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Abstract: In this study, we used sodium chloride (NaCl) to extensively modulate non-specific
protein-protein interactions (PPI) of a humanized anti-streptavidin monoclonal antibody class 2
molecule (ASA-IgG2). The changes in PPI with varying NaCl (CNaCl) and monoclonal antibody
(mAb) concentration (CmAb) were assessed using the diffusion interaction parameter kD and second
virial coefficient B22 measured from solutions with low to moderate CmAb. The effective structure
factor S(q)eff measured from concentrated mAb solutions using small-angle X-ray and neutron
scattering (SAXS/SANS) was also used to characterize the PPI. Our results found that the nature
of net PPI changed not only with CNaCl, but also with increasing CmAb. As a result, parameters
measured from dilute and concentrated mAb samples could lead to different predictions on the
stability of mAb formulations. We also compared experimentally determined viscosity results with
those predicted from interaction parameters, including kD and S(q)eff. The lack of a clear correlation
between interaction parameters and measured viscosity values indicates that the relationship between
viscosity and PPI is concentration-dependent. Collectively, the behavior of flexible mAb molecules in
concentrated solutions may not be correctly predicted using models where proteins are considered to
be uniform colloid particles defined by parameters derived from low CmAb.

Keywords: protein-protein interactions; small-angle scattering; protein stability; formulation
development

1. Introduction

Monoclonal antibodies (mAbs) are a major class of protein biotherapeutics widely
used to treat a variety of diseases [1]. Owing to gastric degradation and their inherent
high molecular weights, the most preferable administration route for mAb therapeutics
is through subcutaneous (SC) injections [2,3]. Due to their relatively low specificity and
restrictions on the injection volume for SC administration, mAbs are frequently formu-
lated at high concentrations to achieve desired therapeutic dosages [4–6]. The spatial
distances between individual mAb molecules decrease significantly with increasing protein
concentration, leading to self-association and elevated solution viscosity [7–9]. To this
end, excipients are frequently included in solution formulations to improve the stability,
bioavailability and manufacturability of mAb products [10–13].
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Although it is undesirable to have oligomers in mAb products, small fractions of
such higher-order structures are present in mAb formulations [14–16]. The formation of
oligomers initiates when two mAb molecules form dimers. The self-association between
two mAb molecules can be represented as M + M 
 D , where M and D represent the
monomer and dimer concentration at equilibrium, respectively. The equilibrium constant
K is expressed as [D]/[M]2; thus, it describes the tendency of mAb monomers to form
dimers. Since K remains constant, an increase in the monomer concentration will lead to an
increase in the number of dimers. On the other hand, removing dimers from the system will
stimulate the formation of more dimers until the monomer-dimer equilibrium is restored.
Therefore, from the basis of chemical equilibrium, the formation of higher-order structures
is inevitable, and the number of dimers present in the system is dictated by the value of
K. Numerous studies have shown that the percentage of dimers could vary between 0.9%
to 2.8% in certain mAb formulations [17–19]. Moreover, Chaturvedi et.al. measured the
self-association of several mAbs and found the association constants covered a wide range
from 10 µM to 1 mM for weakly associative mAbs [20]. In general, the formation of mAb
oligomers can be expressed as:

M + M 
 D + M 
 T + M 
 · · · 
 O

where M, D, T and O represent the monomer, dimer, trimer and oligomer concentrations,
respectively. Each step has its own equilibrium constant that can be calculated by the
concentration of products and reactants at equilibrium. As mentioned earlier, excipients
such as salts and sugars are often included in the formulation to improve the stability
of mAb molecules by reducing the extent of self-association [11]. It is known that the
monomer-dimer equilibrium can change from one solution environment to another by, for
example, adding small molecule inhibitors [21], salts [22] and sugars [23]. Therefore, the
presence of excipients in a solution can alter oligomer formation by altering various aspects
that contribute to the native equilibrium constants.

Both experimental and computer-based approaches have been developed to aid the
formulation development of mAb products. For computer simulations, different models
have been developed to capture various molecular features of mAbs for improved predic-
tions of PPI. Among others, coarse-grained bead models that account for the shape and
surface anisotropy of mAb molecules have been used to predict the stability and viscosity of
concentrated mAb formulations [24–26]. While advancements have been made in computer
simulations, experimental data are needed to validate the force field used for the simulation
and select molecular features that best describe a particular mAb molecule.

In recent studies of the self-association of proteins, protein molecules have been
modelled as colloidal particles [27,28]. In this formalism, the interaction between two
protein molecules is governed by steric repulsion. Protein molecules can also interact due
to surface anisotropy and solvent-mediated interactions [29]. These interactions can be
either attractive or repulsive in nature [29,30]; therefore, they diminish or enhance the
interaction between two protein molecules. When considering proteins as colloid particles,
the tendency of proteins to stay in their monomeric form is typically referred to as their
colloidal stability, and it is dominated by the net balance between repulsive and attractive
protein-protein interactions (PPI) [31].

