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Abstract: Land cover is one of key indicators for modeling ecological, environmental, and climatic
processes, which changes frequently due to natural factors and anthropogenic activities. The changes
demand various samples for updating land cover maps, although in reality the number of samples is
always insufficient. Sample augment methods can fill this gap, but these methods still face difficulties,
especially for high-resolution remote sensing data. The difficulties include the following: (1) excessive
human involvement, which is mostly caused by human interpretation, even by active learning-based
methods; (2) large variations of segmented land cover objects, which affects the generalization to
unseen areas especially for proposed methods that are validated in small study areas. To solve these
problems, we proposed a sample augment method incorporating the deep neural networks using a
Gaofen-2 image. To avoid error accumulation, the neural network-based sample augment (NNSA)
framework employs non-iterative procedure, and augments from 184 image objects with labels to
75,112 samples. The overall accuracy (OA) of NNSA is 20% higher than that of label propagation (LP)
in reference to expert interpreted results; the LP has an OA of 61.16%. The accuracy decreases by
approximately 10% in the coastal validation area, which has different characteristics from the inland
samples. We also compared the iterative and non-iterative strategies without external information
added. The results of the validation area containing original samples show that non-iterative methods
have a higher OA and a lower sample imbalance. The NNSA method that augments sample size
with higher accuracy can benefit the update of land cover information.

Keywords: sample augment; deep neural network; small size samples; land cover; object-based
image analysis

1. Introduction

Land cover is the physical material (e.g., grass, trees, bare ground, and water) at the surface of the
earth, which is an essential parameter for global change, crop production estimation, and terrestrial
water cycle [1–4]. Land cover is changing as a result of both natural factors and human activities,
increasing difficulties and uncertainties in updating land cover maps [5]. Fortunately, remote sensing
technology provides images that models reality of land cover as an indispensable data source for
updating land cover maps [6]. A sample usually contains the label information of a location in image,
and it is used to label other locations in the image. The sample is undoubtedly crucial for updating land
cover maps by remote sensing classification, as it impacts the accuracy and quality of the end product.

The sample size (i.e., the number of samples) affects the accuracy of remote sensing classification,
and reducing the number of samples will produce lower classification accuracy in general [7–11],
especially for object-based image analysis (OBIA). For a remote sensing image, the classification can be
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conducted on each pixel or a bunch of neighboring pixels (i.e., image object) [12,13]. Compared with
pixels that provides spectral information, image objects contain additional information on spectra,
geometry, context, and texture. Thus, OBIA leads to sample sparsity in high dimensional data space,
which increases the needs for larger sample size [14]. Although some machine learning algorithms,
which are popular in supervised remote sensing classification, are tolerable to insufficient sample
size in high dimensions, studies show that the sample size leads to larger variations in accuracy than
the algorithms themselves [10,15]. A large sample size demands a lot of manpower and financial
resources, which may seem unrealistic for updating land cover maps when the land-surface elements
are continuously changing both temporally and spatially. A small sample set is obviously more
efficient in manpower and financial resources, and one that is interpreted by experts is especially more
representative than random sampling results, since an expert can generalize the characteristics of some
land-surface elements successfully from few examples or their early experience [16]. However, the small
sample size may highly reduce the land cover classification accuracy for current computer-based
classification algorithms. Thus, it is necessary to augment sample size from small to large to ensure the
accuracy of land cover maps.

