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Abstract: Bentonite-based organic amendments may have the potential to enhance soil microbial
properties. The experiment was carried out from 2014 to 2017 comprising four treatments: NPK
fertilizer (nitrogen, phosphorus and potassium mineral fertilizer as a control), NPK + cattle manure,
NPK + bentonite, and NPK + combination of manure with bentonite (MB) to verify this hypothesis.
The effect of treatments on seven different soil microbial properties was measured: dehydrogenase
activity (DHA), bacterial phospholipid fatty acid content, fungal phospholipid fatty acid content,
microbial biomass carbon (Cmic), 16S rDNA, 18S rDNA, and ammonia-oxidizing bacteria in soil.
The results showed that solely bentonite treatment increases the bacterial and fungal biomass,
which was further confirmed by the increased 16S rDNA and 18s rDNA gene copy numbers. The only
significantly decreased values upon treatment with solely bentonite were recorded for DHA and Cmic.
The ammonia-oxidizing bacteria population increased with the sole application of bentonite and
reached its maximum value when bentonite was applied with manure. The MB treatment showed
the highest value for all seven measured properties. In summary, the application of bentonite solely
might increase or decrease the soil activity, but its addition, along with manure, always promotes an
abundance of soil microorganisms and their activity. The co-application of bentonite with manure
altered the soil microbial properties in a 3-year field experiment in favor of increased microbial
biomass, which is beneficial for agriculture and environment and reveals the potential for the
restoration of polluted lands.
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1. Introduction

Soil erosion is a consequence of unsustainable land management; it leads to increase in land
degradation and a decrease in soil fertility, and it directly affects agricultural productivity [1].
Inorganic fertilizers are frequently used to increase soil fertility and crop yield. However, they are
not a permanent solution to tackle soil infertility. The long-term application of mineral fertilizers into
soils with a low percentage of organic compounds accelerates the mineralization of soil organic matter
(SOM) and disrupts the natural metabolic processes of soil organisms. This leads to a reduction in the
SOM content, nutritional imbalance, and soil acidification [2]. Therefore, natural amendments, such as
bentonite and its combination with manure, could be useful tools to maintain or increase the SOM in a
sustainable way.

Bentonite immobilizes toxic xenobiotic compounds (herbicides and antibiotics) present in the
soil [3,4] and is widely used for the reclamation of polluted land [5,6]. Bentonite clay composite has also
been evaluated as a tool for the remediation of heavy metal-contaminated soil [7]. Bentonite amendment
successfully accelerates salt removal, reduces salt content, and improves the physical and chemical
properties of coastal land. Bentonite addition is a main soil amelioration technique that is successfully
used in the remediation and restoration of highly saline coastal land. Bentonite can improve the ability
of a soil to retain nutrients and is used as a chemical and physical soil conditioner due to the high
cationic exchange capacity that helps in the restoration of bare land and supports plant growth [8].

SOM plays an essential role in long-term soil conservation and restoration by sustaining its fertility
and, hence, in sustainable agricultural production, due to the improvement of the physical, chemical,
and biological properties of soils [9]. Many previous studies have reported that the application of
organic material to the soil has increased the soil organic carbon storage [10].

Manure addition to the soil increases the SOM; soil with a higher proportion of organic matter
has a higher cation exchange capacity (CEC) owing to the negative charge on organic matter. A high
CEC helps in nutrient retention and nutrient availability in the soil [11]. Bentonite can vary its bulk
density as a function of the soil moisture and temperature, thereby generating a reaction space for a
simultaneously applied organic fertilizer [5,12]. Therefore, the use of bentonite together with manure
may be an effective and sustainable way to achieve improved soil quality.

This study aims to investigate the impact of solely applied bentonite and its combination with
manure on different soil microbial properties. The following soil microbial properties were selected as
indicators of soil health and quality in the individual experiment variants: the microbial biomass carbon
(Cmic), dehydrogenase activity (DHA), and soil microbial community abundance. The hypothesis is
that the use of bentonite and manure together should result in a mutual modification of their properties;
hence, the combination of both could give positive effects better than the simple sum of the individual
effects of each one. The hypotheses were tested within the field experiments, which were performed
from 2014 to 2017.

2. Materials and Methods

2.1. Experimental Field Site and Experiment Design

The experimental field was located at the locality of Rapotín in the Czech Republic (Figure 1),
situated at an altitude of about 345 m a.s.l. This area comes under the temperate continental climate
zone, with a mean annual temperature of 7 ◦C and a mean annual precipitation of about 705 mm.
The seasonal distribution of rainfall at the Rapotín locality is around 400–450 mm during the vegetation
season and 250–300 mm within the winter period.
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Figure 1. Localization of the field experiment within the Czech Republic.

Field-scale experiments were conducted during the cropping season from 2014 to 2017. The design
of an experiments consisted of an application of four soil treatments, which were: (1) only NPK
(mineral fertilizer) as a control, (2) NPK + cattle manure (50 t/ha), (3) NPK + bentonite (6 t/ha), and (4)
NPK + combination of manure (50 t/ha) with bentonite (6 t/ha) (MB). Manure was added at the start of
the experiment, whereas the bentonite and mineral fertilizer (NPK) were applied each year. The doses
of nutrient (N, P, K) applied to each crop were: 220 kg/ha N, 35 kg/ha P, and 225 kg/ha K in the
year 2014/2015 under the maize species LAVENA (FAO 250) for the silage; 160 kg/ha N, 30 kg/ha P,
and 80 kg/ha K in the year 2016 under the spring barley species KWS IRINA; 170 kg/ha N, 30 kg/ha
P, and 80 kg/ha K in the year 2016/2017 under the winter wheat species FAKIR. The dosage of cattle
manure of 50 t/ha was added as recommended [13]. The experimental area was divided as follows:
three small-scale-plots (10 × 10 m) per each of four variants of the soil amendment (12 small-scale plots
overall). The amendments (bentonite, manure, and the combination of both) were manually spread on
the small-scale plot and incorporated by deep plowing to a depth of 0–25 cm.