A wide range of characterization methods has been developed to predict the colloidal
stability of mAbs in various formulations. These techniques are used to extract experimen-
tal parameters containing information on the net PPI, with the underlying assumption
that mAbs are colloidally stable if the net PPIs are repulsive and unstable if the net PPIs
are attractive [32–34]. Dynamic light scattering (DLS) and static light scattering (SLS) are
two widely used techniques to study the colloidal stability of protein therapeutics in solu-
tion [35,36]. The diffusion interaction parameter kD and the second virial coefficient B22
are estimated from DLS and SLS, respectively. Although kD and B22 are measures of the
deviation from non-ideal solution properties which obey the Van’t Hoff relation, they have
been used to predict the PPI and viscosity for concentrated mAb formulations [37–43]. In
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addition to DLS/SLS, the effective structure factor S(q)eff measured from small-angle X-ray
and neutron scattering (SAXS/SANS) also provides information on spatial arrangements
and intermolecular interactions of mAbs in solution. In recent years, there have been
a number of studies of PPI using SAXS/SANS [24,44–49]. Our previous study demon-
strated the use of SAXS for studying the stability and viscosity of mAbs under various
formulation conditions [11]. One of the major differences between kD/B22 and S(q)eff is
that the latter can be measured directly from concentrated mAb solutions up to hundreds
of mg/mL. Thus, S(q)eff provides a direct probe of PPI present in concentrated formula-
tions. Previously, we examined the correlations between kD/B22 and S(q)eff measured from
commonly used excipient formulations, where excipients were formulated at particular
concentrations, for example, 300 mM sucrose and 200 mM glycine [11]. In this study, we
focus on only one excipient: NaCl. The thermodynamic, hydrodynamic and structure of a
human anti-streptavidin monoclonal antibody (ASA-IgG2) was characterized with various
amounts of NaCl in solution, ranging from 0 mmol/L (mM) up to 1200 mM. High NaCl
concentrations were included to extensively modulate the PPI and monomer-oligomer
equilibrium of ASA-IgG2, allowing us to thoroughly characterize the effects of NaCl on
interactions among concentrated mAb molecules. In addition, our study includes NaCl
concentrations greater than 150 mM, as high concentrations of salt are extensively used in
protein precipitation [50,51]; thus, knowing the changes in PPI with an increasing amount
of salt will allow a fundamental understanding of the physics of PPI as probed by the
various scalar and derived scattering parameters determined in this study.

2. Materials and Methods
2.1. Protein Preparation

Stock solution of anti-streptavidin monoclonal immunoglobulin antibody class 2
(ASA-IgG2) was taken from a −80 ◦C freezer and thawed at room temperature. The mAb
solutions were dialyzed against 10 mM sodium acetate buffer at pH 5.2 overnight at 4 ◦C for
complete buffer exchange. For SANS measurements, a second dialysis step was included, in
which the ASA-IgG2 solution was dialyzed against 10 mM sodium acetate buffer prepared
using D2O. The pD of the deuterated buffer was adjusted to 5.2 with 10 M NaOD. The unit
M stands for the molar concentration of mol/L, whereas mM stands for the concentration
of 10−3 mol/L. After dialysis, ASA-IgG2 in desired buffer conditions were concentrated
to 215 mg/mL using an Amicon centrifugal concentrator with a molecular weight cut-off
(MWCO) of 3 kDa. In order to prevent unwanted protein gelation, extra precautions were
taken during the concentration step. For example, the mAb solutions were only allowed to
spin at 4000× g at 18 ◦C for a maximum of 10 min at a time. After each centrifugation step,
the samples were gently but thoroughly mixed before the next cycle. The concentrated
solutions were diluted to desired protein concentrations using appropriate amounts of
dialysis buffer or 5 M NaCl solution or both. Certain samples with high mAb and NaCl
concentrations could not be made due to difficulties in preparing concentrated ASA-IgG2
(greater than 215 mg/mL) and NaCl (greater than 5 M) stock solutions. The concentration
of ASA-IgG2 mAb was determined from its absorbance at 280 nm with a percent extinction
coefficient of 16 [52]. Samples were thoroughly mixed by gentle pipetting and spun at
16,000× g for 15 min prior to SAXS/SANS measurements.

Certain commercial equipment, instruments, or materials (or suppliers, or software, . . . )
are identified in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and Technology,
nor does it imply that the materials or equipment identified are necessarily the best available
for the purpose.

2.2. Small-Angle X-ray Scattering (SAXS)

SAXS measurements were performed on the BioSAXS beamline at the Cornell High-
Energy Synchrotron Source (CHESS) in Ithaca, NY, USA. Samples were centrifuged at
13,500× g for 30 min and then transferred to a 96-well plate. The plate was placed on a
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robotic platform, allowing samples to be automatically loaded into a capillary sample cell
for X-ray exposures [53,54]. Scattering profiles with the q-range of 0.008–0.8 Å−1 were
recorded with an X-ray energy of 9.88 keV at 25 ◦C. A total of 32 × 5-s exposures were
taken from each sample with oscillations in order to limit radiation damage. Between
each measurement, the capillary sample cell was washed thoroughly with three capillary
volumes (CVs) of ultrapure water, 5 CVs of 10% Hellmanex in 20% ethanol, 4 CVs of
70% ethanol, 4 CVs of ultrapure water, and, finally, 2 CVs of buffer. Buffer was measured
between protein samples to ensure the absence of contaminants in the capillary sample cell.
SAXS data were reduced and processed using the BioXTAS RAW software [55] to produce
scattering intensity I(q) vs. q scattering profiles, where q is the scattering vector and is
defined as 4π sin(θ)/λ, where λ is the wavelength and 2θ is the scattering angle.