To augment a sample size, a number of techniques that utilize an existing small sample set
have been developed [17]. These can be categorized into two basic types [11]: (1) active learning
and (2) semisupervised learning. Also, classification methods with prediction probability can be
used in sample augment [18–20]. Active learning will query unlabeled samples in the training
data set for their labels, and thus requires a lower number of samples to classify land covers.
Much research has been conducted on active learning-based sample size augmented for remote sensing
classification [21–23]. Although active learning can reduce the amount of sample required, the process
of labeling new samples still demands a large amount of manpower, especially in a complicated study
area. Meanwhile, the samples queried by active learning may be uninformative or indistinguishable by
humans. Semisupervised learning uses unlabeled samples with the help of labeled samples. The label
propagation (LP) algorithm is one of the popular semisupervised methods, which exploits labeled and
unlabeled samples in constructing a graph model to predict the labels of unlabeled samples by the
similarity between two samples [24–26]. For example, Shi et al. [27] used LP to predict the unlabeled
samples in remote sensing image classification, and Wang, Hao, Wang, and Wang [25] propagated labels
to unlabeled samples using LP with the help of spatial-spectral graph. However, the feature vector of
segmented land cover image objects varies with segmentation parameters, which brings difficulty in
selecting a representative sample set. The variation in land cover inherent from the dynamics and
complexity of land covers [28] also affects the generalization of LP derived graph under small sample
size, which is a big challenge for sample augmentation. One possible way to alleviate the effects is to
utilize the generalization power of deep neural networks (DNN) [29], which have achieved remarkable
practical success in various application domains [30–33]. Though there are sample augment methods
incorporating current development of neural networks on hyperspectral images [34–37], the methods
working on features derived from multispectral images are still lacking.

To alleviate the effects of variations and to improve the size and accuracy of sample augmented
results, we developed a sample augmented framework that incorporates DNN. The proposed neural
network-based sample augment (NNSA) framework can be described in four steps: (1) Select optimal
features for identifying each land cover category; (2) measure similarities between image objects and
samples belonging to a certain land cover category; (3) feed DNN with the similarity measurement
results; and (4) cluster to refine sample augmented results by DNN. To quantitatively evaluate the
proposed NNSA, we compared the method results with those of LP and DNN in reference to expert
interpretation results. We compared the generalization capacities of the three methods on another
unseen coastal validation area, which is different from samples that only contain inland land cover
characteristics. Furthermore, we compared the iterative and non-iterative strategies for sample
augment in the inland validation area.
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2. Materials and Methods

2.1. Data and Study Area

The Gaofen-2 image data acquired on 26 May 2015, were used as a major data source. The Gaofen-2
satellite scans a swath of ~45 km and provides 1-m panchromatic images and 4-m multispectral images
with 4 bands that belong to a series of civilian high-resolution optical satellites of the China National
Space Administration. Both multispectral and panchromatic images were orthorectified and corrected to
surface reflectance with the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes)
algorithm [38] and then were fused together using the Gram-Schmidt pan-sharpen method [39].

The study area is approximately 518 km2 over the coast of the Bohai Sea and covers more
than 90 villages and 3 towns (Figure 1). This area belongs to the Beijing-Tianjin-Hebei region,
where unprecedented coastal development has led to fragmented, complicated and fast-changing land
covers [40]. The land cover type of the study area consists of six classes, including water, forestland,
grass land, crop land, bare land, and residential and built-up land, which involve in the entire National
Land Resource Classification System of China. Furthermore, high-resolution satellites provide more
detailed information on land covers and greater separability between further subcategories, which leads
to increased intraclass variations. The residential and built-up land mainly includes residential districts,
industrial areas, roads, and vegetable greenhouses. The forestland is comprised of sparse forest
alongside roads, dense forest along the river and close to the sea, and juvenile woodland. Crop land has
different colors, such as brown, light brown, dark brown, and green, which depend on the crops and
soil moisture. The large intraclass variability poses challenges for sample augmentation. For example,
crop lands that are in green color are easily confused with the grass land during sample augmentation.
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Figure 1. The study area used in this study. The study area is shown in red in (a). The image is shown 
in a true-color composite of red, green and blue bands in (b). The two testing areas interpreted by 
experts on land cover are shown in (c) and (d). Samples manually selected with a total of 184 instances 
are shown in (c). 

Figure 1. The study area used in this study. The study area is shown in red in (a). The image is shown
in a true-color composite of red, green and blue bands in (b). The two testing areas interpreted by
experts on land cover are shown in (c,d). Samples manually selected with a total of 184 instances are
shown in (c).

The size of Gaofen-2 image data of our study area is 26,631 rows by 27,407 columns. It is segmented
to 154,667 image objects using eCognition Developer 9.0 software (Trimble Inc., Munich, Germany) and
an automated parameterization algorithm [41]. A total of 28 attributes were calculated on these image
objects (Table 1). Then, a total of 184 instances for all six land cover categories was selected as initial
samples for augmentation (Figure 1c). To verify the sample augmentation method, we collected the
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expert-interpreted land cover results (Table 2), which consists of two parts (Figure 1c,d), with a total of
23,484 image objects.

