.
Targeting costimulatory pathways is an emerging therapeutic strategy in lupus [78], particularly
lupus nephritis, one of the most frequent and serious manifestations of the disease. In animal models,
a CTLA4-Ig fusion protein blocked autoantibody production, prevented lupus nephritis, and prolonged
life in NZB/NZW lupus-prone mice [79]. In clinical trials, however, humanized CTLA-4-Ig (abatacept,
belatacept) had a limited impact on mild or severe (nephritis) forms of the disease [80,81]. This lack of
clear clinical efficacy may be due to the simultaneous blockade by these drugs of CD28 and CTLA-4
pathways, which negatively impacts on the expansion and function of Tregs. Selective blockade of
CD28 to preserve the generation of Tregs may therefore be a more efficacious approach for targeting
costimulatory pathways in lupus. In NZB/NZW lupus prone mice, 3-month treatment with a pegylated
Fab’ antibody fragment against mouse CD28 prevented the development of lupus nephritis in terms of
proteinuria and of renal glomerular and interstitial inflammatory changes. Treatment also prolonged
overall survival [82], and its effects were sustained for up to 12 weeks after treatment discontinuation.
Similarly, anti-CD28 blockade decreased, but not abrogated, the production of anti-double standard
DNA antibodies, along with a trend involving a decrease in the number of intra-renal CD138+ cells
(presumably plasmocytes). The protective effect of the anti-CD28 Fab’ fragment was associated with
a decrease in serum levels of soluble CD40L and of intra-renal expression of TNF-alpha and IL6
(reflecting a decrease in renal inflammation), and of CD244. Treatment was also associated with a
decrease in the intra-renal expression of FoxP3+, with the number of FoxP3+ cells being unexpectedly
increased in the setting of murine lupus nephritis [83]. In contrast, in mice where CD28 was blocked,
the intrarenal expression of the two co-inhibitory molecules PD1 and PDL-1, of GATA3, CD8, and IDO,
were increased compared to control mice. The increase was most striking for the immunoregulatory
molecule IDO (mainly in renal tubules), which may result from a decrease in intra-renal inflammation.
These encouraging data generated in animal models indicate that selective CD28 blockade warrants
further assessment in clinical lupus.

7. Conclusions

This review briefly summarizes the data published principally for primate models of major
autoimmune diseases affecting young human adults. Controlling in vitro alloreactivity and responses
to allografts via selective CD28 targeting was initially assessed in rodent models [16,84], and was
subsequently confirmed in experimental allo-transplantation in primates [11,27,85]. The data reviewed
above in the field of autoimmunity show a strong consensus for anti-CD28 blockade, which is similar
to transplantation models, with a disturbed generation of effector T cells and expansion of regulatory
mechanisms (Treg cells, IDO) [11,82]. Altogether, the initial allotransplantation data and the most recent
studies in autoimmune models demonstrate an advantage for selectively targeting CD28 over other
molecules, as it uniformly blocks both the activation arm and modulates the CD80/86 co-stimulation
branches (extended to non-CD28 ligands such as PDL1 [10]), and provides a compelling case for
clinical development.

The maturation of a target molecule from initial concept to a therapeutically accepted entity
is typically a long process, and is restricted by known and unpredictable hazards. In this respect,
the translation of the selective CD28 antagonists, with encouraging effectiveness in a variety of
stringent experimental models of human diseases, was deliberately developed with major safety
considerations in mind [22]. The initial option of developing a monovalent Fc-free molecule targeting
an antagonist CD28 epitope, being unable to crosslink CD28, and showing no adverse effects in NHP
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and humans [28,86], has rejuvenated the interest of blocking this major co-stimulation pathway of
the immune response. It is also conceivable that selectively targeting T cells instead of multiple cell
lineages including non-immune cells, as for anti-CD40, will further enhance the therapeutic safety
profile. However, a possible drawback of a strong control of T cell activation is an increased probability
to fail in mounting protective immune responses, mainly against viruses. This point has been carefully
followed up in the first clinical evaluation [28]. In addition, as for other humanized therapeutic
monoclonal antibodies there is a risk that anti-drug antibodies develop in some patients, which if
quantitatively important might impact tolerance or activity. Only forthcoming clinical trials can
definitively assess the risk-benefit ratio of the various approaches of costimulation blockade, and may
ultimately allow fine-tuning to achieve the optimal clinical indications.
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