2.2. Soil and Amendments Characteristics

2.2.1. Soil Properties

The soil at the experimental area was the loamy sand Luvisol. For the more detailed introduction
of this experimental soil, the analyses of the physical and chemical properties were realized at the
beginning of the experiment (see in Table 1).
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Table 1. Soil physical and chemical properties.

Soil Physical Properties Soil Chemical Properties

Parameter Value Unit Parameter Value Unit

Bulk density 1.38 g/cm3 C:N ratio 5.89 -
Porosity 47.7 % K:Mg ratio 0.58 -

Maximum capillary capacity 35.8 % Ntot 1.9 g/kg
Minimum airiness 12.0 % Available P 95.9 mg/kg

Available N 238 mg/kg
Content of particles (<0.01 mm) 27 % Exchange capacity 122 mmol/kg

Mg 145 mg/kg
Ca 2.6 mg/kg

Corg 11.2 g/kg
Humic and fulvic acid ratio 0.93 -

pH (KCl) 5.13 -

2.2.2. Bentonite Properties

The applied bentonite (Ekobent B) was brought from the Czech producer KERAMOST, s.c.:
humidity 5%; pH (KCl) value 9.0; grain 0–2 mm; content of montmorillonite 70%; SiO2 535 g/kg; Al2O3

24 g/kg; Na2O 2.5 g/kg; K2O 7.5 g/kg; Li2O 1 g/kg; P2O5 1 g/kg.

2.2.3. Manure Production and Properties

The manure was from deep bedding with straw litter with the manure removal frequency from
the barn every 8 weeks. After removal and before the manure application on the field, it was stored on
the covered dunghill with tarpaulin for 2 months. The chemical properties of the manure (the content
in dry matter) were total organic carbon 427 g/kg, N-NH4

+ 1.39 g/kg; Ntot 23.5 g/kg; P2O5 9.13 g/kg;
K2O 23.9 g/kg; CaO 21.7 g/kg; MgO 6.30 g/kg; pH (KCl) value 8.6; and C:N ratio 24.1:1.

2.2.4. Combined Manure and Bentonite Production and Properties

Bentonite + manure production: After removal from the barn and before the manure application
on the field, manure was mixed with bentonite and stored on the covered dunghill with tarpaulin
for 2 months. The chemical properties of the combined manure with bentonite (the content in dry
matter): total organic carbon 429 g/kg, N-NH4

+ 2.69 g/kg; Ntot 29.1 g/kg; P2O5 10.5 g/kg; K2O 24.8 g/kg;
CaO 26.1 g/kg; MgO 7.74 g/kg; pH value (KCl) 9.3; and C:N ratio 20.1:1.2.3.

2.3. Sample Collection

The soil samples were collected immediately after the third cropping season in October 2017.
Three spatially independent mixed soil subsamples from each experimental variant were collected in
the following way: a portion of topsoil from the depth 0–15 cm was taken by a soil drill at five spots of
an experimental field and mixed in a plastic sampling bag. Thus, a total of 12 samples (3 per each of
4 variants) were collected. The samples were transported to the laboratory and they were homogenized
there by sieving them through a 2 mm mesh under sterile conditions. The samples for the analysis of
the enzyme assays were stored at 0–4 ◦C until they were used (within one week). The samples for the
qPCR and PLFA (phospholipid fatty acid) analysis were freeze-dried. The dry mass and maximum
water holding capacity (WHC max) were estimated in each sample prior to the measurement of the
Cmic and dehydrogenase activity (DHA). The water holding capacity of the samples was adjusted to
50–60% of the WHC max, and they were re-activated by incubation in the dark at 22 ◦C for 4–5 days in
closed bottles of volume 10-fold higher than the sample volume.

2.4. Microbial Biomass Carbon

The fumigation extraction method was used to determine the soil Cmic. This method is based
on the lysis of the microbial cell upon treatment with chloroform for 24hr. The sample sets were
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duplicated and only one set was subjected to fumigation, followed by the extraction of K2SO4 and the
comparison of the fumigated and non-fumigated samples [14].

2.5. Dehydrogenase Activities

Dehydrogenase acivity DHA was measured using triphenyltetrazolium chloride (TTC).
The methodology was modified according to [15] based on [16]. A soil sample (3 g) was mixed
with magnesium oxide (MgO) and sealed with the standard solution (triphenyl tetrazolium chloride +

distilled water). The samples were incubated at 37 ◦C for 24 h. Triphenylformazan (TPF) was extracted
from the samples using methyl alcohol, resulting in a change in the color of the solution. The intensity
of the color was measured using a spectrophotometer (DR 3900, Hach Lang, Duesseldorf, Germany) at
a wavelength of 485 nm. The DHA was calculated according to the calibration curve and expressed in
µg TPF/g/h.