Table 1. Features that were calculated to identify image objects in this study.

Features
Category Object Features Number of

Features

Spectral Mean (4), Standard deviation (4), Skewness (4), Brightness 13

Geometry Border index, Compactness, Shape index 3

Texture

Gray level co-occurrence matrix (GLCM) Homogeneity (all direction), GLCM
Contrast (all direction), GLCM Dissimilarity (all direction), GLCM Entropy (all
direction), GLCM Ang. 2nd moment (all direction), GLCM Mean (all direction),

GLCM Standard Deviation (all direction), GLCM Correlation (all direction)

8

Customized
Normalized difference vegetation index (NDVI), Normalized difference water
index of McFeeters (NDWIF), Soil adjusted vegetation index (SAVI), Optimized

soil adjusted vegetation index (OSAVI)
4

Total 28

Table 2. Samples of six land cover categories for feature selection and sample augmentation testing.

Land Cover
Number of Samples

Training Objects Testing Objects

Water 29 1504
Forest land 36 3788
Grass land 32 3266
Crop land 33 8722
Bare land 22 1063

Residential and built-up land 32 5141

2.2. Feature Selection from Small-Size Samples

Feature selection can improve the performance of object-based image classification [11]. To select
features under low sample size and high dimensionality, we adapted a revised version of our previous
work [14], which is designed to provide a solution to this problem. The previous work, namely the
group-corrected partial least squares generalized linear regression (PLSGLR) method, can be described
in three steps: (1) Group features based on Pearson’s correlation coefficient; (2) rank features by
PLSGLR and remove insignificant features; (3) reconstruct categories when the features are added
one-by-one to calculate the Bayesian information criterion.

Compared to our previous work, we improved the stability of feature selection against random
sampling uncertainty by incorporating a co-occurrence matrix and voting strategy. Given the feature
group result G that results from one of the total sampling numbers, N, the co-occurrence matrix P can
be defined as

P(i, j) =
1
N

∑{
1, G(i, j) = 1
0, G(i, j) = 0

(1)

where i and j are the i-th feature and the j-th feature, respectively. When the value of the co-occurrence
between a pair of features is greater than threshold, th, the group between two features is retained;
otherwise it is discarded. With regard to the ranking matrix, R, with m rows and N columns, the feature
of the i-th position, fi, can be expressed as

fi = max{Rik}, k = 1, 2, . . . , N (2)

where m is the number of features. For the given ranking vector {R1, R2, · · · , Rn}, the BIC matrix B with
n rows and N columns, the final feature number, n f , is defined as
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n f =
1
N

∑
bk, k = 1, 2, . . . , N (3)

where n is the number of ranking features (n ≤ m), and bk is the number of optimal features at the k-th
sampling result.

2.3. Similarity Measurement of Image Objects

Nonparametric methods make fewer preliminary hypotheses and are more powerful for describing
the nonlinear and complex relationships [42]. To model the relationship between unlabeled image
objects and samples that are marked as belonging to a certain category, a nonparametric method,
kernel density estimation (KDE), which had been applied to land cover classification [18], is used to
extract the relationships. For samples of a category, we use KDE to extract the curve on one of the
selected features without assuming the relationship in advance. The curve f (x) can be described as

f (x) =
1

Mh

M∑
i=1

K
(x− xi

h

)
(4)

where M is the number of samples of a category, x is the value to be estimated, xi is value of the i-th
sample, K is the kernel function, and h is the bandwidth that controls smoothness of the estimated
curve. In this study, we used the Gaussian kernel and determined the bandwidth with the normal
reference rule [43].

To improve the performance and stability, we employed repeated sampling with a replacement
strategy and calculated the normalized relationship each time. The curve F(x) can be represented as
the average of a set of curves that result from the repeated sampling process.

