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Abstract: Climate-wise connectivity is essential to provide species access to suitable habitats in the
future, yet we lack a consistent means of quantifying climate adaptation benefits of habitat linkages.
Species range shifts to cooler climates have been widely observed, suggesting we should protect
pathways providing access to cooler locations. However, in topographically diverse regions, the effects
of elevation, seasonality, and proximity to large water bodies are complex drivers of biologically
relevant temperature gradients. Here, we identify potential terrestrial and riparian linkages and
their cooling benefit using mid-century summer and winter temperature extremes for interior coastal
ranges in Northern California. It is rare for the same area to possess both terrestrial and riparian
connectivity value. Our analysis reveals distinct differences in the magnitude and orientation of
cooling benefits between the summer maximum and winter minimum temperatures provided by the
linkages we delineated for the area. The cooling benefits for both linkage types were maximized to
the west during summer, but upslope and to the northeast during winter. The approach we employ
here provides an improved method to prioritize climate-wise connectivity and promote landscape
resilience for topographically diverse regions.

Keywords: terrestrial connectivity; riparian connectivity; climate change; conservation
planning; cooling benefit; corridor; Linkage Mapper; protected areas; structural connectivity;
Mediterranean-type ecosystems

1. Introduction

Anthropogenic climate change is impelling a redistribution of species, with pervasive and
substantial impacts on ecosystem function and human well-being, on every continent [1]. As the
climate warms, species must tolerate the change, move, adapt, or face local and possibly global
extinction [2]. Changes in climatic conditions will, in many cases, pressure plants and animals to
shift from current to more suitable areas in the future [3,4]. Such range shifts toward cooler locations
have been documented for a wide variety of species [5–9]. Species that cannot track shifting climate
conditions by changing their location as needed are at risk of detrimental genetic effects, increased
disease susceptibility, and greater risk of extinction [10–13].

Connectivity to facilitate range shifts will likely be necessary for many species to adapt to the
changing climate [14]. Connectivity is a measure of how well a landscape promotes the movement of
organisms and resources [15] and is one of the most commonly cited conservation strategies for climate
adaptation [16]. We define linkage as a broad swath of land that provides potential connectivity between
larger habitat areas, and reserve the word corridor for a collection of parcels designated for conservation
action. Land conversion, natural habitat loss, fragmentation, and other human activities that decrease
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connectivity are increasing worldwide [17]. For example, estimates of human modification, such as
land-use and the density of linear infrastructure (e.g., roads and fences), in particular, have been shown
to be barriers to movement for five wide-ranging species [18]. The need to counteract this type of
fragmentation has been recognized for many decades, and conservation efforts focused on enhancing
connectivity are wide ranging as a way to promote population and ecosystem resilience [16,19].

Changes in climatic conditions will, in many cases, shift the location and availability of suitable
habitat, necessitating directional movements from current to future areas of climatic and habitat
suitability [3]. Therefore, climate-wise connectivity methods have emerged recently and emphasize
establishing corridors between existing habitat patches and those that will be suitable in the future to
facilitate species range shifts [20]. Selecting the best methods for site-specific climate-wise connectivity
design depends on the conservation objectives, available data, and landscape attributes. A commonly
used strategy is to generate models that predict the future range for one or more species, and then
delineate linkages based on potential routes between projected and currently suitable locations,
e.g., [21–23]. However, the utility of these approaches is limited by the need for dispersal and other life
history data from a truly representative number of species and the high levels of uncertainty inherent
in species distribution models.

An alternative approach is to forego an explicit reliance on species characteristics and movement
patterns, instead prioritizing connections based on structural landscape features expected to provide
species with the time and habitat needed to track a changing climate. This concept has been applied
to identify a range of potential connections, including linkages that track climate gradients [24,25];
minimize the rate at which species would have to move to maintain constant climate conditions [26];
provide indicators of climate stability [27–29]; and connect current and future climate analogs [4,30].

Structural connectivity methods rely on existing environmental and climatic gradients or enduring
geophysical features and are uninformed by the biology or behavior of species [31]. Instead, structural
approaches use physical features as surrogates for biodiversity, and linkages are designed to maximize
the presence, continuity, and diversity of these abiotic features. Physiographic features, such as
topography, soil/bedrock, and hydrology, and the presence and distribution of these features across a
landscape greatly influence species diversity and ecological processes [32,33].