2.6. DNA Extraction and Real-Time qPCR

The DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) was used to extract DNA from 0.5 g of the
lyophilized soil. The soil DNA extracts were subjected to real-time PCR for quantification of partial
bacterial (16S rDNA) and fungal (18S rDNA) rDNA. Each sample was spiked with the DNA of the plasmid
vector derived from pUC18 serving as an internal standard for the valuation of the yield efficiency and
contamination with PCR inhibitors. Picodrop was used to quantify the isolated DNA. CFX96 Real-Time PCR
Detection System (Bio-Rad Laboratories) was applied to perform SYBR-green assays. The primers used were
1132R (5′ GGGTTGCGCTCGTTGC 3′) and 1108F (5′ ATGGYTGTCGTCAGCTCGTG 3′) for bacteria [17],
and FR1 (5′ AICCATTCAATCGGTAIT 3′) and FF390 (5′ CGATAACGAACGAGACCT 3′) for fungi [18].
The combination of the primer was used for the quantification of ammonia-oxidizing bacterial (AOB) 16S
rDNA, RT1R (5′ CGTCCTCTCAGACCARCTACTG 3′), CTO189FC (5′ GGAGGAAAGTAGGGGATCG
3′), and CTO189FA/B (5′ GGAGRAAAGCAGGGGATCG 3′) primers at a 2:1:2 ratio [19]. The DNA of
pUC18-derivate (internal standard) was quantified by qPCR using SQPR2 (5′ CTCGTATGTTGTGTGGAA
3′) and SQP (5′ GTTTTCCCAGTCACGAC 3′) primers [20].

The SYBR-green type real-time qPCR was conducted on the CFX96™ Real-Time PCR Cycler
(Bio-Rad, USA). The same PCR programming (for the determination of respective target genes—i.e.,
referred to each microbial group) as reported in the original works (Amann et al. 1995, Vainio et
Hantula 2000, Hermansson et al. 2001) was followed [17–19]. A 5× HOT FIREPol®EvaGreen®qPCR
Supermix (Solis Biodyne, Estonia) was used for the PCR reaction assay.

2.7. Quantification of Microbial Biomass

The samples for the phospholipidic fatty acid (PLFA) analysis were extracted from the mixture
of chloroform-methanol-phosphate buffer (1:2:0.8) [21]. The phospholipids were separated using
solid-phase extraction cartridges (LiChrolut Si 40, Merck). Then, the samples were subjected to mild
alkaline methanolysis and extracted to hexane as a final solvent [22]. The free methyl esters of the
phospholipid fatty acids were analyzed using gas chromatography-mass spectrometry (Agilent 7890A
with a Flame ionization detector FID detector). The GC instrument was equipped with a split/splitless
injector, and a CP Sil 88 column was applied for separation (100 m, 0.25 mm i.d., 0.2 µm film thickness).
The temperature program started at 80 ◦C and was held for 1 min in a splitless mode. Thereafter, the
splitter was opened, and the oven was heated to 160 ◦C at a rate of 20 ◦C/min. The second temperature
ramp was up to 225 ◦C at a rate of 5 ◦C/min; this temperature was maintained for 12 min.

Methylated fatty acids were identified according to their mass spectra and using a mixture of the
chemical standards obtained from Sigma/Matreya LLC. The fungal biomass (FPLFA) was quantified
based on the 18:2ω6,9 content, and bacterial biomass (BPLFA) was quantified as a sum of i14:0, i15:0,
a15:0, 16:1ω7t, 16:1ω9, 16:1ω7, 10Me-16:0, i17:0, a17:0, cy17:0, 17:0, 10Me-17:0, 10Me-18:0, and cy19:0.
The fatty acids found in both bacteria and fungi—15:0, 16:0, and 18:1ω7—were excluded from the
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analysis. The relative content of the individual PLFA molecules was also calculated. The total content
of all the PLFA molecules (PLFAT) was used as an indicator of the total microbial biomass.

2.8. Statistical Analyses

Data analysis was carried out with the help of software R, version 3.6.3. [23], together with the
additional package “ggplot2” [24] for creating advanced statistical graphs and “factoextra” [25] and
“FactoMineR” [26] for a principal component analysis (PCA).

For the characterization of the relation between the soil microbial properties and different
treatments (with 4 replicates), a one-way analysis of variance (ANOVA), a Dunnett–Tukey–Kramer
pair-wise multiple comparison test from the package “agricolae” [27], and PCA were implemented.
The Pearson’s correlation coefficient was applied for measuring the statistical relation between the soil
microbial properties; the chart of a correlation matrix was created with help of the additional package
“PerformanceAnalytics” [27]. The partial eta-squared (ηp

2) from the package “BaylorEdPsych” [28]
was employed for the measuring of the effect size.

3. Results

3.1. Dependences of Microbial Indexes on the Treatment Applied

A summary of all the measured soil parameters is given in the following Table 2. Furthermore,
Figures 2 and 3 summarize information on the interactions of the individual soil parameters.
The measured values (Table 1, Figures 2 and 3) confirmed not only the relation and potentially
mutual influence between the individual parameters, but also the obvious influence of the common
application of bentonite and manure. The strongest positive correlation was confirmed between BPLFA
and 16S AOB rDNA (Pearson’s r(24) = 0.96 (95% CI[0.91, 0.98]), p < 0.001) and between DHA and 18S
rDNA (Pearson’s r(24) = 0.93 (95% CI[0.84, 0.97]), p < 0.001).

Table 2. Basic descriptive statistics for the soil microbial properties.

