

1

2 Supplementary Materials

3 S1. Overview of the studies assessed in this review sorted according to reading order

Authors	Title	Journal	Issue	Page	Year
A.F. Speak, A. Mizgajski,	Allotment gardens and parks:	Urban Forestry	14	772-781	2015
J. Borysiak	Provision of ecosystem services with	and Urban			
	an emphasis on biodiversity	Greening			
A. Tiwary, P. Kumar	Impact evaluation of green-grey	Science of Total	487	350-360	2014
	infrastructure interaction on built-	Environment			
	space integrity: An emerging				
	perspective to urban ecosystem service				
Á. Takács, M. Kiss, A.	Microclimate modification by urban	Procedia	32	97-109	2016
Hof, E. Tanács, Á. Gulyás,	shade trees – an integrated approach	Environmental			
N. Kántor	to aid ecosystem service based	Sciences			
	decision-making				
A. Robert, J.L. Yengué	What ideal green spaces for the city of	Procedia	198	116-126	2017
	tomorrow, providing ecosystem services?	Engineering			
A. Speak, F.J. Escobedo,	An ecosystem service-disservice ratio:	Ecological	95	544-553	2018
A. Russo, S. Zerbe	Using composite indicators to assess	Indicators			
	the net benefits of urban trees				
A. Clayden, T. Green, J.	Cutting the lawn – Natural burial and	Urban Forestry	33	99-106	2018
Hockey, M. Powell	its contribution to the delivery of	and Urban			
	ecosystem services in urban cemeteries	Greening			
A. Voigt, N. Kabisch, D.	Structural Diversity: A Multi-	AMBIO	43	480-491	2014
Wurster, D. Haase, J.	dimensional Approach to Assess				
Breuste	Recreational Services in Urban Parks				
F. Baró, D. Haase, E.	Mismatches between ecosystem	Ecological	55	146-158	2015
Gómez-Baggethun, N.	services supply	Indicators			
Frantzeskaki,	and demand in urban areas: A				
	quantitative assessment in five				
	European cities.				
C.M.V.B. Almeida, M.V.	Exploring the potential of urban park	Building and	144	450-458	2018
Mariano, F. Agostinho,	size for the provision of	Environment			
G.Y. Liu, B.F. Giannetti	ecosystem services to urban centres: a				
	case study in São Paulo, Brazil				
C.M.V.B. Almeida, M.V.	Comparing costs and supply of	Ecosystem	30	236-247	2017
Mariano, F. Agostinho,	supporting and regulating services	Services			
G.Y. Liu, Z.F. Yang, L.	provided by urban parks at different				
Coscieme, B.F. Giannetti	spatial scales				
C. Pueffel, D. Haase, J.A.	Mapping ecosystem services on	Ecosystem	30	73-85	2018
Priess	brownfields in Leipzig, Germany	Services			
C. Zhao, H.A. Sander	Assessing the sensitivity of urban	Landscape and	175	11-22	2018
	ecosystem service maps to input	Urban Planning			
	spatial data resolution and method				
	choice				