2.3. Small-Angle Neutron Scattering (SANS)

SANS profiles were measured on the Center for High-Resolution Scattering (CHRNS)
30-m SANS instrument (NGB30) at the NIST Center for Neutron Research (NCNR), National
Institute of Standards and Technology, Gaithersburg, MD, USA. Samples were prepared in a
deuterated buffer with varying amounts of NaCl and mAbs. Sample solutions were loaded
into quartz cells with path lengths of either 1 mm or 2 mm for measurements. In particular,
the 2 mm cells were used for samples with CmAb less than 50 mg/mL, while 1 mm cells
were used for more concentrated samples. All measurements were made at 25 ◦C. A total of
three different sample-to-detector distances were used (1.5 m, 5.0 m, and 13.0 m) to cover a
q-range from 0.007 Å−1 to 0.3 Å−1. SANS data reduction and model fitting were performed
using NCNR SANS reduction and analysis macros in the IgorPro software package [56] to
produce I(q) vs. q scattering profiles that are corrected for scattering from the buffer as well
as incoherent scattering from hydrogen atoms in the sample.

2.4. Calculation and Analysis of Effective Structure Factor S(q)eff

For an ideal system that consists of monodisperse, homogeneous and isotropic disper-
sions of spherical particles, the total scattering I(q) can be expressed as:

I(q) =
N
V

(∆ρ)2V2
p P(q)S(q) (1)

where (N/V) and Vp represent the number density and volume of scattering particles,
respectively, and ∆ρ represents the difference in scattering length densities between the
particle and solvent background. P(q) is the form factor that is related to the size and shape
of the scatterers, whereas the structure factor, S(q), is related to the spatial arrangements of
particles and thus contains information on the interparticle interactions. Since mAbs are
non-spherical and anisotropic, the experimentally determined S(q) is often referred to as the
effective structure factor S(q)eff since it is affected by the shape and anisotropy of interactions
between molecules [57,58]. The effective structure factor S(q)eff is concentration-dependent,
and it can be determined from the total scattering I(q) using the following equation:

S(q)e f f =
I(q)concentrated
s × I(q)dilute

(2)

where I(q)dilute is the scattering profile measured from dilute solutions where only P(q)
contributes towards the total scattering. In this study, I(q) measured from 2 mg/mL ASA-
IgG2 solutions were considered as I(q)dilute since S(q) is equal to 1 at low concentration.
I(q)concentrated are the scattering profiles measured from concentrated solutions, where not
only the P(q) but also the S(q) contribute toward the total scattering. The value s is the
scaling factor for the given concentration where the scattering was measured and is used to
normalize the scattering profiles measured from various concentrations [59,60].

Experimentally, the concentration of ASA-IgG2 antibody was measured before scatter-
ing experiments so that the scaling factor s could be calculated based on this information.
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The S(q)eff profiles were obtained from the measured I(q)concentrated and I(q)dilute scattering
profiles, as shown in Equation (2). Special attention was paid before dividing I(q)concentrated
with s×I(q)dilute to make sure that the scattering profiles in the high-q region (for example,
the linear region from 0.10 Å−1 to 0.14 Å−1) were normalized as shown in Supporting
Information Supplementary Figure S1. Since only P(q) contributes to I(q) in the high-q
region, the scattering profiles should be identical. Therefore, checking the high-q scatter-
ing profiles ensured the proper extraction of structure factors; detailed instructions on
how to extract S(q)eff profiles can be found in previous publications [11,60]. Our previous
study demonstrated that flexible mAbs can be treated as spheres at a larger length scale
where configurational variations of mAb molecules do not perturb interparticle corre-
lations [61]. Therefore, S(q)eff profiles can be fitted using statistical mechanical models
of the structure factor [62]. These include: (1) the hard sphere model, where the steric
repulsion is considered to be the only intermolecular interaction; (2) the Hayter–Penfold
model, where additional Coulomb repulsions between molecules are also considered; and
(3) the Two–Yukawa model, where both attractive and repulsive interactions are taken into
account [11,61,63–65]. The S(q)eff were analyzed using the Orstein–Zernike (OZ) integral
equation with the assumption that the protein molecules were spherical particles. In the
hard sphere model, Percus−Yevick (PY) closure was used for the calculation of S(q)eff, and
the interparticle potential U(r) was expressed as [66]:

U(r) =
{

∞, r < 2R
0, r ≥ 2R

(3)

where r is the center of mass separation between two spheres with a radius of R. In the
Hayter–Penfold model, the interaction potential U(r) was expressed as [65]:

U(r) =

{
∞, r < δ

Z2

πε0ε(2+κδ)2
e−κ(r−δ)

r , r ≥ δ
(4)

where Z and δ are the effective charge and diameter of the particle, respectively, κ is the
inverse of the Debye–Huckel screening length, ε0 is the permittivity of free vacuum, and
ε is the dielectric constant of the solvent [67]. In the Two–Yukawa model, the reduced
interaction potential U(x) was expressed as [68]:

U(x) =

{
∞, x < 1

−K1
e−Z1(x−1)

x − K2
e−Z2(x−1)

x , x ≥ 1
(5)

where x is equal to r/δ. K1 and Z1 are the strength and range of attractive interactions,
whereas K2 and Z2 are the strength and range of repulsive interactions, respectively. S(q)eff
is represented by S(0)eff, the value of S(q)eff extrapolated to q = 0, which was obtained by
fitting the S(q)eff profiles to the above models.