Soil Microbial Properties Descriptive Statistics

Mean SEM SD Min 5% 25% 50% 75% 95% Max

DHA 1.75 0.07 0.33 1.23 1.26 1.49 1.75 2.03 2.20 2.23
Cmic 1.65 0.05 0.23 1.31 1.32 1.48 1.62 1.76 2.07 2.12

BPLFA 55.6 1.26 6.16 45.1 45.4 52.8 55.0 62.0 63.1 63.6
FPLFA 24.3 1.05 5.12 17.9 18.3 19.6 22.7 30.5 31.3 32.0

16S rDNA 9.42 0.18 0.86 8.47 8.49 8.89 8.98 10.6 10.6 10.6
18S rDNA 7.49 0.22 1.08 6.39 6.42 6.46 7.29 8.73 8.76 8.76
16S AOB 8.16 0.14 0.67 6.95 6.95 7.89 8.29 8.75 8.81 8.82

Based on the results of the PCA, it can be concluded that approximately 89% of the variation was
clarified by the first two eigenvalues together: the first eigenvalue was 78% and the second one was
11%. In the first dimension, the following soil microbial properties had a large contribution: 16S rDNA
(17.1%), BPLFA (16.8%), and 18S rDNA (16.6%). In the second dimension, the following soil microbial
properties had a large contribution: Cmic (57.7%) and 16S AOB rDNA (22.6%). The total contribution
of the soil microbial properties on PC1 and PC2 together was as follows (in descending order): BPLFA
(15.5%), 16S rDNA (15.2%), 16S AOB rDNA (15.2%), 18S rDNA (14.8%), and Cmic (14.4%). Other soil
microbial properties did not have a large contribution in accounting for the variability in the first two
principal components. The Rohlf biplot (Figure 3) shows clearly this relation between the soil microbial
properties and their change with the dependence on the treatments. Mainly in the case of utilizing
manure and bentonite together, the values of DHA, FPLFA, BPLFA, 16S rDNA, 18S rDNA, and 16S
AOB rDNA demonstrate larger figures than in the control group.
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3.2. Dehydrogenase

The results of a one-way ANOVA analysis of the DHA activity values (Figure 4) showed a
statistically significant difference between the DHA activity of the respective treatments (F3,20 = 46.27,
p < 0.001, ηp

2 = 0.87). Significantly increased DHA activity was found in the case of manure (diff =−0.43,
p < 0.001) and MB (diff = −0.57, p < 0.001) as compared to the control. The highest value of DHA was
found out in the case of MB—on average, 2.10 µg TPF/g/h (95% CI [2.0, 2.19])—and the lowest value
of DHA was determined in the case of bentonite, on average 1.42 µg TPF/g//h (95% CI [1.32, 1.51]).
The treatments (bentonite, manure) and manure alone showed a maximum increase in DHA activity as
compared to the control and bentonite treatment.
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Manure (diff = −0.53, p < 0.001) and MB (diff = −0.68, p < 0.001) amendments showed a significant
increase in the DHA activity in comparison with bentonite solely.

3.3. Soil Phospholipid Fatty Acid Analysis

A one-way ANOVA revealed a significant difference between the soil fungal community biomass
(FPLFA) of the treatments (F3,20 = 582.43, p < 0.001, ηp

2 = 0.99). The effect of the applied treatments
on the FPLFA was statistically significant in the case of bentonite (diff = −3.23, p < 0.001) and MB
(diff = −11.37, p < 0.001), which caused a significant increase in the FPLFA value compared to the
control (Figure 5). There was also a statistically significant difference between bentonite and manure
(diff = 4.33, p < 0.001), between bentonite and MB (diff = −8.14, p < 0.001), and between manure and
MB (diff = −12.47, p < 0.001). The highest value of fungal biomass was recorded for the soil treated with
MB—on average, 31.0 nmol/g (95% CI [30.57, 31.43])—and the lowest value for fungal biomass was
found in the case of manure, on average 18.53 nmol/g (95% CI [17.92, 19.14]). The addition of bentonite
to soils significantly enhanced the soil fungal biomass. While manure alone had no significant effects,
when combined with bentonite a strong enhancement of the fungal biomass was observed (Figure 5).
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BPLFA showed the similar results to those of FPLFA (Figure 6). A one-way ANOVA indicated that
there was a statistically significant difference between the BPLFA values of the treatments (F3,20 = 729.74,
p < 0.001, ηp

2 = 0.99). The statistically significant increase in the BPLFA value on the addition of
bentonite (diff = 7.48, p < 0.001), manure (diff = −11.23, p < 0.001), and MB (diff = −17.13, p < 0.001)
was demonstrated. The highest value of bacterial biomass was found in the case of MB—on average,
62.6 nmol/g (95% CI; 62.17, 63.10)—and the lowest value of bacterial biomass was observed in the case
of the control, on average 45.5 nmol/g (95% CI; 44.84, 46.16). There was also a statistical difference
between bentonite and manure (diff = −3.75, p < 0.001), between bentonite and MB (diff = −9.65,
p < 0.001), and between manure and MB (diff = −5.91, p < 0.001). The addition of bentonite and
manure to soils significantly enhanced the soil bacterial biomass. Meanwhile, bentonite in combination
with manure showed a synergistic effect (Figure 6).
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3.4. Microbial Biomass Carbon

Cmic is one of the main indicators of soil fertility, which is more sensitive to soil treatment practices
than bulk organic matter. The results of a one-way ANOVA denoted statistically significant differences
between the Cmic of the treatments (F3,20 = 7.67, p = 0.001, ηp

2 = 0.54). There was a large statistically
significant difference between bentonite and MB (diff = −0.39, p < 0.001), and a borderline statistically
significant difference between manure and MB (diff = −0.29, p = 0.048). Nevertheless, there were no
statistically significant differences between the control and bentonite (diff = −0.16, p = 0.40), manure
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(diff = 0.06, p = 0.96), and MB (diff = −0.22, p = 0.15). The highest Cmic value was found in the case of
MB—on average, 1.86 mg/g (95% CI [1.74, 1.99])—and the lowest value of Cmic was detected in the
case of bentonite, on average 1.47 mg/g (95% CI [1.35, 1.59]) Treatments (bentonite, manure) alone or
its combination has no effect on the microbial biomass carbon (Figure 7).