F(x) =
1
N

N∑
k=1

fk(x) (5)

After the curve F(x) of a feature on a category is determined, the similarity of the selected features
of a certain category is calculated. For an unlabeled image object, the similarities corresponding to
values of the selected features are calculated by the interpolation method, and similarities of different
features are weighted to generate the final similarity. The similarity S can be expressed as follows

S =
n∑

j=1

ωF j(x) (6)

where j is the j-th selected feature andω is user-defined weight vector. As the results of feature selection
are sorted in descending order of importance, a weight vector (0, 0, ..., 1) means the limiting factor
principle; a weight vector (1, 0, ..., 0) represents the dominant factor principle; and a weight vector (1, 1,
..., 1) indicates the average principle.

2.4. Sample Augmentation by Neural Networks

After feature selection and similarity measurement, the image object that has a similarity over
0.5 for a certain land cover category is feed to a DNN. The structure of DNN is displayed in Figure 2.
Given an image object X with a label y, the feature vector

{
f1, f2, · · · , fm

}
is fed to the input layer of a

DNN. For the hidden neuron h j that is activated with a rectified linear unit (ReLU), the output value
can be written as

h j = max

0,
m∑

k=1

wk fk

 (7)
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In view of the output neuron ok, which incorporates the results of multiple hidden layers, Sk can
be described as

ok =
1

1+e−sk

sk =
∑

j h jw jk
(8)

where j is the j-th hidden node, and k is the k-th output node. The parameters of the DNN are optimized
to minimize the binary cross entropy error:

E = −
∑

k

[yk log(ok) + (1− yk) log(1− ok)] (9)

where yk is the label of an image object, and ok is the prediction result. In addition, dropout is employed
to prevent the DNN from overfitting [44].

1 
 

 

Figure 2. Workflow of sample augment by the proposed framework.

In this study, we used dropout layer with a fixed drop rate of 0.25 between each hidden layer,
which could prevent overfitting. We used RMSprop optimizer with adaptive learning rate to train the
model, and cross entropy to evaluate predicted classes. The implementation was based on Keras in
python environment [45].

The data set is then randomized and split into a training set accounting for 80% and a testing set
accounting for 20%. A DNN with the same structure is trained using the training set. The DNN used
in this study has four hidden layers. In addition, the number of neurons of each layer in the DNN is
determined by 80% decreasing in number, empirically.

2.5. Postprocessing by Clustering

The similarity measurement can introduce an error into the sample augmentation process, and the
error may be further amplified with supervised learning. To eliminate these error samples, a clustering
method is used can discover the potential structure of samples. It is feasible in practice to manually
specify the cluster centers or to automatically determine the cluster numbers with some criteria.
In this study, we employed the spectral clustering method [46,47] for post processing. Given a set
of augmented samples, X, with the calculated image objects features, the similarity ωi j between two
samples (image objects), xi and x j, can be written as

wi j =


0, xi < Ω

(
x j

)
or x j < Ω(xi)

e−
‖xi−xj‖2

2

2δ2 , xi ∈ Ω
(
x j

)
and x j ∈ Ω(xi)

(10)
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where xi ∈ Ω
(
x j

)
indicates that xi is among the k-nearest neighbors of x j, and δ controls the width of the

neighborhoods. Then, the normalized Laplacian matrix Lrm of the similarity matrix W is constructed
as follows

Lrm = E−D−1W (11)

where E is an identity matrix, and D is a diagonal matrix with diagonal elements written as Dii =
∑
j
ωi j.

The eigenvectors of the Laplacian matrix are sorted according to the eigenvalues, and the top k
eigenvectors (e.g., a number of cluster) are delivered into the k-means algorithm. The cluster number k
is determined by Bartlett’s test [48].

As a summary, Figure 2 shows the detailed workflow of sample augment by the proposed
framework.

2.6. Validation

To test thoroughly the sample augment results, we compared the results of NNSA with the results
of the LP and DNN. As the core part of NNSA, DNN has the potential to augment samples directly
without the help of the proposed framework. Two regions with experts interpreted land covers are
employed to compare the augment accuracy. One region (Figure 1c) contains all 184 training and
testing samples, while the other region (Figure 1d) does not contain any samples used in this study.
The two regions show different land cover characteristics. One covered with typical inland land
covers has large areas of crop land, and the other in coastal areas has marine farms and more forest
land. We compared the overall accuracy (OA) and sample imbalance of these methods in each region.
The sample imbalance is described by the maximum value of the sample size ratio between different
land cover categories.