2.5. Dynamic Light Scattering (DLS)

DLS experiments were performed to obtain the diffusion interaction parameter kD
for ASA-IgG2 prepared in various NaCl solutions at 25 ◦C. Samples were centrifuged
at 16,000 rpm for 5 min prior to measurements. Aliquots of 120 µL were loaded onto a
96-well plate (SensoPlates by Greiner Bio-One Inc., Charlotte, NC, USA) and measured
on a DynaPro II plate-reader (Wyatt Technologies, Santa Barbara, CA, USA) with a laser
wavelength of 830 nm. For each NaCl concentration, the mutual diffusion coefficient
Dm was measured from 1 series of mAb solutions with CmAb ranging from 1 mg/mL to
10 mg/mL. The value of kD was determined as the linear slope of Dm versus CmAb:

Dm = D0(1 + kDCmAb) (6)
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where D0 is the self-diffusion coefficient of the protein and can be determined from the
intercept of plot.

2.6. Composition Gradient Multi-Angle Light Scattering (CG-MALS)

CG-MALS is a technique that combines equilibrium experimental data with interpreta-
tion facilitated by fitting to a developing set of theoretical models. In this study, CG-MALS
experiments were performed under room temperature on a Calypso composition gradient
system (Wyatt Technology, Santa Barbara, CA, USA) in conjunction with a DAWN-HELEOS
MALS photometer, an Optilab rEX on-line differential refractometer for concentration mea-
surements (all detectors from Wyatt Technology), as well as offline UV measurements by
Nanodrop. The photometer was calibrated with toluene. ASA-IgG2 stock solutions were
prepared in 10 mM sodium acetate buffer at pH5.2 with various NaCl concentrations. The
stock solutions were then manually diluted with appropriate buffers to yield secondary
solutions of 50 mg/mL. The secondary solutions were purified through 0.22 µm Anotop
ceramic filters (Whatman GE, Billerica, MA, USA) before the measurements. The DAWN
laser power was reduced to avoid detector saturation. For each CG-MALS measurement,
both sample and buffer were combined in the auto-diluter to produce concentration series
down to 5 mg/mL, injected (1 mL total) into the flow cells at 1 mL/min, and the flow was
stopped for 300 s to acquire data after complete equilibration in the DAWN and Optilab
flow cells before creating and injecting a subsequent concentration. One dilution experi-
ment was performed for each NaCl concentration. Instrument control, data acquisition
and data analysis were all carried out with the Calypso software, which implements the
protein interaction model fitting, including a single-species effective hard-sphere volume
approximation (EHSVA) based on Equations (7)–(10) [69,70]:

ctot = c1 + ∑
i>1

ici (7)

ci = Ki(c1)
i (8)

R(0) =
∼
K
(

dn
dw

)2
[

M2c1 + ∑
i>1

(iM)2ci

]
(9)

R(0)
∼
K

=

(
dn

dw

)2 Mw1 + M ∑i>1 iwi

1 + 8vwtot + 30(vwtot)
2 + 73.4(vwtot)

3 + 141.2(vwtot)
4

1−1.368vwtot

(10)

where wtot represents the combined mass/volume concentration of the monomers and
all oligomers, v is the specific volume, ctot is the total molar concentration of free and
bound protein monomers in solution; and c1 and ci are the partial concentrations of free
monomers and oligomers, respectively. Ki is the equilibrium association constant for the
monomer-oligomer association. R(0) is the Rayleigh ratio determined from the intensity of

scattered light over multiple scattering angles.
∼
K is calculated from the free-space scattering

wavelength λ0 and solvent refractive index n0 as (π n0 [2]/NAλ0 [4]). M is the monomer
molar mass; dn/dw is the refractive index increment of proteins in solution with respect
to weight concentration w. This approach describes the light scattering from non-ideal,
self-associating proteins in terms of the monomeric molar mass and a single quantity
representing the repulsive component of thermodynamic nonideality.

2.7. Viscosity Measurement

Viscosity experiments were performed on an ARG2 cone and plate rheometer (TA
Instruments) using a 20 mm 1.988◦ cone plate equipped with a steel Peltier plate (TA part #
511206.905). Antibody solutions were equilibrated to room temperature prior to viscosity
measurements. A sample load volume of 80 µL and a temperature set point of 23 ◦C were
determined to be optimal for the purpose of this study. A shear sweep was performed for a
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shear range of 10 to 1000 s−1. Solution viscosity measured at 1000 s−1 was used to illustrate
the viscosity of samples varying in NaCl and mAb concentrations.

