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Abstract: Several studies have shown human impacts on urban wetlands. These impacts are mostly
studied at broad scales, which may generalize and aggregate important information needed for
landscape quantification or terrain analysis. This situation can weakly or inappropriately address
the structure of wetland landscapes, thus affecting the assessment of the quantities and qualities of
terrestrial wetland habitats. To address these issues for urban wetland dynamics, this study proposes
the use of landscape and terrain indices to characterize the landscape structure of urban wetlands at a
fine scale in order to assess its usefulness in contributing to wildlife sustainability. To achieve this
goal, secondary terrain attribute data are integrated with an object-based satellite image classification
at the wetland and watershed level. The result reveals a general swell in wetland coverage at the
watershed level. Further analysis shows the size and shape complexities, and edge irregularities are
increased significantly at the patch level but slightly at the watershed level. Terrain analysis further
reveals a potential increase in wetness and decrease in stream power vulnerability for most of the
major wetlands under study. These results suggest that terrain and landscape indices are effective in
characterizing the structure of urban wetlands that supports socio-ecological sustainability.

Keywords: wetland; watershed; landscape metrics; landscape structure; terrain analysis; terrestrial
wetland habitat

1. Introduction

Urban wetlands are an important part of the global ecological system, which have been affected by
various human activities, mostly urban land developments [1]. Land-use change has been recognized as
one of the biggest anthropogenic influences on global ecosystems [2], including by altering landscapes
at various scales. The altering of landscape structures not only affects the local habitat and the quality
of organisms, but also the composition and configuration of the surrounding landscape [3]. As a result,
the resulting landscape patterning has largely determined the quality of resources, structure, and
function of many urban ecosystems, including most urban wetlands [4–6]. To quantify these land
cover changes, mapping and monitoring of urban wetland landscape dynamics within the terrestrial
habitats are needed. Remote sensing-based techniques have been proven to be a valuable tool in this
regard [7–9]. While many of these studies have produced interesting results on urban land cover
dynamics, the landscape structure of urban terrestrial wetlands resulting from land-use and land-cover
(LULC) changes have not been fully studied. We believe that understanding human impacts on
the structure of urban landscapes, which could result in fragmentation of habitat loss, is essential
for the sustainability of the urban wetland ecosystem. The concept of landscape structure has been
defined differently in different studies [10,11]. However, regardless of how it has been described,
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the concept often contains both structure (pattern) and function (process). Landscape structure is
defined by a spatial pattern consisting of two components: composition and configuration [11]. The
function of the components is defined by the phenomenon under consideration, which often includes
services provided for humans and biodiversity. McGarigal [10] suggested that the considerations
for this component include landscape structure, its functions, the spatial scale (grain and extent),
thematic content, and resolution. To achieve this, accurate measurement using fine data at a large
scale (small area) is needed [8]. In a related study, the importance of measurement at a large scale was
suggested for validating global land-cover datasets using high-resolution reference data to evaluate the
performance of classifications, which operates on a coarse scale [12]. The scale of a study is a central
issue in understanding the relationships between ecosystem patterning and ecological processes [13].
Turner et al. [14] emphasized the importance of spatial scale (grain size) and spatial extent (study
area) in landscape studies during the process of classification. They argued that this has received
comparatively little attention. The spatial scale surrounding a terrestrial habitat such as an urban
wetland mostly requires studying the issue at a fine-scale in order to fully understand its spatial
structure. Remotely sensed data provide the spectral, spatial, and textual information that is needed
to achieve this because most image classifications are based on pixel analysis and often involve
the extraction of detailed information from remotely sensed data [15]. The need to preserve this
information during the process of image classification to obtain better accuracy prompts the use of
object-based image analysis (OBIA) in this study. Thus, two supervised image classification algorithms
are performed and the result of the one that has a better accuracy is employed for further analysis.