Physical landscape attributes can act as refugia by buffering an area from a warming climate,
such as north- or south-facing slopes, areas adjacent to oceans, and deep valleys [34], and inclusion of
these locations is recommended when planning climate-resilient protected area (PA) networks [14,35,36].
Topographically complex terrain also provides reprieve from changing climate conditions by offering a
diversity of microclimates that allows individuals to make small shifts in location that can facilitate
persistence [37]. Riparian regions in particular have been identified as priority areas for climate-wise
connectivity because they provide cool and moist microclimates that span climate and elevational
gradients [19,38–40], are used by numerous species as habitat and movement pathways [41–44],
and disproportionately contribute to regional species richness [45,46].

Structural connectivity informed by ecological integrity are expected to facilitate range shifts of
species that are sensitive to human disturbance. Lands with high ecological integrity support
and maintain species diversity as well as natural evolutionary and ecological processes [47].
Naturalness-based designs prioritize connections in areas with high ecological integrity, the least amount
of human development, or the highest index of wildness or ecosystem representation [48,49]. Theobald
used formal methods from decision theory to develop an empirically-based measure of ecological
integrity informed by stressors such as land use, land cover, and presence, use, and distance from
roads that accounts for spatial and landscape context [50]. The approach results in a species-agnostic
metric based on human modification with the potential to inform threat assessment and strategic
priority setting for biodiversity conservation. For example, human modification is a key component
in The Nature Conservancy’s Conserving Nature’s Stage approach for identifying land protection
priorities [51], and was used in a global assessment that demonstrated an increased extinction risk for
extant terrestrial mammals with more fragmentation [52].
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For climate-wise connectivity one or more climate forecasting models are considered to predict the
future conditions, such as temperature and precipitation. Models that use mean annual temperature
are common but do not account for seasonality, e.g., [53]. Approaches to incorporating seasonality
include: using the mean temperature in the warmest/coldest quarter [54] or month [55]; seasonal mean
temperature [56]; seasonal temperature range [57]; and seasonal precipitation [58,59]. It has been shown
that using seasonal temperature extremes (e.g., maximum or minimum) can outperform annual average
metrics in predictions of species-specific responses to inter-annual temperature variability [60–62] and
identification of refugia [63]. Seasonal extremes may be especially relevant in Mediterranean-climate
regions that are characterized by a highly seasonal climatic regime (i.e., mild, wet winters and warm,
dry summers) and many biogeographic and geological features [64].

Observation and model-based studies have identified Mediterranean-climate regions as especially
vulnerable to climate change [65–67]. Projected impacts by 2100 include pronounced summer
warming and greater occurrence of extremely high temperature events, with most of the changes
occurring in summer and spring [68]. Warming trends observed in California, one of the world’s five
Mediterranean-climate regions, are consistent with global observations [69]. Evidence suggests that
climate impacts in California may be more pronounced for temperature extremes; for example, winter
minimum temperatures have increased at a faster rate than both maximum and average temperatures,
winter chill has been declining, and precipitation has become increasingly variable [70]. These observed
warming trends suggest that species in California may need to shift in different directions to reach
cooler climates based on season.

Because Mediterranean-climate regions are recognized as imperiled locations of globally significant
levels of plant diversity and endemism [71], there is an urgent need to develop climate resilience
strategies in these regions. The combination of climate regime, high amounts of topographic diversity,
a multi-jurisdictional land management framework, and an engaged scientific community make
Northern California an ideal setting for evaluating the seasonal influence of climate on conservation
strategies. The mosaic of protected lands across the region that provides critical support for long-term
health of plant and wildlife populations faces ongoing stressors from habitat fragmentation, climate
change, drought, and catastrophic fire [72]. The Mayacamas to Berryessa Landscape Connectivity
Network (M2B) is a public-private collaboration that was formed in response to the need for a
landscape-level conservation strategy for Northern California’s Inner Coast Range. Steered by a
committee of practitioners working at the interface of conservation biology and multi-jurisdictional
stewardship, M2B applies habitat mapping, landscape linkage analyses, and climate threat assessment
to advance the protection and enhancement of habitat key to biodiversity and watershed health [73].