	T		l	1	l
C. Mak, M. Scholz, P.	Sustainable drainage system site	Urban	20	293-307	2017
James	assessment method using urban	Ecosystems			
	ecosystem services				
D. Johnson, S. Geisendorf	Are Neighborhood-level SUDS Worth	Ecological	158	194-205	2019
	it? An Assessment of the Economic	Economics			
	Value of Sustainable Urban Drainage				
	System Scenarios Using Cost-Benefit				
	Analyses				
D. Wurster, M. Artmann	Development of a Concept for Non-	AMBIO	43	454-465	2014
D. Wurster, W. Artifiarin	monetary Assessment of Urban	AWIDIO	43	434-403	2014
	1				
	Ecosystem Services at the Site Level				
D.J. Nowak, D.E. Crane,	A Ground-Based Method of Assessing	Arboriculture	34(6)	347-358	2008
J.C. Stevens, R.E. Hoehn,	Urban Forest Structure and Ecosystem	and Urban	01(0)	317 555	2000
	Services				
J.T. Walton, J. Bond	Services	Forestry			
D.A. Shoemaker, T.K.	Anticipating trade-offs between urban	Computers,	74	114-125	2019
BenDor, R.K.	patterns and ecosystem service	Environment			
Meentemeyer	production: Scenario analyses of	and Urban			
,	sprawl alternatives for a rapidly	Systems			
	urbanizing	,			
	region				
E. Pedersen, S.E.B.	Wetland areas' direct contributions to	Science of Total	646	1315-1326	2019
Weisner, M. Johansson	residents' well-being entitle them to	Environment	040	1313-1320	2017
Weisher, W. Johansson	_	Environment			
	high cultural ecosystem values				
F. Marando, E. Salvatori,	Regulating Ecosystem Services and	Ecological	392	92-102	2019
A. Sebastiani, L. Fusaro,	Green Infrastructure: assessment of	Modelling			
F. Manes	Urban Heat Island effect mitigation in	0			
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	the municipality of Rome, Italy				
F. Sun, J. Xiang, Y. Tao, C.	Mapping the social values for	Urban Forestry	38	105-113	2019
Tong, Y. Che	ecosystem services in urban green	and Urban	30	103-113	2017
Tolig, T. Cile					
	spaces: Integrating a visitor-employed	Greening			
	photography method into SolVES				
F. Baro, L. Chaparro, E.	Contribution of Ecosystem Services to	AMBIO	43	466-479	2014
Gomez-Baggethun,	Air Quality and Climate Change				
J. Langemeyer, D.J.	Mitigation Policies: The Case of Urban				
Nowak, J. Terradas	Forests in Barcelona, Spain				
F. Bottalico, G. Chirici, F.	Air pollution removal by green	Agriculture and	8	243-251	2016
Giannetti, A. De Marco, S.	infrastructures and urban forests in the	Agricultural			
Nocentini, E. Paoletti, F.	city of Florence	Science Procedia			
Salbitano, G. Sanesi, C.					
Serenelli, D. Travaglini					
G. Cetinkaya Cifcioglu,	Urban ecosystem services delivered by	Environmental	10	Article No.	2018
A. Aydin	green open spaces: an example from	Monitoring and		190	
,	Nicosia City in North Cyprus	Assessment			
		1 20000 Milette			
H. Ko, Y. Son	Perceptions of cultural ecosystem	Ecological	91	299-306	2018
	services in urban green spaces: A case	Indicators			
	study in Gwacheon, Republic of Korea				
				1	

H Zenn A Mizgaiski	A Preliminary Assessment of Urban	Berichte.	90(1)	67-84	2016
H. Zepp, A. Mizgajski, C. Mess, I. Zwierzchowska,	A Preliminary Assessment of Urban Ecosystem Services in Central European Urban areas. A Methodological Outline with Examples from Bochum (Germany) and Poznań (Poland)	Geographie und Landeskunde.			
HF. Wang, S. Qureshi, S. Knapp, C.R. Friedman	A basic assessment of residential plant diversity and its ecosystem services and disservices in Beijing, China	Applied Geography	64	121-131	2015
I. Cabral, J. Keim, R. Engelmann, R. Kraemer, J. Siebert, A. Bonn	Ecosystem services of allotment and community gardens: A Leipzig, Germany case study	Urban Forestry and Urban Greening	23	44-53	2017
I. Zwierzchowska, A. Hof, C.I. Ioja, C. Mueller, L. Ponizy, J. Breuste, A. Mizgajski	Multi-Scale Assessment of Cultural Ecosystem Services of Parks in Central European Cities	Urban Forestry and Urban Greening	30	84-97	2018
J. Arnold, J. Kleemann, C. Fürst	A Differentiated Spatial Assessment of Urban Ecosystem Services Based on Land Use Data in Halle, Germany	land	7 (3)	1-29	2018
J. Sieber, M. Pons	Assessment of Urban Ecosystem Services using Ecosystem Services Reviews and GIS-based Tools	Procedia Engineering	115	53-60	2015
J. De Valck, A. Beames, I. Liekens, M. Bettens, P. Seuntjens, S. Broekx	Valuing urban ecosystem services in sustainable brownfield redevelopment	Ecosystem Services	35	139-149	2019
J. Maes, G. Zulian, S. Günther, M. Thijssen, J. Raynal	Enhancing Resilience Of Urban Ecosystems through Green Infrastructure (EnRoute) - Final Report	Publications Office of the European Union			2019
J. Vieira, P. Matos, T. Mexia, P. Silva, N. Lopes, C. Freitas, O. Correia, M. Santos-Reis, C. Branquinho, P. Pinho	Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks	Environmental Research	160	306-313	2018
J. Langemeyer, M. Camps-Calvet, L. Calvet- Mir, S. Barthel, E. Gómez-Baggethun	Stewardship of urban ecosystem services: understanding the value(s) of urban gardens in Barcelona	Landscape and Urban Planning	170	79-89	2018
J. Mathey, S. Rößler, J. Banse, I. Lehmann, A. Bräuer	Brownfields As an Element of Green Infrastructure for Implementing Ecosystem Services into Urban Areas	Journal of Urban Planning and Development	141(3)		2015
J. Meri, L. Lian	A mixed methods approach to urban ecosystem services: Experienced environmental quality and its role in ecosystem assessment within an innercity estate	Landscape and Urban Planning	161	10-21	2017