Many studies at a fine-scale require incorporating high-resolution imageries for monitoring
protected areas and terrestrial habitats that have been described as being sensitive to metric values [16].
These areas are protected from human activities such as agriculture, urban development, and commercial
activities. This is because most semiaquatic species depend on this habitat to complete their life cycle.
In order to estimate the extent to which these activities can occur around the wetland habitat, a buffered
area or strip is needed for local breeding populations [17,18]. Different wetland managements for
counties and cities set different buffer estimations. It is widely believed that most terrestrial buffers
or riparian strips should be 289–350 m in width in order to effectively protect water resources and
wildlife habitats [19–21]. Weller et al. [22] used a simple model of an upland contributing area and a
riparian buffer to show the efficacy of riparian buffers. The study suggested using the buffer width as
the best predictor of landscape discharge for unretentive buffers, and the frequency of gaps was the
best predictor for narrow, retentive buffers [22]. In a similar study, Brosofske et al. [21] used the buffer
width on riparian zones to show their influence on relative humidity and solar radiation near a stream,
although the results revealed little effect based on the variables used. In a study that was conducted by
Keller [23] using buffer distance, breeding birds in wooded riparian zones in Maryland and Delaware
were found to be more area sensitive than distance or resident sensitive. Many other similar studies
have examined terrestrial habitats to study mammals, birds, reptiles, and amphibians, adjacent to
wetlands [17,18,24–30]. Despite these studies, buffering terrestrial habitats surrounding urban wetlands
areas and the landscape structure of this type of ecosystem have been less studied using landscape
metrics. Beyond the use of metrics in this type of study, the strength of the metrics used is also
important. The strength of the metrics as it affects landscape structure has been evaluated differently
by different studies. Cushman et al. [31] suggested seven class-level components of landscape structure
that were universal. The seven classes include forest, water, grassland, cropland, urban, and high
and low-density residential. All these are metrics that act as indicators of spatial patterning and can
be related to some aspects of ecological functioning. Most of the metrics used in Cushman et al.’s
study were adapted for this study. Many other studies used different metrics to measure the degree of
habitat fragmentation and the performance of a set of landscape pattern indices to characterize an
environment [5,32–34], among others. Despite the merit of these studies because they emphasized
the importance of scale and landscape metrics, the internal structure of the topography was not well
examined. Our study proposed the characterization of urban wetland dynamics by integrating an
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object-based remote sensing classification for multi-scale landscape quantification, and calculation of
terrain indices to assess its usefulness in contributing to wildlife sustainability.

2. Materials and Methods

2.1. Study Area

The three major watersheds in the Kansas City metropolitan area and ten of its major wetlands
were included in this study. The Kansas City metropolitan area is located along the eastern boundary of
Kansas and the western boundary of Missouri in the central United States [35]. The general topography
of the area is characterized by rolling hills with open plains [8]. The predominant land-cover types are
grasslands, forests, and croplands [35]. Figure 1 shows the three major watersheds in the Kansas City
area, which include the Blue River, Little Blue River, and Shoal Creek-Missouri River watersheds. Ten
major wetland areas in the three major watersheds were also included (Figure 1). These wetlands are
the Missouri River, Lake Tapawingo, Blue Springs Reservoir, East Lake Wood, West Lake Wood, Lake
Jacomo, Prairie Lee Lake, Longview Lake, Heritage Park Lake, and Loch Lloyd Lake.

 3 of 24 

and landscape metrics, the internal structure of the topography was not well examined. Our study 
proposed the characterization of urban wetland dynamics by integrating an object-based remote 
sensing classification for multi-scale landscape quantification, and calculation of terrain indices to 
assess its usefulness in contributing to wildlife sustainability. 

2. Materials and Methods 

2.1. Study Area 

The three major watersheds in the Kansas City metropolitan area and ten of its major wetlands 
were included in this study. The Kansas City metropolitan area is located along the eastern 
boundary of Kansas and the western boundary of Missouri in the central United States [35]. The 
general topography of the area is characterized by rolling hills with open plains [8]. The 
predominant land-cover types are grasslands, forests, and croplands [35]. Figure 1 shows the three 
major watersheds in the Kansas City area, which include the Blue River, Little Blue River, and Shoal 
Creek-Missouri River watersheds. Ten major wetland areas in the three major watersheds were also 
included (Figure 1). These wetlands are the Missouri River, Lake Tapawingo, Blue Springs 
Reservoir, East Lake Wood, West Lake Wood, Lake Jacomo, Prairie Lee Lake, Longview Lake, 
Heritage Park Lake, and Loch Lloyd Lake. 