3. Results and Discussions
3.1. Effects of NaCl Concentration on PPI: A Comparative Study between kD/B22 and S(q)eff

In this study, both kD/B22 and S(q)eff were used to characterize the PPI of ASA-IgG2
molecules in solution. In particular, kD values were measured by DLS on solutions with
CmAb less than 10 mg/mL, whereas B22 values were obtained by fitting the CG-MALS
results collected from 50 mg/mL mAb solutions, both while varying CNaCl. As shown in
Figure 1, the kD values decreased significantly from 21.8 mL/g to −2.8 mL/g with the
initial addition of 50 mM NaCl. Further increase in CNaCl led to a relatively small decrease
in kD values until a plateau of −6.5 mL/g was reached. A similar trend was observed
for B22 values across the examined NaCl concentration range. The observed changes in
kD and B22 values implied that the PPI between mAb molecules were strongly repulsive
without NaCl. Increasing NaCl concentration resulted in the screening of surface charges
on mAb molecules by Na+ and Cl− ions; hence, smaller kD and B22 values were measured
due to decreased electrostatic repulsions. Further increases in CNaCl above 600 mM caused
negligible changes in the net PPI, as was evident from the constant kD and B22 values. While
B22 is a measure of the strength of pairwise intermolecular interactions, kD is a result of
both thermodynamic and hydrodynamic parameters. Thus, unlike B22, kD does not define
attractive or repulsive PPI with values below or above zero. It has been reported that a
better kD value for determining the nature of net PPI is around −8 mL/g for mAbs, meaning
that a result above this cut-off value is indicative of net repulsive PPI and vice versa [71,72].
Therefore, the kD and B22 values measured from all samples were greater than the cut-off
values, suggesting the net PPI were repulsive among all examined NaCl concentrations.
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The SAXS and SANS profiles measured from ASA-IgG2 solutions prepared with
varying CmAb and CNaCl are shown in Supplementary Figures S2 and S3 from Supporting
Information. No power-law scattering was observed in the low-q region, suggesting
no long-lived, large-scale structures were formed in all samples examined. The S(q)eff
were used to characterize the PPI among ASA-IgG2 molecules as a function of CmAb and
CNaCl. The magnitude of S(q)eff was quantified by S(0)eff values as q approached zero (see
Supplementary Figure S4 for experimental and fitted S(q)eff profiles). Values of S(0)eff were
obtained by fitting the S(q)eff profiles using appropriate models and used to determine
the nature of net PPI: a value greater than 1 indicates the net PPI are attractive, whereas a
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value less than 1 suggests the net PPI are repulsive. Since kD and B22 values were in close
agreement, we used kD results to represent dilute solution properties and compared them
with S(0)eff values measured from solutions with various mAb and NaCl concentrations
(Figure 2).
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Results shown in Figure 2 demonstrate that the net PPI was not only dependent on
CNaCl, but it also varied with CmAb. The S(0)eff results can be clarified if we divide the
results into two regimes along the axis of CNaCl (Figure 3). When CNaCl was below 300 mM,
S(0)eff values measured from all mAb concentrations were less than 1, indicating that the
net PPI were mainly repulsive. Hence, S(0)eff agreed with kD results when CNaCl was
less than 300 mM, since both showed net repulsive PPI. As CNaCl increased to ≥300 mM,
S(0)eff values changed with increasing mAb concentrations: S(0)eff values measured from
50 mg/mL mAb solutions were all greater than 1, suggesting the net PPI were attractive.
For 100 mg/mL samples, the S(0)eff value changed from greater to almost equal to 1 as
CNaCl increased from 300 mM to 1200 mM, suggesting attractive forces were balanced by
repulsive forces with increasing CNaCl. As CmAb further increased to ≥150 mg/mL, the net
PPI became repulsive, as evident by S(0)eff values less than 1. Therefore, as illustrated in
Figure 3, correlations between S(0)eff and kD were only valid for samples prepared with
low to intermediate CNaCl, i.e., up to 150 mM for the current study. The correlation became
unreliable when CNaCl or the ionic strength of the solution was higher. Under such buffer
conditions, the nature of net PPI changed with CmAb.