		1			
K. Yua, M. Van Geel, T. Ceulemans, W. Geerts, M.M. Ramos, N. Sousa, P.M.L. Castro, P. Kastendeuch, G. Najjar, T. Ameglio, J. Ngao, M. Saudreau, O. Honnay, B. Somers	Foliar optical traits indicate that sealed planting conditions negatively affect urban tree health	Ecological Indicators	95	895-906	2018
K.G. Radford, P. James	Changes in the value of ecosystem services along a rural–urban gradient: A case study of Greater Manchester, UK	Landscape and Urban Planning	109	117-127	2013
K. Grönmeier, SM. Hönig, I. Jentsch, S. Leib, J. Loskyll, C. Mayer, S. Rothardt, J. Seimetz, S. Tweraser, F. Villinger, G. Waldenmeyer, S. Norra	Assessment of Ecosystem Services in Urban Systems for the Example of Karlsruhe	Urban Environment		133-142	2013
K. Hubacek	A GIS-based mapping methodology of urban green roof ecosystemservices applied to a Central European city	Urban Forestry and Urban Greening	22	54-63	2017
P. Kremer, Z. A. Hamstead, T. McPhearson	The value of urban ecosysten services in New York City: A spatially explicit multicriteria analysis of landscape scale valuation scenarios	Environmental Science and Policy	62	57-68	2016
N. Larondelle, S. Lauf	Balancing demand and supply of multiple urban ecosystem services on different spatial scales	Ecosystem Services	22	18-31	2016
I. Lehmann, J. Mathey, S. Rößler, A. Bräuer, V. Goldberg	Urban vegetation structure types as a methodological approach for identifying ecosystem services - Application to the analysis of microclimatic effects	Ecological Indicators	42	58-72	2014
L. Szücs, U. Anders, R. Bürger-Arndt	Assessment and illustration of cultural ecosystem services at the local scale – A retrospective trend analysis	Ecological Indicators	50	120-134	2015
L. Inostroza	Open spaces and urban ecosystem services. Cooling effect towards urban planning in South American cities	TeMA, Journal of Land Use, Mobility and Environment	Special issue	523-534	2014
Maes J, Zulian G, Thijssen M, Castell C, Baró F, Ferreira AM, Melo J, Garrett CP, David N, Alzetta C, Geneletti D; Cortinovis C, Zwierzchowska I, Louro Alves F, Souto Cruz C, Blasi C, Alós Ortí MM, Attorre F, Azzella MM, Capotorti G, Copiz R,	Mapping and Assessment of Ecosystems and their Services. Urban Ecosystems.	Publications Office of the European Union			2016