In recent decades, population growth, increased economic activities, and the continued 
expansion of urbanized areas in the watersheds and wetland areas have affected the natural 
environment of the area [6,8,36]. This continued depletion of the natural area provided a basis for 
investigating the terrestrial wetland landscape of our study area. While the landscape dynamics and 
trends of the area have been well studied, with examples in references [6,8], less has been done to 
identify and quantify the landscape structure of the terrestrial habitat surrounding the urban 
wetland landscape. 

 
Figure 1. Study area: the major wetlands and watershed. 

  

Figure 1. Study area: the major wetlands and watershed.

In recent decades, population growth, increased economic activities, and the continued expansion
of urbanized areas in the watersheds and wetland areas have affected the natural environment of
the area [6,8,36]. This continued depletion of the natural area provided a basis for investigating the
terrestrial wetland landscape of our study area. While the landscape dynamics and trends of the area
have been well studied, with examples in references [6,8], less has been done to identify and quantify
the landscape structure of the terrestrial habitat surrounding the urban wetland landscape.

2.2. Methods

The methodology used in this study is divided into four parts (see Figure 2). The first part employed
an object-based image analysis (OBIA) approach for image classification. Two classification algorithms:
support vector machine (SVM) and K-Nearest Neighbor (K-NN) were used. Both methods involved
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feature extraction using an example-based method for segmentation and merging. Furthermore,
Change detection statistics (CDS) was performed on the classified images resulting from the application
of both algorithms. This was done to understand the class change among the LULC in different classes.
CDS was used specifically for the calculation of wetland coverage change at the watershed level in this
study. The second part involved deriving secondary terrain attributes using the compound topographic
index (CTI) and stream power index (SPI) from the United States Geological Survey (USGS) digital
elevation model (DEM). These indices were used for wetness and stream power quantification around
the terrestrial wetlands. The third part involved metric calculations, which were implemented based on
the spatial patterning the structure of landscape heterogeneity in relation to some aspect of ecological
function (e.g., a direct or indirect role). The major metrics employed for analysis were related to the
edge, diversity, shape, and size of wetland patches. Fourthly, in the methodology, a 30-m inward buffer
was performed on the extracted wetlands to serve as estimated core areas. These were then clipped
to derive secondary terrain attributes (CTI and SPI) at 340-m buffers, which served as the terrestrial
wetland habitat area (see Section 2.2.5).
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2.2.1. Image Classification Techniques

The classification techniques employed for the study involved testing two algorithms to determine
which of the two provides better accuracy (Figure 3). The spectral analysis was performed in ENVI
before the image extraction and classification. SPOT 2 sensors with the data collected in three relative
broad multispectral bands and one panchromatic band were compared to SPOT 7 that contains four
similar bands. In this study, the two images were compared using the spectral signature to distinguish
the types of ground cover or objects performed in ENVI software. The processing level 1A, which
involves correction by normalizing the charge-coupled device (CCD) response to compensate for
radiometric variations due to detector sensitivity, was applied to SPOT 2 image 1992. On the other
hand, the 2017 SPOT 7 image was pre-processed on the 2A level, meaning scenes were rectified to
match a standard map projection (UTM WGS 84) without using ground control points. Level 2A is
the entry-level map product for the SPOT image. This means no geometric correction was needed for
SPOT 7, as the systematic distortion effects and transformations were compensated for by projecting
the image in a standard map projection UTM WGS 84.