Land 2020, 9, x FOR PEER REVIEW 9 of 19 

between the Cmic of the treatments (F3,20 = 7.67, p = 0.001, ηp2 = 0.54). There was a large statistically 
significant difference between bentonite and MB (diff = −0.39, p < 0.001), and a borderline statistically 
significant difference between manure and MB (diff = −0.29, p = 0.048). Nevertheless, there were no 
statistically significant differences between the control and bentonite (diff = −0.16, p = 0.40), manure (diff 
= 0.06, p = 0.96), and MB (diff = −0.22, p = 0.15). The highest Cmic value was found in the case of MB—on 
average, 1.86 mg/g (95% CI [1.74, 1.99])—and the lowest value of Cmic was detected in the case of 
bentonite, on average 1.47 mg/g (95% CI [1.35, 1.59]) Treatments (bentonite, manure) alone or its 
combination has no effect on the microbial biomass carbon (Figure 7). 

 

Figure 7. Cmic (mg/g) of the treatments: means with SEM. 

3.5. DNA Extraction and Real-time qPCR 

3.5.1. 16S rDNA 

The total amount of bacteria (with no respect to viability) in the soil microbial community was 
determined as the number of copies of the 16S rDNA (qPCR amplicon from the total soil DNA with 
targeted oligonucleotide probes—Section 2.6) [17]. The results of bacterial DNA in the soil of all the 
variants were determined (Figure 8). A one-way ANOVA analysis of variance showed a significant 
difference between the log 16S rDNA copies of the treatments (F3,20 = 12387, p < 0.001, ηp2 = 0.99). The 
significantly increased 16S rDNA value was determined in the case of bentonite (diff = −0.42, p < 0.001), 
manure (diff = −0.55, p < 0.001), and MB (diff = −2.11, p < 0.001) to the control. The highest value of 16S 
rDNA was found in the case of MB—on average, 10.60 log copies/g (95% CI [10.58, 10.61])—and the 
lowest value of 16S rDNA was demonstrated in the case of the control, on average 8.49 log copies/g 
(95% CI [8.47, 8.51]). There was also a large statistical difference between the following treatments 
(Figure 8): bentonite and manure (diff = −0.13, p < 0.001), bentonite and MB (diff = −1.69, p < 0.001), and 
manure and MB (diff = −1.55, p < 0.001). The treatments (bentonite, manure) enhanced the bacterial 
populations, but in particular the effect was strong when they were combined (manure + bentonite). 

Figure 7. Cmic (mg/g) of the treatments: means with SEM.

3.5. DNA Extraction and Real-Time qPCR

3.5.1. 16S rDNA

The total amount of bacteria (with no respect to viability) in the soil microbial community was
determined as the number of copies of the 16S rDNA (qPCR amplicon from the total soil DNA with
targeted oligonucleotide probes—Section 2.6) [17]. The results of bacterial DNA in the soil of all the
variants were determined (Figure 8). A one-way ANOVA analysis of variance showed a significant
difference between the log 16S rDNA copies of the treatments (F3,20 = 12387, p < 0.001, ηp

2 = 0.99). The
significantly increased 16S rDNA value was determined in the case of bentonite (diff = −0.42, p < 0.001),
manure (diff = −0.55, p < 0.001), and MB (diff = −2.11, p < 0.001) to the control. The highest value of
16S rDNA was found in the case of MB—on average, 10.60 log copies/g (95% CI [10.58, 10.61])—and
the lowest value of 16S rDNA was demonstrated in the case of the control, on average 8.49 log copies/g
(95% CI [8.47, 8.51]). There was also a large statistical difference between the following treatments
(Figure 8): bentonite and manure (diff = −0.13, p < 0.001), bentonite and MB (diff = −1.69, p < 0.001),
and manure and MB (diff =−1.55, p < 0.001). The treatments (bentonite, manure) enhanced the bacterial
populations, but in particular the effect was strong when they were combined (manure + bentonite).
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3.5.2. 18S rDNA

The results of the fungal biomass estimation via the quantification of fungal genomic DNA are
in Figure 9. Similarly to the case of bacteria, the total amount of (viable or not) fungi in the soil
was determined as the number of copies of the 18S rDNA (qPCR amplicon from the total soil DNA
with fungi-targeted oligonucleotide probes—Section 2.6) [18]. The one-way ANOVA also revealed a
significant difference between the log 18S rDNA of the treatments (F3,20 = 16,840, p < 0.001, ηp

2 = 0.99).
Although no significant change in the log 18S rDNA copies was observed in the case of the bentonite
treatment (diff = −0.01, p = 0.97) compared to the control, there was a statistically significant difference
between manure (diff = −1.67, p < 0.001) and MB compared to the control (diff = −2.29, p < 0.001).
The highest value of 18S rDNA was found in the case of MB—on average, 8.74 log copies/g (95% CI
[8.72, 8.76])—and the lowest value of 18S rDNA was determined in the case of bentonite, on average
6.45 log copies/g (95% CI [6.43, 6.46]). There was also a large statistical difference between the
following treatments (Figure 9): bentonite and manure (diff = −1.67, p < 0.001), bentonite and MB
(diff = −2.29, p < 0.001), and manure and MB (diff = −0.62, p < 0.001). The treatments with manure
enhanced the fungal populations, but in particular the effect was strong when they were combined
(manure + bentonite).
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3.5.3. Ammonium Oxidation in Soil (16S AOB-rDNA)

The indicator of nitrification processes in the soil is a community of ammonia-oxidizing bacteria
(AOB). The total amount of AOB (viable or not) in the soil samples was determined as the number
of copies of the AOB-specific16S rDNA (qPCR amplicon from the total soil DNA with targeted
oligonucleotide probes—Section 2.6) [19]. Based on the result of a one-way ANOVA, it can be
concluded that there was a statistically significant difference between the 16S AOB rDNA of the
treatments (F3,20 = 4403.2, p < 0.001, ηp