We investigate the delineation of terrestrial and riparian linkages between protected areas in
the Inner Coast Ranges of California designed to improve climate resilience across the landscape.
To measure the climate benefits of these linkages we use a novel metric to quantify the projected climate
benefit of resultant linkages at mid-century (2040–2069), and then evaluate the influence of seasonal
temperature extremes on the spatial trends observed for locations with the greatest cooling benefit.
Our specific research objectives are to (1) assess the agreement between terrestrial and riparian linkages,
and (2) compare the cooling benefits predicted for the two linkages types for summer and winter.

To address these objectives, we mapped terrestrial and riparian linkages between PAs using
a node-based approach. Terrestrial connectivity was assessed using naturalness, and enduring
topographic features and landforms were used to assess riparian connectivity. We based our approach
on the recommendations that assessments to enhance connectivity among a PA network across
topographically diverse landscapes should use structural connectivity designs that include land facet
and naturalness models that prioritize topo-climatically diverse cells [19]; and riparian linkages should
be included in all connectivity plans because of their importance as natural movement pathways, climate
gradients, and refugia [19,74,75]. While terrestrial habitat connectivity is widely applied in conservation
planning, the practitioners we work with are experienced naturalists and requested attention be paid
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to riparian habitat for species movement and persistence in the region [73]. The importance of riparian
habitat is also widely appreciated for Mediterranean-climate bioregions [76].

To quantify the contribution of these linkages to climate resilience of the network, and the
accessibility species will have to cooler temperatures more specifically, we measured the cooling
benefit for all delineated linkages based on summer maximum and winter minimum temperatures.
We define cooling benefit as the net difference between the temperatures at two or more locations
within a designated area, reported in degrees on a temperature scale (i.e., ◦C or ◦F). Our results provide
mapped priorities for climate-wise connectivity at the scale needed for implementation by local land
conservation organizations.

2. Materials and Methods

2.1. Project Area

The project area (11,671 km2) included the inland region of the North Coast from 10 counties
in Northern California: Colusa, Glenn, Lake, Marin, Mendocino, Napa, Solano, Sonoma, Tehama,
and Yolo (centroid: 529,504 m, 4,315,244 m; north: 4,412,694 m, south: 4,214,915 m, east: 584,757 m,
west: 459,722 m; NAD 1983 UTM Zone 10N) (Figure 1). The project area was delineated using a
combination of three landscape features: watersheds (HUC8), primary roads, and elevation (>100 m).
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Figure 1. Project area featuring topographic diversity and coastal influence. Map of the Mayacamas
to Berryessa project area spanning the Mayacamas and Vaca Mountains, overlaid with elevation.
The western boundary coincided with a major highway, U.S. Route 101, and was approximately 35 km
from the Pacific Ocean. The lowest elevation (white) in the southwest near San Pablo Bay and the
highest elevation (brown) was in the northeast at Snow Mountain East (range = 2115 m).

Located within a Mediterranean-climate region, as well as in the California Floristic Province—one
of 25 global biodiversity hotspots that provides critical habitat for 584 vertebrates and 2125 endemic
plants [71] —the project area was characterized by hot dry summers (mean = 30.3 ◦C, range: 20.9–34.8 ◦C;
1981–2010 30 y average), and mild, wet winters (average mean = 2.7 ◦C, range: −3.2–6.2 ◦C; 1981–2010
30 y average) [77]). Elevations ranged from −24 m to 2139 m. The four primary land cover types within
the project area were (1) forest and woodland (46%), (2) shrubland and grassland (40%), (3) agricultural
land (6%, maximum of 13% in Napa County), and (4) land that is developed or otherwise of human



Land 2020, 9, 355 5 of 18

use (4%) [78]. The study area included the cities of Napa, Santa Rosa, Petaluma, Healdsburg, Clearlake,
and Ukiah, and had a greater percent of privately-owned lands than what is observed statewide (study
area = 60%, California = 51%) [79,80]. PAs comprised 40% of the project area (6961 km2) [79,80].