The OBIA was then applied, which involved image segmentation and merging processes being
performed on two archived SPOT imageries. Both SPOT 2 (29 January 1992; 20 m × 20 m resolution)
and SPOT 7 (22 October 2017; 6 m × 6 m resolution) were classified using K-Nearest Neighbor (K-NN)
and Support Vector Machine (SVM) algorithms. Both datasets were resampled to a uniform pixel size,
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with the adoption of a representative minimum mapping unit (6 × 6 m). Jensen [37] reiterated that
this does not have much of an impact on the results, because the resampled data can never be greater
than the instantaneous field of view (IFOV). He mentioned that additional information should not be
expected from a resampled image. In addition, Jensen suggested that object-based classification may
be a good alternative to the traditional pixel-based methods. This is to overcome the high-resolution
problem and the salt and pepper effect. The object segmentation considers group of pixels characterized
and organized into objects and treats each object as a minimum classification unit [38]. 5 of 24 
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The images were selected with the consideration of their availability and the type of classification
methods used to ensure that they will not affect the accuracy of the result. O’Neill et al. [39] proposed
that to avoid bias in calculating landscape metrics, the grain size of the map should be 2–5 times smaller
than the spatial features being analyzed and the map extent should be 2–5 times larger than the largest
patch. In addition, the classification method adopted for segmentation and merging focused more on
the spatial, spectral and textual information of the images than alternative methods. Segmentation
is the process of partitioning an image into objects by grouping neighboring pixels with common
values [40]. Merging, on the other hand, combines the adjacent segments with similar spectral attributes
textural information together based on image resolution [40]. This process is example-based, which
is also referred to as supervised classification. It is used to obtain training data as objects and then
assigns them to one or more known features. Archived SPOT imageries with a temporal resolution
of 25 years between the two images were classified. Overall, a segmentation process using feature
extraction and machine learning techniques were sequentially applied in the classification process. For
most of the analysis in the study, the SVM classification result was used because it provided higher
accuracy than the other methods (see Figure 3).
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2.2.2. Classification Scheme

This study adopted a classification scheme that grouped the different classes on the images into four
(Table 1). This is mostly due to the issue of spectral signature similarity experienced during the process
of image segmentation when generating the training sites. The four categories as shown in Table 1
include Impervious Surfaces (IS) which represent urbanized areas; Forestland (FL), which covers all
areas with a collection of trees. Further, all areas with brush, crops and non-forest vegetation/grassland
were classified as Farmland/grassland (FGL), and Open water bodies were classified as Wetlands (WL).
The output was a classified raster grid, which was then converted to vector polygons to perform
landscape metrics calculation on them. Patch Analyst 5, an extension of ArcGIS 10.6 software, was
used for the landscape metrics calculations.

Table 1. The land-cover classification scheme.

Class Name Description Class Name Description

Wetlands (WL) Rivers, lakes, ponds, riparian area, vegetated depressions
Farmland/Grassland(FGL) Cultivated land, grasslands, golf courses, lawns
Impervious surfaces (IS) Built-up areas (buildings, roads, paved walk-ways, etc.)

Forestland (FL) Trees and shrubs

2.2.3. Accuracy Assessment

ENVI software confusion matrix was used to calculate the accuracy of the Object-Oriented
Classification, with emphasis on wetland classification. Fifty regions of interest (ROI) polygons for
each class were selected and referenced using Google earth archival imageries and other classified
maps of the Kansas City area. The report of the calculation pairs ROIs with the classes of classified
images to show what percentage of the ROI pixels that were or were not contained in a resulting
class. The overall accuracy was calculated by summing the number of correctly classified values and
dividing by the total number of values. Table 2 shows the accuracy assessment reports with a higher
overall accuracy percentage for SVM classification for both SPOT 1992 and 2017 images and the overall
accuracy for K-NN SPOT 1992 and 2017. SVM–based classification for SPOT 2017 revealed an 89.14%
accuracy while the K-NN-based classification on the same image resulted in a 79.54% total accuracy.
The SVM-based classification for SPOT 1992 resulted in 63.84% while the K-NN approach for the same
year gave an overall accuracy of 61.42%. Overall, little disparity was revealed for both algorithms
when results for each year were compared. However, the SVM accuracy results were better when
compared to that of K-NN (Table 2). Despite that two different classification algorithms were used
on the same image, their accuracy reports revealed a consistent trend. Similar trends in landscape
patterns were obvious using the two classification algorithms (see Table 2).

Table 2. Accuracy assessment with emphasis on wetland accuracy from both classifications.