2 = 0.99). The effect of all the treatments was significant in
comparison with the control group: bentonite (diff = 0.97, p < 0.001), manure (diff = −1.71, p < 0.001),
and MB (diff = −1.83, p < 0.001). The highest value of 16S AOB rDNA was identified in the case of
MB—on average, 8.77 log copies/g (95% CI [8.75, 8.80])—and the lowest value of 16S AOB rDNA was
detected in the case of the control group, on average 6.95 log copies/g (95% CI [6.92, 6.98]). There was
also a large statistical difference between the following treatments (Figure 10): bentonite and manure
(diff = −0.74, p < 0.001), bentonite and MB (diff = −0.86, p < 0.001), and manure and MB (diff = −0.12,
p < 0.001). The treatments (bentonite, manure) enhanced the population of ammonium oxidation
bacteria, but in particular the effect was strong when they were combined (manure + bentonite).
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4. Discussion

4.1. Dehydrogenase

The lowest value of DHA was found for bentonite treatment as compared to all other variants
(Figure 4). This decrease in enzyme activity may be due to the addition of bentonite in the pure form.
The DHA activity depends on the living cell content of the soil (e.g., genus Pseudomonas). Since it is an
intracellular enzyme, dehydrogenase cannot be stored in the soil outside the host cell [29]. The high
DHA activity shows a greater number of living bacterial biomass present in the soil [30], whereas low to
no DHA activity is seen as the absence of host bacteria. Bentonite is one of the most abundant inorganic
colloids and has a strong adsorption power to absorb nutrients from the aqueous solution [31,32].
It has a high surface area and a high CEC and positively affects several soil parameters. However,
it interacts with soil nutrients as well as useful soil microbes, and in some cases it results in a negative
DHA effect on the soil microflora and rhizosphere [33,34].

On the contrary, significantly increased DHA activity was determined in the case of manure
and MB in comparison to the control. The results are consistent with other studies that reported
that organic soil amendments could significantly improve soil enzyme activities [35,36]. The manure
application provides an additional source of carbon and nitrogen, which increases bacterial activity.
In this case, the sustainable and slow release of manure-derived nutrients temporarily immobilized by
bentonite for an extended period could be the main reason for the increase in the DHA activity [37,38].
The application of bentonite, which was shown to increase soil moisture [39], improved the soil
enzyme activity when amended with manure. There are studies coupling the elevated levels of organic
agriculture pollutants with the induced DHA activity [40], which may indicate that the higher DHA
activity (in the soil with manure and bentonite) is an assumption for a higher decontamination potential.

4.2. Soil Phospholipid Fatty Acid Analysis

PLFA is a rapid and sensitive method used to detect living microbial types and their abundance
in the soil. Soil mix with bentonite contains a large surface area for microbial growth [41,42], and small
pores provide extra protection for soil microorganisms [43–45]. This is the reason for the higher FPLFA
and BPLFA values for the samples treated both with bentonite solely and in combination with manure.
However, the bentonite-derived increase in microbial abundance was contradictory to the results
of the DHA measurement. Although microbial biomass was identified to correlate with the rate of
soil organic carbon decomposition, it could be mainly attributed to respiration [42], whereas DHA
strongly increases under anaerobic conditions. This finding is in agreement with a bentonite-referred
role in the retention of organic matter decomposition [43,46,47]. An interaction of soil microflora and
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bentonite changes the SOM quality, and SOM increase with the clay content (due to physical and
chemical bindings) was not coupled with a significant increase in its readily mineralizable portion [48].
A similar result for the bentonite effect of SOM decomposition was presented by other scientists [45,49].
Manure showed the lowest FPLFA value; this might be due to the significantly lower soil pH value in
the incriminated manure variant (5.64, in contrast to pH 7.40 of the control). It was reported that the
fungal/bacterial PLFA ratio tends to increase with an increasing soil pH [50].

4.3. Microbial Biomass Carbon

Cmic is a measure of the carbon contained in an active component of SOM. Its formation is
contributed by mostly bacteria and fungi, which transform plant residues and soil organism debris in
the products ready for plant assimilation. Cmic is primarily used to evaluate the soil quality; it is an
essential driver of ecosystem functioning [51,52]. Figure 7 shows the measured values of the soil Cmic

within the individual variants. The soils treated with bentonite showed the lowest value of Cmic. It can
be assumed (in agreement with other authors, e.g., [53]) that a clay fraction of the soil was enriched with
the soil organic carbon (in comparison with the bulk soils). This might be due to the montmorillonite
type of sorbent, which was referred to show a slower mineralization rate (compared to other clay
minerals), which was in line with the smaller microbial biomass in this soil [54]. These authors also
evidenced the retarded decomposition of various soil organic compounds due to the adsorption to
clay sorbents [55–57], which may clarify the lowered Cmic in comparison with the control. Another
explanation for the decrease in the Cmic value is that bentonite absorbs water from the surrounding and
swells up, and the swelling of bentonite substantially reduces the microbial activity in the soil [58,59].
A small pore size on the bentonite surface and the low free water could be other reasons for the decline
in the microbial activity. Some authors have proved that a minimum of 15% water content is necessary
for microbial growth in a 50:50 mixture of sand and bentonite [60,61]. A significant increase in the Cmic

was observed compared to bentonite (Figure 7). Presumably, the known positive effect of manure on
the water holding capacity [62] and the surplus access of organic carbon might have alleviated both
putative negative effects of bentonite on the Cmic value.