Fusaro L, Manes F,					
Marando F, Marchetti M,					
Mollo B, Salvatori E,					
Zavattero L, Zingari PC,					
Giarratano MC, Bianchi					
E, Duprè E, Barton D,					
Stange E, Perez-Soba M,					
van Eupen M, Verweij P,					
de Vries A, Kruse H,					
Polce C, Cugny-Seguin					
M, Erhard M, Nicolau R,					
Fonseca A, Fritz M, Teller					
A					
M. Riechers, J. Barkmann,	Diverging perceptions by social	Landscape and	175	161-168	2018
T. Tscharntke	groups on cultural ecosystem services	Urban Planning			
	provided by urban green				
M. Johansson, E.	Assessing cultural ecosystem services	Urban Forestry	39	79-88	2019
Pedersen, S. Weisner	as individuals' place-based appraisals	and Urban			
		Greening			
M.S. Orta Ortiz, D.	Assessing Mismatches in the Provision	Sustainability	10	Article Nr	2018
Geneletti	of Urban Ecosystem Services to			2165	
	Support Spatial Planning: A Case				
	Study on Recreation and Food Supply				
	in Havana, Cuba				
M.S. Graça, P. Alvesa, J.	Assessing how green space types	Landscape and	170	195-208	2018
Gonçalves, D.J. Nowak,	affect ecosystem services delivery in	Urban Planning			
R. Hoehn, P. Farinha-	Porto, Portugal				
Marques, M. Cunhab					
M.S. Graça, J.F.	Assessing mismatches in ecosystem	Ecosystem	23	82-93	2017
Gonçalves, P.J.M. Alves,	services proficiency across the urban	Services	23	02-75	2017
D.J. Nowak, R. Hoehn, A.	fabric of Porto (Portugal): The	Scrvices			
Ellis, P. Farinha-Marques,	influence of structural and				
M. Cunha	socioeconomic variables				
M. Kiss, Á. Takács, R.	The role of ecosystem services in	Moravian	23	36-46	2015
Pogácsás, Á. Gulyás	climate and air quality in urban areas:	Geographical	23	30-40	2013
rogacsas, A. Guiyas					
	Evaluating carbon sequestration and	Reports			
	air pollution removal by street and park trees in Szeged (Hungary)				
M W Ctrobbook D		Landssans and	104	95-104	2012
M.W. Strohbach, D.	Above-ground carbon storage by	Landscape and	104	93-104	2012
Haase	urban trees in Leipzig, Germany:	Urban Planning			
	Analysis of patterns in a European city				
N. Nikodinoska, A.	Assessing, valuing and mapping	Ecological	368	411-424	2018
Paletto, F. Pastorella, M.	ecosystem services at city level: The	Modelling			
Granvik, P.P. Franzese	case of Uppsala (Sweden)				
N Larandalla D Hass-	Urban acceptatem convices accessor	Ecological	29	179-190	2013
N. Larondelle, D. Haase	Urban ecosystem services assessment along a rural-urban gradient: A cross-	Ecological Indicators		1/ 7-170	2013
	analysis of European cities	marcators			
	anarysis of European cities				
Oppla	Oslo BiodiverCity - Maintaining	Oppla Webpage			2018
	ecosystem services in a rapidly				
	developing but biodiversity rich city				