We also compared the iterative and non-iterative strategies in sample augment. In the iterative
scenario, we iteratively improved the number of samples of LP and support vector machine (SVM).
The radial basis kernel function was used in SVM with the gamma parameter of 5 and the cost
parameter of 10 after tuning. We iterated 300 times over the region that contains original samples for
each scenario, adding 10 samples to training dataset each time for iterative scenario, and assessing the
results by OA and sample imbalance. In the non-iterative scenario, we just trained from the original
samples and selected equal sample size by classification probabilities.

3. Results

3.1. Sample Augmentation Results

The accuracy and loss curve for training DNN in NNSA are shown in Figure 3. The accuracy
values for were converged at about 96% and 98% from the epoch number of 1500. The training stopped
at the epoch number of 3442, after the model was not improved after trying 500 epochs.Land 2020, 9, x FOR PEER REVIEW 8 of 19 
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The sample augmentation results by the NNSA are shown in Figure 4. There are 48.56% image
objects assigned to a certain category by NNSA. Among these augmented samples, 43.76% image
objects, which were distributed in the oceans, rivers, and fishery farms, were identified as water.
In view of the crop land, 22.47% image objects were mainly scattered around the residential land in the
eastern part of the study area. A further 16.95% image objects that were concentrated in residential
areas, roads, and fisheries farms were identified as the residential and built-up land. There were 9.57%
image objects that were labeled as the forestland, which was mainly distributed near the sea and in
the vicinity of the rivers. The 2.01% image objects that were assigned to the grass land were located
around the forestland and water. The remaining 5.23% image objects that were recognized as bare land
were located by the sea and rivers. The augmented samples are consistent with the distribution of
different land cover categories, although there are inevitably some errors, such as some crop land in
the green being labeled as the grass land.Land 2020, 9, x FOR PEER REVIEW 9 of 19 
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3.2. Comparison and Validation

3.2.1. Performance in the Similar Land Cover Region

The validation area with original 184 training samples has typical inland land cover characteristics.
In this validation area, the OAs of NNSA, LP, and DNN are 83.85%, 61.16%, and 88.52%, respectively.
Figure 5 demonstrates further accuracy assessment in metrics of UA and PA. The absence of the
grass land and the bare land in DNN results from their prediction probabilities being lower than
0.9 (to acquire similar sample size in the validation regions, we adopt this threshold). In these two
land cover categories, NNSA and LP both suffer from low accuracy. As to the remaining land cover
categories, the DNN has higher accuracy than those of LP, which demonstrates the reasonability of the
introduction DNN to sample augment area.
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Figure 6 shows the spatial distribution of the augmented samples. All the three methods
(i.e., NNSA, LP, and DNN) perform well in the crop land with a PA of over 90%. For water and forest
land, DNN has similar accuracy with NNSA, while LP labels some wet crop land as water, and some
buildings as the forest land. In view of grass land and bare land, DNN has lower probability in
identifying these image objects. NNSA and LP both suffer from low accuracy in these two land cover
categories, especially in the grass land. The grass land is very similar to crop land in green, since the
segmentation scale invalid the shape difference between crop land and grass land. The clustering
process of NNSA alleviates the problem to some extent. NNSA and DNN achieved better results than
LP by numeric accuracy assessment and visual inspection in this validation area.

3.2.2. Performance in Dissimilar Land Cover Region

In this validation area, the OAs of NNSA, LP, and DNN are 75.80%, 50.53%, and 72.45%,
respectively. The OA values are about 10% lower than the above validation region. The Figure 7
demonstrates the UAs and PAs of these three methods. The DNN has high accuracy in forest land and
crop land, except it mislabeled some wet crop land as water. For the grass land, LP performs better in
this validation area since there are more grass lands. LP suffered from low accuracy in crop land and
water, as it also identified wet crop land as water. NNSA performs better in these land cover categories
except grass land.Land 2020, 9, x FOR PEER REVIEW 12 of 19 
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Figure 7. The accuracy assessment of sample augment results from NNSA in validation area without
original samples including (a) user’s accuracy and (b) producer’s accuracy. The letters near the x-axis
represent land cover categories. The land cover categories water, forestland, grass land, crop land, bare
land, and residential and built-up land are denoted as W, F, G, C, B, and R, respectively.