2.2. Terrestrial and Riparian Connectivity

For the connectivity evaluation, our aim was to identify broad regions of habitat that have the
potential to facilitate the movement of multiple species and maintain ecological processes. We evaluated
terrestrial and riparian connectivity and predicted optimal linkages to connect habitat patches using
a node-based method to identify potential connections between existing PAs. First, we generated
302 node polygons to use as input for subsequent linkage assessment. Nodes were created using PA
locations collated from the California Protected Area Database [79] and the California Conservation
Easement Database [80] that were amended to include additional properties managed by participating
stakeholders. We dissolved the boundaries between all contiguous PAs and excluded properties
smaller than 200 m2 (~50 acres), resulting in a final set of polygons (i.e., nodes) that included lands
owned in fee and protected for open space purposes, as well as those protected under conservation
easements. All spatial analyses were conducted using ArcGIS 10.4.1 software [81].

Next, we used Linkage Mapper to create cost-weighted distance maps and least cost paths (LCPs)
between perimeters of up to three PA nodes [82]. Linkage Mapper is a computer program that maps the
linkages across the landscape among user-defined nodes of habitat, such as PAs. The resulting linkages
show the relative value of each grid cell in providing connectivity. Each linkage contains a least cost
path, which is the pathway between nodes that encounters the fewest features that impede movement.
Model input parameters were set to construct a network of nodes using cost-weighted and Euclidean
distance, exclude connections that intersected nodes, and prune the network using a maximum of three
connected nearest neighbors using cost-weighted distance as the measurement unit. Final linkages
were clipped to exclude PA locations and visualized using a threshold cost-weighted distance.

As a cost surface for the terrestrial connectivity linkages, we used an approximation of the degree
of human modification that was based on stressors such as land use, land cover, as well as the presence
of, use of, and distance from roads [50] (raster data for human modification at 30 m2 resolution
provided by The Nature Conservancy). We opted to use the generous cost-weighted distance threshold
of 25 km for terrestrial linkages because making connections as wide as possible is a simple way to
ensure they contain a diverse topography that provides micro-refugial sites for species persistence [83].

For the riparian connectivity linkages, a resistance surface at 30 m2 resolution was created based
on a terrain ruggedness index [84]. The surface was modified to include topographically defined creek
features, and two landform types (valley bottom and narrow valley bottom) to represent landscape
features with zero cost for terrestrial wildlife movement [40]. Linkage Mapper was used to generate
least cost paths (LCP) and linkages between perimeters of adjacent PAs to show the most cost-effective
route between a source and PA destinations. We visualized riparian linkages using a threshold
cost-weighted distance of 1 km to evaluate the influence of these features at a local scale.

Terrestrial and riparian permeability estimates were calculated using the inverse of each
resistance surface.

2.3. Cooling Benefit for Seasonal Temperature Extremes

We calculate the maximum net difference between the temperatures at two locations within a
designated area as the cooling benefit and report these results in degrees temperature. For example,
the cooling benefit afforded by a linkage that connects a pair of PAs with the same temperature is
0 ◦C. For PA pairs with unequal temperatures, the linkage will provide the warmer PA with access
to the lower temperatures found within the cooler PA. Because using high-resolution climate and
hydrological data in conservation planning improves the likely resilience of biodiversity to climate
change [35], we conducted all climate and connectivity analyses using raster data at 30 m2 resolution.
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We calculated the potential cooling benefit provided by each linkage between recent (1981–2010)
and mid-century (2040–2069) time periods using the CNRM-CM5 [85] (Centre National de Recherches
Météorologiques; Centre Européen de Recherche et Formation Avancée) general circulation model
(under the representative concentration pathway (RCP) 8.5 emission scenario [86], a model predicting
an “intermediate” future climate space Given the nuanced influence of temperature in California’s
ecosystem and economy, we evaluated mean summer maximum (average of June, July, and August
means (JJA)) and mean winter minimum (average of December, January, February means (DJF))
temperatures. The Basin Characterization Model (BCM) models the interactions of climate (e.g.,
rainfall and temperature) with empirically measured landscape attributes including topography, soils,
and underlying geology [77]. This dataset provides historical and projected climate and hydrologic
surfaces for the region. The BCM uses a minimum time step of monthly results at a resolution of 30 m2,
allowing the generation of scenarios at annual, seasonal, or monthly time steps.