Oppla	Mapping and assessing ecosystem services to support urban planning in	Oppla Webpage			2018
	Trento				
Oppla	Assessing urban ecosystem services	Oppla Webpage			2013
	provided by urban trees in Strasbourg City				
P.C. Sutton, S.J. Anderson	Holistic valuation of urban ecosystem	Ecosystem	19	87-91	2016
	services in New York City's Central Park	Services			
P. Czembrowski, J.	Integrating non-monetary and	Ecological	130	166-175	2016
Kronenberg, M.	monetary valuation methods – SoftGIS	Economics			
Czepkiewicz	and hedonic pricing				
R. Giedych, G.	Specific Features of Parks and Their	Sustainability	9	Article No.	2017
Maksymiuk	Impact on Regulation and Cultural			792	
	Ecosystem Services Provision in Warsaw, Poland				
D.R. Richards, B. Tunçer,	Using image recognition to automate	Ecosystem	31,	318-325	2018
Dira racial as, D. ranger,	assessment of cultural ecosystem	Services	Part C	010 020	2010
	services from social media				
	photographs				
R. Mendonça De	Urban vegetation loss and ecosystem	Environmental	245	844-852	2019
Carvalho, C.F. Szlafsztein	services: The influence on climate	pollution			
	regulation and noise and air pollution				
S. Sacchelli, S. Fabbrizzi,	Place-Based Policy-Making and	Green energy		95-104	43191
F. Geri, M. Ciolli	Community Security: A Decision	and technology			
	Support System for Integrated				
	Planning of Urban Ecosystem Services and Disservices				
S. Tresch, M. Moretti, R	A Gardener's Influence on Urban Soil	Frontiers in	6	(article 25)	2018
C. Le Bayon, P. Mäder, A.	Quality	Environmental		,	
Zanetta, D. Frey, A.		Science			
Fliessbach					
S. Zhang, F. Muñoz	Assessing and mapping ecosystem	Cities	92	59-70	2019
Ramírez	services to support urban green				
	infrastructure: The case of Barcelona, Spain				
S. Buchel, N. Frantzeskaki	Citizens' voice: A case study about	Ecosystem	12	169-177	2015
	perceived ecosystem services by urban	Services			
	park users in Rotterdam, the				
	Netherlands				
TEEB – The Economics of	TEEB Manual for Cities: Ecosystem				2011
Ecosystems and	Services in Urban				
Biodiversity	Management.				
T. Mexia, J. Vieira, A.	Ecosystem services: Urban parks	Environmental	160	469-478	2018
Príncipe, A. Anjos, P.	under a magnifying glass	Research			
Silva, N. Lopes, C.					
Freitas, M. Santos-Reis, O.					
Correia, C. Branquinho,					
P. Pinho The URBES Project	URBES Factsheet no. 3				2013
The URBES Project	UNDES Factsneet no. 3				2013

T. Hu, J. Chang, X. Xu	Integrated methods for determining	Ecological	94(2)	164-174	2018
Liu, S. Feng	restoration priorities of coal mining	Indicators			
	subsidence areas based on green				
	infrastructure: -A case study in the				
	Xuzhou urban area, of China				
V.A. Parsa, E. Salehi, A.R.	Analyzing temporal changes in urban	Sustainable	48	Article NR	2019
Yavari, P.M. van	forest structure and the effect on air	Cities and		101548	
Bodegom	quality improvement	Society			
V. Pappalardo, D. La	The potential of green infrastructure	Ecosystem	26	345-354	2017
Rosa, A. Campisano, P.	application in urban runoff control for	Services			
La Greca	land use planning: A preliminary				
	evaluation from a southern Italy case				
	study				
Y. Andersson-Sköld, J.	A framework for assessing urban	Environmental	205	274-285	2018
Klingberg, B.	greenery's effects and valuing its	Management			
Gunnarsson, K.	ecosystem services				
Cullinane, I. Gustafsson,					
M. Hedblom, I. Knez, F.					
Lindberg, Å. Ode Sang,					
H. Pleijel, P. Thorsson, S.					
Thorsson					
Z. Wu, Y. Zhang	Water Bodies' Cooling Effects on	Sustainability	11		2019
	Urban Land Daytime Surface				
	Temperature: Ecosystem Service				
	Reducing Heat Island Effect				
Z.G. Davies, M. Dallimer,	Identifying potential sources of	Environmental	183	133-142	2013
J.L. Edmondson, J. R.	variability between vegetation carbon	pollution			
Leake, K.J. Gaston	storage estimates for urban areas				