A hard-sphere model is considered the most basic fitting model for S(q)eff. Other
commonly used fitting models are built with consideration of additional intermolecular
interactions. Therefore, different types of intermolecular interactions that together con-
tribute to the net PPI are revealed through the fitting of S(q)eff. To this end, S(0)eff values
were compared with theoretical S(0)HS values calculated from a hard-sphere model with
PY closure. If S(0)eff value was less than S(0)HS, additional repulsive interactions other
than steric repulsion were present, in which case the Hayter–Penfold model was used to fit
the S(q)eff profile. If the S(0)eff value was greater than S(0)HS, the Two–Yukawa model was
used to fit the S(q)eff profile by considering both repulsive and attractive interactions [63].
The ratios between S(0)eff and S(0)HS values were summarized and presented in Figure 4
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to provide more insights into the mixture of forces that together contribute towards the
net PPI.
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Figure 3. Correlations between kD and S(0)eff values. Conditions under which kD is greater than
−8 mL/g and S(0)eff value is less than 1 are represented with blue spheres. Under these conditions,
both parameters suggest the net PPI are repulsive. Conditions under which kD is greater than
−8 mL/g, but S(0)eff is greater than 1 are represented with red spheres. Under these conditions,
kD values suggest net PPI are repulsive, while S(0)eff values suggest the net PPI are dominated by
attractions. Experimental conditions under which mAb samples are not prepared/measured are
shown in grey.
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It can be seen from Figure 4 that some samples demonstrated S(0)eff/S(0)HS values
greater than 1, while their corresponding S(0)eff values were less than 1, implying attractive
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interactions were present among mAb molecules despite the net PPI being repulsive.
An examination of correlations among kD, S(0)eff and S(0)eff/S(0)HS results are shown in
Figure 5. It was found that kD values were in qualitative agreement with S(0)eff results
for samples prepared without added NaCl; both suggested the net PPI were dominated
by repulsions (blue spheres in column 1 in Figure 5). Moreover, the S(0)eff/S(0)HS values
measured from these samples were also less than 1, implying the net PPI were mainly
attributed to steric and electrostatic repulsion. For samples prepared with CNaCl up to
150 mM, the correlation between kD and S(0)eff persisted since both were below the cut-
off values between net repulsive and attractive interactions, suggesting the net PPI were
dominated by repulsion (blue and purple spheres in columns 2–4 in Figure 5). However,
S(0)eff/S(0)HS values measured from samples prepared with a CmAb less than 150 mg/mL
were greater than 1 (purple spheres in rows 2–4 of Figure 5), suggesting the presence of
attractive interactions despite the net PPI being repulsive. Interestingly, the S(0)eff/S(0)HS
values became less than 1 when CmAb increased to ≥150 mg/mL (blue spheres in rows 3–5
in Figure 5), suggesting attractive interactions were significantly reduced and that the net
PPI were dominated by repulsions again as mAb molecules became more concentrated
in solution. As discussed earlier, correlations between kD and S(0)eff became unreliable
as CNaCl increased to ≥300 mM since the S(0)eff values demonstrated a monotonic change
across 1 with varying CmAb. The S(0)eff values measured from 50 mg/mL and 100 mg/mL
mAb solutions were greater than 1, suggesting net PPI were attractive, thus contradicting
the predicted PPI based on kD values (red spheres in rows 1–2 in Figure 5). When CmAb
increased to 150 mg/mL and above, although the S(0)eff values were less than 1, the
S(0)eff/S(0)HS values measured from these samples were all well above 1, implying the
presence of non-dominating attractive interactions even though the net PPI were repulsive
(purple spheres in rows 3–4 in Figure 5).
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Figure 5. Correlations between kD, S(0)eff and S(0)eff/S(0)HS ratios. Conditions under which kD is
greater than −8 mL/g and S(0)eff as well as S(0)eff/S(0)HS values are less than 1 are represented
with blue spheres. Under these conditions, all three parameters suggest the net PPI are repulsive.
Conditions under which kD is greater than −8 mL/g, but S(0)eff as well as S(0)eff/S(0)HS values are
greater than 1 are represented with red spheres. Under these conditions, kD values suggest net PPI are
repulsive, but S(0)eff values suggest the net PPI are dominated by attractions. Conditions under which
kD is greater than −8 mL/g, S(0)eff is less than 1, but S(0)eff/S(0)HS is greater than 1 are represented
with purple spheres. Under these conditions, both kD and S(0)eff suggest the net PPI are repulsive;
however, the S(0)eff/S(0)HS ratio suggests the presence of non-dominating attractive interactions.
Experimental conditions under which mAb samples are not prepared/measured are shown in grey.
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Therefore, experimental results suggested the correlation between kD/B22 and S(q)eff
was the strongest only without added NaCl, where the net PPI were mainly dominated by
steric and electrostatic repulsion. With the addition of NaCl, attractive forces were found to
arise among mAb molecules, and correlations between kD/B22 and S(q)eff were found to
vary with CmAb as well. This finding highlights the complex nature of PPI and the fact that
the dilute solution measurements may not correctly reflect changes in PPI at higher CmAb.

3.2. Composition Gradient Multi-Angle Light Scattering (CG-MALS) Results Revealed the
Presence of Higher-Order Structures

The ideal formulation for mAbs should ensure the net PPI are dominated by repulsive
forces among all relevant mAb concentrations [36]. Detailed analysis of S(q)eff revealed
that although the net PPI appeared to be repulsive under certain experimental conditions
(a combination of both CNaCl and CmAb), attractions could also be present among mAb
molecules. In order to provide direct evidence of the existence of attractive interactions,
CG-MALS measurements were performed to examine the formation of transient, higher-
order structures in solution. Thus, 50 mg/mL ASA-IgG2 mAb solutions prepared with
various CNaCl were subjected to CG-MALS measurements since correlations between kD,
S(0)eff and S(0)eff/S(0)HS turned from valid to invalid with increasing CNaCl at this CmAb.