4.4. DNA Extraction and Real-time qPCR

4.4.1. 16S rDNA

Bacteria represent a dominant fraction of the soil microflora, which largely contributes to the
majority of processes in the soil—e.g., to the soil aggregation and structure, metabolism and nutrient
fluxes, and plant health and growth. A significant increase in the 16S rDNA value has been observed
for the bentonite variant in comparison to the control. It has been claimed the presumed beneficial
effect of the bentonite amendment to the soil quality is due to the increased microbial biomass—see
Figures 2, 3 and 8. There was also reported a significant increase in bacterial 16S rDNA genes upon the
bentonite treatment [63].

In contrast to the results of the Cmic, the amendment of manure led to a significantly increased
bacterial (16S rDNA) abundance compared to both the control and bentonite variants. The more
significant positive contribution of manure to bacterial biomass in comparison with the bentonite effect
was expected [64], and was in conformity with the results of the BPLFA measurement (Section 4.2).
Finally, the combined treatment with bentonite and manure together resulted in the highest numbers
of bacteria in the soil (compared to all the other variants). The evidenced additional enhancement of
bacterial colonization of a small-sized clay fraction of the soil (which may be attributed to bentonite)
due to the manure amendment has also been reported [65].

4.4.2. 18S rDNA

Bentonite gives a place to live to beneficial microbes (bacteria, fungi, protozoa, nematodes,
etc.) [66,67]. The course of the measured values of the 18S rDNA are thus partially similar to those in
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the case of 16S rDNA (Figures 8 and 9). The soil with a content of clay minerals provides a niche for
fungal mycelial growth; however, it was suggested that fungal ones are more likely associated with
macroaggregates, whereas bacterial ones dominate in microaggregates, which prevail in clay sorbents
such as bentonite [68,69]. This may be an explanation for the lack of significant difference in the log
18S rDNA copies of the bentonite treatment as compared to the control. It has been proven that the soil
receiving farmyard manure exerts increased the fungal biomass [70]—the significant difference in the
18S rDNA values between the manure and control correlates with these findings.

Due to high porosity and surface area, bentonite absorbs nutrients from manure and provides a
good environment for microbial growth. Up to 25% of the biological mass is made up of fungi [71],
of which microscopic fungi are the largest component (75%). Microscopic fungi easily colonize
the surface of the bentonite–manure mixture and are also protected from predators thanks to the
manure-mediated formation of macroaggregates [72]. This could be the reason why the sample treated
with the combination of manure and bentonite showed a significant increase in the log 18S rDNA
copies compared to all the treatments, including the control. These results thus confirm the necessity
of a common application of bentonite and organic matter (in this case manure) to achieve the desired
positive effect on the microbial community in the soil.

4.4.3. 16S AOB-rDNA

Bentonite can provide a consistent source of exchangeable NH4
+ ions [73] that support populations

of nitrifiers on the clay surface [74]. Additionally, other authors have reported that clay amendments
(i.e., bentonite) may cause a slight increase (up to 25%) in the potential nitrification in some soils
(at application rates of up to 5%) [34]. The same was evidenced here, with a significantly higher 16S
AOB-rDNA value of the bentonite variant as compared to the control (Figure 10). Further, the AOB
content was significantly improved with the manure treatment as compared to bentonite, and this
was in agreement with previously reported results [75]. The highest value of 16S AOB rDNA was
found in the case of MB (on average, 8.77 log copies.g−1). and demonstrated that the soil containing
the bentonite and manure mixture can fix ammonia from manure due to the presence of expanding
interlayers in bentonite and similar clays [76,77].

A mutual interaction between bentonite and manure significantly modifies the physico-chemical
properties of bentonite on the grounds of the adsorption of manure-derived organic compounds
on the surface of bentonite; as a result, the bentonite surface becomes enriched with manure-born
microorganisms [78].

4.5. Potential for the Reclamation of Polluted Soils

Soil pollution from agriculture caused by various substances has become a growing concern in most
developed and developing countries worldwide due to enhanced urbanization, agricultural practices,
and especially industrialization [79]. The results of this experiment show the theoretical potential of
the combined use of the bentonite amendment with manure for the elimination of soil pollutants in
agricultural soils. From other studies, it is evident that microorganisms immobilized on mineral carriers
changed the chemical composition of manure [80]; thus, they may possess significant biological activity.
In a similar way, the immobilization of microorganism on the bentonite surface causes an alteration in
the bentonite properties that facilitates the bioconversion of adsorbed polluting compounds towards
decomposition products that are non-toxic in the soil and environment [81,82]. This proves the
environmental-decontaminating potential of the manure-bentonite combined amendment described in
this study. However, further research is needed.

5. Conclusions

In conclusion, these research findings suggest that the application of solely bentonite or its
combination with manure increases fungal and bacterial biomass in comparison with the control
variant, as evidenced by the increased values of BPLFA and FPLFA. The increased fungal and bacterial
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biomass upon the bentonite and manure treatment positively correlates with the 16S rDNA copies and
18S rDNA copies. The decrease in the values of the soil Cmic and DHA activity was identified for the
soil samples treated with bentonite only, but, on the contrary, these values reached the maximum for
the MB treatment. The AOB population was also increased with the application of bentonite solely,
and reached its maximum value when bentonite was applied in combination with manure. Similar
trends are seen for BPLFA, FPLFA, and 16S rDNA.
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59. Černá, K.; Ševců, A.; Steinová, J.; Burkartová, K. Microbial Diversity in Aged Bentonites; Technical University
of Liberec: Liberec, Czechia, 2018.