6 S2. Short descriptions of method categories

Method categories	Description (cf. MAES-Explorer with own modifications)
Spatial Proxy methods	Spatial proxy methods are derived from indirect measurements which deliver a biophysical value in physical units, e.g., extrapolation from land use data to ES supply capacities.
Sampling/Field mapping + observations	Collecting physical samples or making field observations / field mappings in the nature and taking direct measurements (based on physical units), e.g., botanical surveys.
Surveys + questionnaires	Questioning and surveying people (experts, laypersons), e.g., expert interviews. This method can provide expert information on ecosystem services, but it can be also used to evaluate uncertainties of other methodologies.
Economic valuation methods	Valuation of ES with monetary units, e.g., market price or public pricing.
Model-based methods	This group includes modelling tools that are used for ecosystem services modelling and mapping and that can assess tradeoffs and scenarios for multiple services, e.g., i-Tree Eco model.
Social media- based methods	Methods that use data from social networks or smartphone applications for ES-assessments. This method can reveal preferences for ES and give spatially explicit data on location for nearby ES provision, e.g., Geo-tagged photo-series analysis.
Remote sensing + earth observations	Assessments of ES with datasets (e.g., Optical, radar and LiDAR data) and indicators that are derived from Satellite Earth observation as well as airborne and drone observations.

S3. Overview of assessed ES sections and classes according to CICES V5.1 in regard to urban green infrastructures. Note: Articles which lack specifications on the considered ES class are assigned to the ES class "in general, specifications missing" in each ES section.

ES section	ES class	Numb
	Cultivated terrestrial plants (including fungi, algae) grown for nutritional purposes	14
	Fibres and other materials from cultivated plants, fungi, algae and bacteria for direct use or	4
	processing (excluding genetic materials)	
	Cultivated plants (including fungi, algae) grown as a source of energy	2
	Animals reared for nutritional purposes	2
	Fibres and other materials from reared animals for direct use or processing (excluding genetic	2
12)	materials)	
1g (1	Wild plants (terrestrial and aquatic, including fungi, algae) used for nutrition	2
Provisioning (12)	Fibres and other materials from wild plants for direct use or processing (excluding genetic	1
visi	materials)	
Pro	Wild animals (terrestrial and aquatic) used for nutritional purposes	1
	Fibres and other materials from wild animals for direct use or processing (excluding genetic	2
	materials)	_
	Surface water for drinking	1
	Surface water used as a material (non-drinking purposes)	2
	Ground (and subsurface) water for drinking	9
		4
	Provisioning services (in general, specifications missing)	
	Filtration/sequestration/storage/accumulation by micro-organisms, algae, plants, and animals Noise attenuation	23 1
	Control of erosion rates	
		1
_	Hydrological cycle and water flow regulation (Including flood control, and coastal	10
Regulation and Maintenance (16)	protection)	2
nce	Wind protection	3
ena	Fire protection	21
aint	Pollination (or 'gamete' dispersal in a marine context)	1
Σ	Seed dispersal	1
anc	Maintaining nursery populations and habitats (Including gene pool protection)	1 7
tion	Pest control (including invasive species) Disease control	
rula.		4
Reg	Weathering processes and their effect on soil quality	5
	Decomposition and fixing processes and their effect on soil quality	39
	Regulation of the chemical condition of freshwaters by living processes	2
	Regulation of chemical composition of atmosphere and oceans	30
	Regulation of temperature and humidity, including ventilation and transpiration	7
	Regulation and maintenance services (in general, specifications missing)	5
	Characteristics of living systems that that enable activities promoting health, recuperation or	7
	enjoyment through active or immersive interactions	1.1
	Characteristics of living systems that enable activities promoting health, recuperation or	14
	enjoyment through passive or observational interactions	_
6	Characteristics of living systems that enable scientific investigation or the creation of	5
Cultural (9)	traditional ecological knowledge	,
ultu	Characteristics of living systems that enable education and training	6
び	Characteristics of living systems that are resonant in terms of culture or heritage	4
	Characteristics of living systems that enable aesthetic experiences	10
	Elements of living systems that have sacred or religious meaning	5
	Elements of living systems used for entertainment or representation	6
	Other (Communication and interaction with other people)	4