We extrapolated the model results across the project area to visualize the distribution of each
temperature variable under recent and mid-century time periods. To compare the temperature
distribution between the recent and mid-century time points, we divided the temperature values into
0.25 ◦C increments, calculated the number of cells in each 0.25 ◦C increment, and generated abundance
plots. Lastly, we generated summary statistics for each temperature variable.

We quantified the maximum temperature benefit added to each PA by maintaining a linkage with
a neighboring PA using net cooling as an indicator of resilience to climate change. We considered the
linkage area unsuitable for permanent habitat, so climate benefits were only realized by connecting to a
PA. Consequently, we did not consider the values within the linkage when calculating the final benefit
of connecting two PAs. To calculate the maximum cooling benefit for each linkage, we found the
difference between the lowest grid cell values for each temperature variable (i.e., minimum temperature)
for all PAs connected by a linkage. This value represented the maximum net cooling the network
presents over any one individual PA. We assigned this value to the adjoining linkage to represent the
added benefit of the network in maintaining access to cooler temperatures.

To account for a bias toward lower minimum temperatures in large PAs that may not be realistically
accessible from a linkage, we corrected for size differences by restricting the search area used for
obtaining a minimum temperature within PAs greater than 5 km2. Rather than taking the absolute
minimum temperature for the entire PA, we restricted the climate benefit calculation to use the
minimum temperature within a 5 km2 radius around the linkage-PA connection point. This radius
was used as an approximation of the potential dispersal distance for a medium mammal into a PA.

3. Results

3.1. Terrestrial and Riparian Connectivity

Mean terrestrial permeability was 0.78 for the project area (range: <0.01–1.00), and 0.84 within
terrestrial linkages (range: <0.01–1.00) (Figure 2). Human modification was greatest in the southwest
region and along the western boundary, which was delimited by a major freeway (U.S. 101).
Mean riparian permeability was 0.81 for the project area (range: 0.00–1.00), and 0.93 within riparian
linkages (range: 0.33–1.00). Riparian permeability was greatest in the southern part of the study region
near the tidal estuary of San Pablo Bay, CA. Mountain peaks and steep slopes had the lowest values of
riparian permeability.

The terrestrial connectivity assessment resulted in 660 broad linkages, with a mean length of
3.22 km (range: 0.09–47.13 km). Linkage length and width increased with the underlying landscape
permeability and distance between PAs. Specifically, connections were narrow and short in the more
developed southern region, where PAs were smaller in size and closer together. In contrast, linkages
were wider and longer in more remote locations where PAs were larger, and the habitat was highly
permeable. The longest linkages were located at the periphery of the project area, connecting small
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PAs across long distances to the PA network. The total area of all terrestrial linkages covered 56% of
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Figure 2. Terrestrial and riparian connectivity. Maps of the Mayacamas to Berryessa study region
and protected areas (gray) overlaid with terrestrial (a–c) and riparian (d–f) connectivity data for
permeability (i.e., the inverse of resistance used to map linkages) (a,d); linkage potential (b,e); and least
cost paths (c,f).

The riparian linkage assessment resulted in 497 thin linkages, with a mean length of 11.26 km
(range: 0.03–110.06 km). Overall, linkage length and width were narrow, although wider linkages
were found in wetland and lowland areas with high riparian permeability. The total area of all riparian
linkages covered 38% of the project area (4465 km2). Riparian linkages were closer to streets and
roads than terrestrial linkages. A Mann-Whitney U test showed that there was a significant difference
(W = 109,032, p-value = 8.51 × 10−16) between distance to streets and roads for riparian linkages when
compared with terrestrial linkages. The median distance was 212 m for riparian linkages (mean =

377.36 m; range: 0.00–5819.75 m) compared to 359 m for terrestrial linkages (mean = 549.77 m; range:
7.50–6481.11 m).