The effects of NaCl on the degree of protein self-association are represented in Figure 6.
The molar fractions of various species were estimated by fitting the light scattering profiles
measured at each mAb concentration [36,73]. Higher-order oligomeric states included
in the fits were dimers, trimers and hexamers. In a solution where no NaCl was added,
the molar fraction of ASA-IgG2 monomer decreased only slightly with increasing CmAb,
implying that ASA-IgG2 molecules remain monomeric without the addition of NaCl. This
is in close agreement with kD and S(q)eff results, as they all suggest the net PPI were
repulsive under equivalent conditions (Figure 2). Figure 6 also shows the molar ratios of
various oligomeric species in 300 mM, 600 mM, and 1200 mM NaCl solutions. For these
samples, the molar fraction of monomer decreased significantly with a concomitant increase
in the number of multimers, including dimers, trimers, and hexamers. As discussed
earlier, S(0)eff values measured from 50 mg/mL solution became greater than 1 when
CNaCl increased to ≥300 mM, implying that the net PPI were dominated by attractive
interactions; therefore, the CG-MALS results also confirmed the formation of higher-order
structures. The observed conversion of monomers to higher-order oligomers through
CG-MALS experiments suggested the presence of NaCl in solution led to an increase in the
association constant of ASA-IgG2 molecules.

3.3. Empirical Relationship between kD, B22, S(q)eff and Solution Viscosity

Both kD and B22 are widely used to characterize PPI, yet they are measured at low mAb
concentrations, whereas increases in viscosity largely occur at much higher concentrations.
Fundamentally, the role of PPI and viscosity of concentrated mAb formulations is influenced
by the particular atomic-level detail in terms of amino acid sequence, post-translational
modifications, and the internal flexibility of mAb molecules. This is clearly evident in cases
where a single or a small number of mutations of mAb molecules lead to dramatic changes
in viscosity [74–76]. Creating models and simulations to include this level of detail is an
area of active research [10,77–79]. Validation of molecular dynamics trajectories requires
the use of experimental measurements that reproduce the solution properties at multiple
phase points. In addition, the validity of extrapolating the properties inherent in kD and B22,
obtained at low concentrations to high concentrations and, therefore, the resultant effect on
solution viscosity can be evaluated directly by evaluating model interaction parameters
obtained via S(q)eff, which is measured at both low and high concentrations.
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Thus, the focus of the current study is to evaluate whether an empirical relationship
exists between the experimentally determined viscosity results and those predicted from
interaction parameters used in colloid models (derived from kD, B22 and S(q)eff). Figure 7
shows that changes in viscosity followed the same trend for samples prepared with all
five different NaCl concentrations, in that significant increases in solution viscosity were
observed as CmAb reached 150 mg/mL. In contrast, CNaCl did not influence the measured
viscosity when CmAb was below 150 mg/mL.

It is commonly accepted that solution viscosity is expected to increase under conditions
where net PPI are attractive, and the viscosity should remain low where net PPI are
repulsive [40]. Since kD and B22 were measured from dilute protein solutions, there was
only one kD and B22 value measured from each CNaCl. In this study, both kD and B22 values
suggest the net PPI were repulsive among all examined NaCl concentrations; therefore, it
was expected that the viscosity of mAb solutions should remain low with increasing CmAb.
However, the experimentally determined viscosity results showed that the viscosity of mAb
solutions elevated significantly with increasing CmAb. Therefore, the predicted viscosity
based on properties measured from dilute solutions did not agree with experimental data,
suggesting kD and B22 are not ideal parameters for predicting viscosity at high CmAb. Since
the viscosity of ASA-IgG2 solutions demonstrated dependence on both CmAb and CNaCl, we
examined if there was an empirical relationship between S(q)eff and the solution viscosity
measured from each CmAb and CNaCl combination.
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As summarized in Figure 8, the effects of NaCl on solution viscosity were not signif-
icant when CmAb was below 150 mg/mL. In this regime, although the net PPI changed
from repulsive to attractive with increasing CNaCl (as evident by S(q)eff values), solution
viscosity remained low. For samples prepared with a CmAb greater than 150 mg/mL, vis-
cosity measurements demonstrated that the viscosity of mAb solutions increased with
the emergence of attractive forces despite the PPI being net repulsive. Therefore, in the
case of ASA-IgG2, the overall attractive PPI do not necessarily lead to increased solution
viscosity, and the overall repulsive PPI can be observed in solutions with elevated vis-
cosity. Thus, the observed empirical relationship between the measured and predicted
viscosity results in this study contradicts the commonly accepted relationship between net
PPI and the viscosity of concentrated mAb formulations. Similar results were reported
by Woldeyes et al., who examined whether experimentally determined viscosity results
agreed with those predicted from PPI measured from both dilute and concentrated mAb
formulations [43]. They performed DLS/SLS and viscosity experiments to determine the
viscosity of four different mAbs when prepared in solutions with and without 150 mM
NaCl. Their study did not include high CNaCl measurements, and no SAXS/SANS or
CG-MALS was performed to characterize the PPI among concentrated mAbs. Without the
direct observation of interactions via S(q)eff and oligomeric content, they postulated that
PPI could not be used to provide reliable predictions on the viscosity of mAb formulations,
no matter if the PPI were measured from dilute or concentrated samples [43]. It is antici-
pated that the nature and significance of various PPI can change dramatically when mAb
molecules are at higher concentrations, with concomitant reduced intermolecular distances
and, therefore, an increased propensity of intermolecular association. To obtain reliable
viscosity predictions, further studies are needed to establish the relationship between the
measured viscosity and PPI measured from concentrated mAb formulations.
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will rise, and it is expected that the change in viscosity should be related to the distribution 
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Figure 8. Illustration of PPI among ASA-IgG2 under conditions varying in mAb and NaCl con-
centrations. The two rows represent samples prepared with CmAb either below or above a critical
concentration of 150 mg/mL, while the columns are divided into three CNaCl regimes. Blue and
red arrows represent repulsive and attractive inter-protein interactions, respectively. Dominating
interactions are illustrated with bigger arrows, whereas non-dominating interactions are illustrated
with smaller arrows.