The spatial distribution of the augmented samples is shown in Figure 8. The consistency between
these method results and expert interpretation decreased, compared to the previous validation area.
The reduction in consistency may result from the complex land covers in coastal area. This area has
both inland land covers and marine land covers. The original samples only contain the characteristics
of inland land covers. Thus, the reduction in accuracy is inevitable. The ditches scatter in crop land
increase the soil moisture, which confuses the LP method. NNSA achieved better results by visual
inspection in this validation area.
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Figure 8. The validation area without original samples. The expert interpreted land cover result is
shown in (a). The sample augment results of NNSA, LP, and DNN are shown in (b–d), respectively.

4. Discussion

4.1. Effects of Segmented Land Cover Image Objects and Intraclass Variability

The results of this paper show that all the three methods (i.e., NNSA, LP, and DNN) have
a reduction in accuracy in the validation area without samples, though NNSA incorporates the
generalization capacity of DNN up to four hidden layers. We interpret the mechanism as follows:
as illustrated in Figure 9, the crop land has at least four manifestations in the study area, and the
samples collected from a small part of the area take no consideration of the variations of each land
cover category. Also, the segmentation scheme converting images from pixels to objects affects the
results. Inevitably, the objects corresponding to ground entities and patches of surface cover depend
on the segmentation parameters [13,49]. The parameters in this study area are selected by optimizing
the mean of local variance in a global search scheme [41]. The segmented objects therefore do not
guarantee the fitness on each land cover category. For example, reflectivity of crop land is affected by
many factors such as humidity, crop variety, growth cycle, and temperature in reality; experts identify
it by regular boundaries. When the segmentation results on crop land is fragmentized, the information
on geometry describing the boundary will be invalidated. Segmentation based on certain sub-category
land cover objects may relieve this problem, which needs further studies.
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In addition to the fragmentized segmentation results, intraclass variability of a land cover category
also affect the augmentation results. In this study, we used a classification system derived from Data
Center for Resources and Environmental Sciences, Chinese Academy of Sciences [50]. Take crop land as
an example: the category consists of paddy field and dry farming field, which was defined by the way
of land use. Since it is unreasonable to define subcategories for land covers in detail, visual inspection
as in [14] is inevitable. As a complementary, an unsupervised clustering method as in Section 2.5 is also
recommended. With a better segmentation result with a refined classification system, the efficiency
NNSA will be improved. The refined classification system, which decreases the intraclass variability
by subcategories, needs further exploration.

4.2. Comparisons with Other Sample Augment Methods

The NNSA extends the previous studies that augments small samples to large samples.
NNSA utilizes classification methods with predication probability for sample augmentation and
has higher OA than LP in reference to expert interpreted results. The NNSA uses non-iterative sample
augment approach, while LP employs iterative sample augment procedure. We compared the iterative
and non-iterative sample augment procedure without external information added, even active learning
and semisupervised learning favor to iteratively improve the number of samples. Figure 10 shows the
accuracy and sample imbalance of LP and SVM in two scenarios. In our study area, the non-iterative
LP had higher accuracy and lower sample imbalance. The accuracy reached the highest at the 36th
iteration (OA = 89.45%), and then gradually decreased to around 70%. In view of the results of SVM,
the non-iterative had a little bit lower accuracy than the iterative version. Considering the severe
imbalance of the iteration SVM results (Table 3), its reasonable that the non-iterative SVM is more
suitable for sample augmentation.

Non-iterative procedure avoids the accumulation of error labels, which is critical for object-based
image analysis. For multispectral image, there are often dozens of features after segmentation. As to
hyperspectral data, there may be hundreds of features available. Only some of these features describe
the characteristics of an image object, since the segmentation process does not guarantee the validity
of these features. The iterative procedure may suffer from accumulation and amplification of errors
during the rolling.
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under iterative and noniterative scenarios.

Table 3. Summary of overall accuracy and sample imbalance of LP and SVM under iterative and
noniterative scenarios.