Terrestrial and riparian linkages showed distinct spatial patterns. Terrestrial linkage orientation
was primarily east to west, avoided cities, and increased in density with distance from major roads.
Riparian linkages had a distinct north–south orientation, and overlapped with major roads, which also
follow topography across valley bottoms. As a result, the two linkage types were roughly perpendicular
to each other. We found little overlap between the terrestrial and riparian linkages (Figure 3). The total
overlap between the terrestrial and riparian linkages overlapped comprised 19% of the project area
(2173 km2). The widest areas of overlap to the southwest. This region contained many terrestrial
linkages between numerous small PAs, and expansive riparian linkages following the valley bottoms
and lowland area near San Pablo Bay.
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3.2. Cooling Benefit for Seasonal Temperature Extremes

Temperature increased between recent and mid-century time periods for both summer and
winter variables (Figure 4). Seasonal extreme temperatures showed distinct temperature and spatial
distribution profiles. The coolest and hottest locations for each variable were consistent across
time periods, although the average temperature at these sites was +2.3 ◦C warmer at mid-century.
Specifically, the warmest locations in winter were coastal lowlands to the southwest of the project area,
whereas inland valleys were warmest for summer. The average change between current and future
was +2.6 ◦C for mean summer maximum (range: 1.3–4.2 ◦C), and +2.0 ◦C (range: 0.4–3.2 ◦C) for mean
winter minimum temperature.

Although the coolest and warmest locations were consistent within each variable, these locations
differed between summer and winter temperature projections. The coolest locations were concentrated
at the high elevations to the north of the project area during winter months and distributed across
the southern lowlands and throughout the western region closest to the coast for summer months.
The warmest locations were in the south and coastward for winter, and in valleys and lowlands
for summer.
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Figure 4. Temperature extremes for summer and winter seasons. Map of the Mayacamas to Berryessa
project area overlaid with (a) recent (1981–2010) and (b) mid-century projections (2040–2069) for
and mean winter minimum (December, January, and February) temperature, and (c) recent and (d)
mid-century projections for mean summer maximum (June, July, and August) temperature (CNRM-CM5
model, RCP 8.5 emission scenario). Density plots showing the frequency distribution of values for
recent (dashed line) and projected mid-century (solid line) for (e) mean winter minimum (December,
January, and February) and (f) mean summer maximum (June, July, and August) temperature. Units
are in degrees Celsius (◦C).

Terrestrial and riparian linkages were projected to offer greater cooling benefits for summer
when compared to winter. (Figure 5). The median of the maximum cooling benefit for terrestrial
linkages was 0.70 ◦C (mean = 1.12 ◦C) for summer compared to 0.36 ◦C (mean = 0.67 ◦C) for winter.
The median of the maximum cooling benefit for riparian linkages was 0.72 ◦C (mean = 1.27 ◦C) for
summer compared to 0.32 ◦C (mean = 0.52 ◦C) for winter. A Mann–Whitney U test showed that there
was a significant difference (W = 7964, p = 0.02) between cooling benefit for summer when compared
to winter for both terrestrial (W = 279,188, p-value < 2.20 × 10−16) and riparian (W = 167,851, p-value <

2.20 × 10−16) linkages.
The spatial distribution of the linkages with the greatest cooling benefit (>4 ◦C) showed a

consistent contrast between summer and winter for terrestrial and riparian connectivity. For both
linkage types, the greatest cooling benefit was observed in the west for summer and in the northeast
for winter. We observed intra-seasonal differences in the spatial distribution of the greatest cooling
benefit between the two linkage types. This difference was most pronounced for summer cooling
projections. Terrestrial linkages with the greatest cooling benefit were more clustered into specific
geographic regions. In contrast, riparian linkages provided high levels of cooling across a larger extent
that included the northwest and northeast of the project area.
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Figure 5. Cooling benefit differed by season for terrestrial and riparian linkages. Maps show the
Mayacamas to Berryessa project area and protected areas (gray) overlaid with least cost paths depicting
the cooling benefit each linkage was projected to provide at mid-century (2040–2069). On the left are
terrestrial linkages with (a) summer and (b) winter cooling benefit. On the right are riparian linkages
with (c) summer and (d) winter cooling benefit. Linkage width and color saturation increase with
cooling benefit in 2 ◦C increments, ranging from <2 ◦C (low) to >4 ◦C (high). Below are histograms
showing the cooling benefit by season for (e) terrestrial and (f) riparian linkages. Units are in degrees
Celsius (◦C).