4. Conclusions

In this study, two sets of interaction parameters were obtained to characterize the
stability and viscosity of ASA-IgG2 formulations with modulation from NaCl. They were
kD/B22 measured from dilute samples and S(q)eff measured from concentrated samples.
Our results showed that the nature of net PPI changed not only with CNaCl but also with
increasing CmAb. As a result, interaction parameters measured from dilute and concentrated
mAb samples could lead to different predictions on the stability of mAb formulations.
We also showed that the viscosity of mAb solutions could not be accurately predicted
using PPI based on our current knowledge of the relationship between PPI and solution
viscosity. However, it is not only PPI that can be used to explain the viscosity of mAb
solutions. Here, we also looked at the viscosity of protein solutions from the point of
simple chemical equilibrium. As mentioned earlier, the monomeric mAb molecules are in
constant equilibrium with higher-order oligomers, including dimers, trimers, hexamers,
etc., as evident from our CG-MALS results. Previous studies also demonstrate that the
association constant K of various mAbs can be in the micromolar to millimolar range [20,80].
Therefore, reversible oligomers are always present in mAb solutions. An increase in mAb
concentration will promote self-association of monomers, and the extent of oligomer
formation is controlled by the association constant K. As an initial approximation, with an
increased number of higher-order oligomers that are bigger in size, the viscosity of mAb
solutions will rise, and it is expected that the change in viscosity should be related to the
distribution of oligomeric species. Note that there was no evidence in the scattering data
for long-length scale networks of mAb molecules; thus, the spatial and temporal factors of
the population of monomeric and oligomeric species on the viscosity behavior remains an
open question. Therefore, the complete mechanism of the self-association propensity of
mAbs to improve the prediction of bulk viscosity in concentrated formulations will rely on
measurements carried out at high concentrations to account for the correct physics in the
phase points of interest.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antib11020024/s1, Figure S1: The closer look at the scattering
profiles measured from 50 mM NaCl solutions around the q-range from 0.10 Å−1 to 0.14 Å−1.
This linear region from various scattering profiles should be well overlapped if the concentration
normalization is done properly. Error bars in the scattering profiles represent the relative uncertainties
in the scattering intensity measurements based on counting statistics. Figure S2: Summary of SAXS
profiles measured from ASA-IgG2 samples prepared in various NaCl solutions: 0 mM NaCl (A),
50 mM NaCl (B), 100 mM NaCl (C), and 150 mM NaCl (D). The scattering profiles measured
from various mAb concentrations were concentration-normalized. In particular, I(q) measured
from 2 mg/mL and 10 mg/mL solutions looked identical, this implied that the increase of protein
concentration from 2 mg/mL to 10 mg/mL did not change the total scattering profiles, thus S(q)eff
were absent from both concentrations. A decrease in I(q) at low-q region started to appear at 25 mg/mL
and it became more significant with increasing protein concentrations. The observed reduction in
scattering intensity at low-q region was due to the presence of intermolecular interactions; therefore,
S(q)eff started to arise when the mAb concentration reached 25 mg/mL for 50 mM NaCl formulation.
Error bars in the scattering profiles represent the relative uncertainties in the scattering intensity
measurements based on counting statistics. Figure S3: Summary of SANS profiles measured from
ASA-IgG2 samples prepared in various NaCl solutions: 0 mM NaCl (A), 300 mM NaCl (B), 600 mM
NaCl (C), and 1200 mM NaCl (D). The scattering profiles measured from various mAb concentrations
were concentration-normalized. As mentioned in the method section, samples with high mAb
and NaCl concentrations could not be made due to difficulties in preparing concentrated ASA-
IgG2 (greater than 215 mg/mL) and NaCl (greater than 5 M) stock solutions. Error bars in the
scattering profiles represent the relative uncertainties in the scattering intensity measurements based
on counting statistics. Figure S4: Summary of S(q)eff profiles measured from ASA-IgG2 samples
prepared in various NaCl solutions: 0 mM NaCl (A), 50 mM NaCl (B), 100 mM NaCl (C), 150 mM
NaCl (D), 300 mM NaCl (E), 600 mM NaCl (F), and 1200 mM NaCl (G). S(q)eff profiles were fitted
using with Hayter-Penfold and Two-Yukawa models to extrapolate S(q)eff values. Error bars in the
scattering profiles represent the relative uncertainties in the scattering intensity measurements based
on counting statistics.
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