Iterative Noniterative

Overall Accuracy Imbalance Overall Accuracy Imbalance

LP

min: 65.65% min: 3.23 min: 84.50% min: 3.23
max: 89.45% max: 38.80 max: 88.77% max: 31.13
mean: 74.47% mean: 30.77 mean: 87.64% mean: 20.06
deviation: 8.32% deviation: 6.59 deviation: 0.61% deviation: 5.59

SVM

min: 84.50% min: 3.31 min: 78.30% min: 2.96
max: 96.60% max: 127.52 max: 92.58% max: 40.85
mean: 94.09% mean: 72.20 mean: 86.65% mean: 15.68
deviation: 2.67% deviation: 40.19 deviation: 2.57% deviation: 6.37

The sample augment procedure is highly needed for land cover classification over very large
areas [28], as there are many unseen areas that lack samples in this scenario. To cope with the unseen
areas, these methods employ different strategies. The active learning queries humans about the true
labels of a series of samples to migrate to unseen areas [21,22,51], thus taking the variations of unseen
areas into consideration. Compared to active learning, NNSA avoids feeding method with sequences
of samples, since selecting and interpreting samples are not error-free and potentially cause biased
classification results [52,53]. The iterative methods fuse samples with high similarities into the original
sample set. As mentioned above, the segmented objects may not describe reality well, and this fusion
will introduce high uncertainty in each rolling procedure. The NNSA also incorporates similar samples
but refines by robust neural networks and cluster scheme without the rolling procedure, which reduces
the uncertainty and avoids the error accumulation.
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There is still work to be done for the development of NNSA. One part comes from the DNN
itself, which remain unsolved such as hyperparameter selection and network structure determination.
The other part involves the descriptions of segmented image objects. The image objects can be described
as feature vectors or images in two dimensions. The proposed NNSA uses feature vectors as inputs.
Recent advances in deep convolutional neural network hold the promise of describing the image
objects by themselves [54], thus reducing the uncertainty of the NNSA framework.

4.3. Sample Augmentation for Remote Sensing with an Insufficient Sample Size

Recent development of remote sensing sensors supplies a large volume of fine-scale
spatial-temporal data [55]. Most applications of big data methods in geography focus on social
behaviors due to the sufficiency of mobile phone data, microblog data, and traffic data [56]. The big
data methods are always limited by insufficient samples in land cover classification [57]. Field surveys
require more investment; thus, a large sample size is always inaccessible. The NNSA framework,
designed for jumping from a small sample set to a huge sample set, can alleviate the problem to
some extent.

Both the sample size and sample quality are crucial [58,59], though big data methods concentrate
more on sample size. The balance between sample size and sample quality such as representativeness
is important for sample augmentation. The proposed NNSA currently focuses on the sample size,
and the representativeness is implicit in the cluster procedure. To reduce computational overhead over
large areas, representative samples can be selected from each cluster.

5. Conclusions

In this paper, we presented a sample augmentation framework that incorporates DNN for
object-based image analysis to augment samples with high accuracy. The proposed framework was
applied to a scene of Gaofen-2 image to augment 184 samples to a large sample set, and achieved an
improvement on the accuracy in comparison with LP and DNN. NNSA achieved an overall accuracy
about 20% higher than that of LP in both validation areas. In detail, the NNSA method achieved an
overall accuracy of 83.85% in validation area with original samples and an overall accuracy of 75.80% in
validation area without original samples. To prove the advantages of the non-iterative strategy used in
NNSA, we compared the iterative and non-iterative sample augment procedures in the validation area
when no external information was added, and found the non-iterative procedure has lower sample
imbalance and higher overall accuracy. The non-iterative procedure avoids error accumulations since
the segmented image objects may deviate from the ground entities in global segmentation parameter
optimization procedures. The NNSA incorporates similar samples but refines them by robust neural
networks and cluster scheme without the rolling procedure, which reduces the uncertainty and avoids
the error accumulation.

The proposed NNSA framework can be used to generate a big sample set from a relatively small
one for object-based image analysis in land cover classification. The NNSA merely utilizes the original
184 samples and avoids error accumulations by a non-iterative procedure, which can be applied in
sample augment in large area. As there is a gap between insufficient sample sizes and big data for
remote sensing, the proposed framework may be helpful for land cover classification by small size
samples. Future work will focus on the description of image objects.
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