4. Discussion

4.1. Terrestrial and Riparian Connectivity

The distinct spatial patterns presented by the terrestrial and riparian linkages offer
two complementary options for enhancing connectivity through human-modified landscapes.
The perpendicular configuration of the two linkage types approximates a lattice-work corridor,
which is composed of an interconnected network of riparian linkages and perpendicular elevational
bands designed to address both dispersal and persistence in the context of climate change [87].
Locations where terrestrial and riparian linkages overlap represent areas with connectivity co-benefits,
and we recommend prioritizing the evaluation of these areas for protection.

We used a node-based method based on stakeholder input during methods development to
identify priority areas for connectivity among PAs that they are responsible for the management of.
A node-less approach can be done using OmniScape to generate a continuous connectivity surface
using a moving window to calculate multiple flow paths of least resistance across the landscape [88].
The Nature Conservancy’s Omniscape connectivity data [89] was generated using the same index
of ecological integrity that informed the terrestrial linkages we generated here [50]. A post-hoc
comparison between our terrestrial linkages and locations prioritized by Omniscape showed very
similar results. A more quantitative comparison of node-based and omnidirectional connectivity
priorities could provide insight about their strengths and weaknesses that may be used to inform
model selection in future connectivity assessments.

Although species-agnostic structural models may be better suited for addressing landscape
resilience for multiple ecosystems, a focal-species approach is important to consider for conservation
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management [90]. We used structural connectivity models to generate regional maps of terrestrial
and riparian linkages intended for use by stakeholders to guide local priority setting for corridor
implementation. The work presented here was co-produced as part of a multi-jurisdictional practitioner
network using a framework that provided facilitated and sustained stakeholder engagement [73].
Because stakeholders were directly involved in the climate-wise connectivity assessment, we were
able to emphasize the conceptual difference between these perspectives in connectivity modeling,
as well as the potential and limitations of resulting maps. In particular, it is widely appreciated that
potential linkages predicted by structural connectivity models require validation [91]. For example,
two evaluations of the functional connectivity of the linkages generated here are currently ongoing to
evaluate the movement of wide-ranging terrestrial mammals using genetic and telemetry methods.

The approach we used identified terrestrial linkages using existing land-use and land-cover data;
however, these locations may not persist as viable connections into the future. Land conversion and
fragmentation are associated with increases in human population worldwide [17]. Urban expansion
around PAs is projected to expand by 67% under business-as-usual conditions [92]. Because range
shifts due to climate change could result in species moving beyond PA boundaries, static PA networks
may be unable to provide suitable conditions in the future [93–95]. Few scenarios of future climate
change have modeled projected-land use patterns (e.g., land conversion and fragmentation) that will
reduce habitat for species persistence [96,97]. Consequently, there is a need to explore the interaction
between changing land use and climate in climate connectivity analyses. For example, a comparison of
connectivity predictions using existing and projected future land use could improve the long-term
function of PA networks.

4.2. Cooling Benefit for Seasonal Temperature Extremes

Our results showed large differences in temperature temporally, between current and future
climate, and spatially, between neighboring PAs. There are also clear seasonal differences between the
spatial trends, strength, and orientation of cooling benefit for both terrestrial and riparian linkages.
The spatial distribution of the linkages with the greatest cooling benefit (>4 ◦C) showed a consistent
contrast between summer and winter for both terrestrial and riparian connectivity. Overall, cooler
summer temperatures were found in the western portion of the project area closer to the coast, whereas
the cooler winter temperatures were found inland to the east. For both linkage types, the greatest
cooling benefit was observed in the west for summer and in the northeast, toward higher latitude and
elevation, for winter. The latter is more consistent with observed species range shifts and the working
paradigm that species limited by warmer temperatures will move upload and to cooler latitudes.
The former then represents a lesser appreciated phenomenon that is likely to be relevant for other
coastal regions.