60. Stroes-Gascoyne, S.; Haveman, S.A.; Hamon, C.J.; Delaney, T.-L.; Pedersen, K.; Arlinger, J.; Ekendahl, S.;
Hallbeck, L.; Jahromi, N.; Dekeyser, K.; et al. Occurrence and identification of microorganisms in compacted
clay-based buffer material designed for use in a nuclear fuel waste disposal vault. Can. J. Microbiol. 1997, 43,
1133–1146. [CrossRef]

http://dx.doi.org/10.1016/j.applthermaleng.2019.01.100
http://dx.doi.org/10.1016/j.soilbio.2010.08.014
http://dx.doi.org/10.1111/1574-6941.12436
http://www.ncbi.nlm.nih.gov/pubmed/25303098
http://dx.doi.org/10.1111/j.1365-2389.2006.00809.x
http://dx.doi.org/10.1016/j.soilbio.2003.12.015
http://dx.doi.org/10.1016/j.soilbio.2013.03.023
http://dx.doi.org/10.1007/BF02180317
http://dx.doi.org/10.1016/j.soilbio.2013.06.014
http://dx.doi.org/10.1016/S0038-0717(96)00143-5
http://dx.doi.org/10.1016/j.foreco.2004.09.001
http://dx.doi.org/10.1016/S0038-0717(03)00154-8
http://dx.doi.org/10.1038/nature06275
http://dx.doi.org/10.1046/j.1351-0754.2003.0559.x
http://dx.doi.org/10.1016/j.still.2018.02.008
http://dx.doi.org/10.1007/s00374-014-0987-7
http://dx.doi.org/10.1111/j.1365-2389.2005.00744.x
http://dx.doi.org/10.1016/j.soilbio.2015.03.020
http://dx.doi.org/10.1016/j.molstruc.2013.10.036
http://dx.doi.org/10.1021/es301406q
http://dx.doi.org/10.1139/m97-162


Land 2020, 9, 258 18 of 18

61. Stroes-Gascoyne, S.; West, J.M. An overview of microbial research related to high-level nuclear waste disposal
with emphasis on the Canadian concept for the disposal of nuclear fuel waste. Can. J. Microbiol. 1996, 42,
349–366. [CrossRef]

62. Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content
and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [CrossRef]

63. Engel, K.; Ford, S.E.; Coyotzi, S.; McKelvie, J.; Diomidis, N.; Slater, G.; Neufeld, J.D. Stability of Microbial
Community Profiles Associated with Compacted Bentonite from the Grimsel Underground Research
Laboratory. MSphere 2019, 4, e00601–e00619. [CrossRef] [PubMed]

64. Marschner, P.; Kandeler, E.; Marschner, B. Structure and function of the soil microbial community in a
long-term fertilizer experiment. Soil Biol. Biochem. 2003, 35, 453–461. [CrossRef]

65. Poll, C.; Thiede, A.; Wermbter, N.; Sessitsch, A.; Kandeler, E. Micro-scale distribution of microorganisms and
microbial enzyme activities in a soil with long-term organic amendment. Eur. J. Soil Sci. 2003, 54, 715–724.
[CrossRef]

66. Moosavi, M. Bentonite Clay as a Natural Remedy: A Brief Review. Iran. J. Public Health 2017, 46, 1176–1183.
[PubMed]

67. Rättö, M.; Itävaara, M.; Nol, E. Microbial Activity in Bentonite Buffers Literature Study; Technical University of
Liberec: Liberec, Czechia, 2012.

68. Schutter, M.; Dick, R. Microbial Community Profiles and Activities among Aggregates of Winter Fallow and
Cover-Cropped Soil. Soil Sci. Soc. Am. J. SSSAJ 2002, 66, 142–153. [CrossRef]

69. Tisdall, J.; Oades, J. Organic Matter and Water-stable Aggregates in Soils. J. Soil Sci. 2006, 33, 141–163. [CrossRef]
70. Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fliessbach, A.;

Gunst, L.; Hedlund, K.; et al. Long-term organic farming fosters below and aboveground biota: Implications
for soil quality, biological control and productivity. Soil Biol. Biochem. 2008, 40, 2297–2308. [CrossRef]

71. Miller, J.D. Fungi as contaminants in indoor air. Atmos. Environ. Part A. Gen. Top. 1992, 26, 2163–2172. [CrossRef]
72. Whalen, J.; Chang, C. Macroaggregate Characteristics in Cultivated Soils after 25 Annual Manure Applications.

Soil Sci. Soc. Am. J. 2002, 66, 1637–1647. [CrossRef]
73. Sawhney, B.L. Selective Sorption and Fixation of Cations by Clay Minerals: A Review. Clays Clay Miner. 1972,

20, 93–100. [CrossRef]
74. Plaza, C.; Giannetta, B.; Fernández, J.M.; López-de-Sá, E.G.; Polo, A.; Gascó, G.; Méndez, A.; Zaccone, C.

Response of different soil organic matter pools to biochar and organic fertilizers. Agric. Ecosyst. Environ.
2016, 225, 150–159. [CrossRef]

75. Hallin, S.; Jones, C.; Schloter, M.; Philippot, L. Relationship between N-cycling communities and ecosystem
functioning in a 50-year-old fertilization experiment. ISME J. 2009, 3, 597–605. [CrossRef] [PubMed]

76. Bajwa, M.I. Soil Clay Mineralogies in Relation to Fertility Management: Effect of Clay Mineral Types on
Ammonium Fixation under Conditions of Wetland Rice Culture1. Agron. J. 1907, 74, 143–144. [CrossRef]

77. Meunier, A.; Velde, B.D. Illite-Origins, Evolution and Metamorphism, 1st ed.; Springer: Berlin, Germany, 2004.
[CrossRef]

78. Barthod, J. Innovative Waste Treatment by Composting with Minerals and Worms: Effects on Carbon Storage,
Soil Properties and Plant Growth. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 2017.

79. Skála, J.; Vácha, R.; Hofman, J.; Horváthová, V.; Sáňka, M.; Čechmánková, J. Spatial differentiation of
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