These insights into locations that offer seasonal cooling has the potential to advance species-
informed climate-wise conservation planning. Observed temperature-driven responses to climate
change—such as shifts in phenology, species abundance, and community diversity—have a clear
seasonal component. For example, warmer winter temperatures are expected to lead to the
tropicalization of temperate ecosystems, where cold-intolerant species expand poleward in response
to shorter, milder freezing events [98]. Increases in summer maximum temperatures are expected
to increase the frequency of heat stress and negatively impact the fitness of many species, especially
ectotherms [99]. Using the minimum temperature found within each PA provides the maximum
cooling benefit. An alternative approach could include the mean or median temperature within
each PA, and future work could include a sensitivity analysis to compare results calculated using
these metrics.

We recognize the challenges of selecting climate metrics and models, owing to the numerous
variables that measure different aspects of climate as well as variability in projections depending on
the time period and emissions scenario used in their creation. The approach we used to evaluate
cooling benefit considered one climate metric and one climate model. We restricted our analysis to an
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assessment of temperature based on the availability of data with the sufficient spatial and temporal
resolution to assess the influence of fine-scale landscape features and seasonal trends on cooling
benefit. The assessment could be improved by including additional climate metrics, such as seasonal
precipitation patterns. Although precipitation is an important driver of climate space in Mediterranean
regions, it was excluded here because we lacked data with the spatial and temporal resolution needed
to account for the highly variable precipitation in California [100]. The analysis could also be improved
by addressing climate model uncertainty, such as testing the influence of multiple climate models or
future time periods on the magnitude and direction of cooling benefit. Because the overarching goal
of the climate connectivity assessment was to develop tools that would enhance land management
decisions, we elected to use a single climate metric to focus the assessment and decrease the number of
resulting data products. At the outset of the project we evaluated three climate models (CCSM4 [101]
(Community Climate System Model), CNRM-CM5, and MIROC-ESM [102] (Model for Interdisciplinary
Research on Climate – Earth System Model), and selected the CNRM-CM5 model to identify potential
cooling benefits under an intermediate future scenario.

The juxtaposed orientation observed between terrestrial and riparian linkages creates an
intersecting framework that may be used to identify priority cooling pathways across and between
elevational bands. The north–south connectivity in the riparian linkages provided hot lowland areas
access to cooler high-elevation habitat, and the east–west connectivity of the terrestrial linkages across
an elevational band provided hot interior lands access to cooler coastal habitat.

5. Conclusions

Delineating both terrestrial and riparian linkages revealed distinct spatial patterns between the
linkage types and offers two complementary options for enhancing connectivity through human-
modified landscapes. In particular, protecting riparian corridors that are already used for animal and
plant movement, especially in the long dry season, may prove to be the most effective implementation
strategy. Riparian zones already have some legal protection in many places [38], and humans often
support the conservation of riparian areas for the key ecosystem services provided by healthy rivers
and streams [87]. Financial incentives are also available to agricultural landowners for the protection
of soil and freshwater resources these areas provide.

Quantifying the cooling benefits of both terrestrial and riparian linkages allowed the conservation
practitioners we work with to prioritize their conservation actions (e.g., acquisition, restoration, corridor
planning and implementation) on climate resilience, as well as habitat connectivity [75]. For example,
these methods have been used to generate six corridor reports that provide regional- and parcel-scale
data for a suite of connectivity and climate metrics, identify key information and data gaps, specify
critical partners, and identify next steps for corridor implementation. The parcel-by-parcel estimates of
terrestrial and climate connectivity have already been used by land managers in the U.S. Bureau of
Land Management, Land Trust of Napa County, and Sonoma Land Trust to prioritize conservation
plans and investments. A companion statewide evaluation of additional future scenarios will provide
the opportunity to explore how spatial trends and climate benefit predictions for seasonal temperatures
interact beyond this Coast Ranges study area.

Paired with mid-century projections, an evaluation of seasonal influence of temperature on linkage
cooling benefit demonstrated distinct trends for summer and winter variables. This approach can
improve connectivity planning for biodiversity conservation in Mediterranean-type landscapes
world-wide, where observed temperature-driven responses to climate have a clear seasonal
component [70]. Thus, in locations with topoclimate diversity or ocean climate influence, evaluating
seasonal temperatures independently is required to assess climate refugia and climate-wise connectivity.

In sum, delineating both riparian and terrestrial structural linkages, and prioritizing these
linkages based on their cooling benefit during winter and summer, provides essential spatial planning
information to protect landscape-scale climate resilience.
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