Confusion Matrix: Accuracy of Object-Oriented Classification Results

SPOT
Image

Supervised
Classification

Method

Overall
Accuracy (%)

Overall
Kappa

Coefficient

Ground Truth
Wetland (%)

Prod.
Acc. (%)

User Acc.
(%)

Commission
(%)

Omission
(%)

1992
SVM 63.84 0.48 96.75 96.75 92.25 7.75 3.25

K-NN 61.42 0.45 96.75 96.75 93.20 6.80 3.25

2017
SVM 89.14 0.80 95.86 97.29 94.91 6.26 4.14

K-NN 79.54 0.65 97.29 95.86 93.74 5.09 2.71

Accuracy Assessment for both Classification algorithms: support vector machine (SVM) and K-Nearest Neighbor (K-NN).

2.2.4. Terrain Analysis

Terrain analysis was performed with the raster DEM data of 1/9 arc-second acquired from the
USGS National Elevation Dataset (NED), which has an approximately 10-m horizontal resolution.
These datasets from around 2008 through 2013 became the seamless DEM layer under the 3DEP
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program [41]. The NED is derived from diverse sources of data and were later processed into a
common coordinate system and unit of vertical measure. The geographic coordinates system (GCS) is
the North American Datum of 1983 (NAD83). The elevation values are provided in units of meters and
referenced to in North American Vertical Datum of 1988 (NAVD88) over the conterminous United
States. The pre-processing of the DEM was performed in ArcGIS 10.6 software, and included pit and
sink filling. This is a procedure to fill depressions with hypothetical water flows and force drainage to
the lowest possible outlets [42]. Also, primary terrain attributes were calculated, which included slope,
flow direction, and flow accumulation. Secondary terrain attributes were derived from the primary
terrain attributes for SPI and CTI using the raster calculator in ArcGIS 10.6 software. SPI is calculated
as the product of the natural log of both slope and flow accumulation, while CTI is the quotient of
both slope and flow accumulation [43]. The former measures the power of streamflow while the latter
measures potential wetness locations.

CTI = Ln(A/tanβ) (1)

SPI = Ln(A ∗ tanβ) (2)

where:

Ln represents natural logarithm;
A represents the catchment area per pixel;
β refers to the slope in degrees.

The two secondary terrain indices for wetness and streamflow were adopted based on Wilson
and Gallant [43].

2.2.5. Urban Wetland Terrestrial Habitat Buffer

To understand the landscape structure surrounding the terrestrial wetland habitat necessary for
the urban wetland ecosystem, a buffer of 340-m from the core area was adapted for the study [44,45].
To achieve this, a 30-m inward buffer was used on the extracted wetland files. This served as the
aquatic buffer zone from the core wetland. Another 260-m outward buffer was created from the
extracted wetland files, which served as the core habitat area. The aquatic buffer is also part of the core
habitat area; an additional 50-m buffer recommended by Murcia [44] to protect core habitat from edge
effects was used (see Figure 4a,b). This implementation is similar to a study by the Environmental
Law Institute (2008), in which the area served as a terrestrial wetland area sufficient for the movement
of wetland wildlife (e.g., Amphibians and Reptiles) through the landscape. The buffered terrestrial
wetland area files were clipped to derive secondary terrain attributes, CTI and SPI. The clipped portion
was reclassified into wetness and non-wetness areas for CTI, and stream power and non-stream
power areas for SPI using the reclassify tool in the ArcGIS 10.6 software. This was done for the ten
major wetlands in the study area. The percentages of vulnerability are the potential area of gully
erosion for CTI, and potential area of increased stream power for SPI. These were calculated using the
pixels spilling into the different segments of the reclassified and clipped terrestrial wetland habitats.
Following this process, the study estimated the percentage vulnerability for both years studied and the
results compared.

The change in vulnerability estimate for CTI

%∆vE =
x1

(χ0 + x1)
∗ 100 (3)

The change in vulnerability estimate for SPI

%∆vE =
y1(

y0 + y1

) ∗ 100 (4)
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%∆vE—percentage change in vulnerability estimate;
χ1—wetness area for CTI;
y1—stream power area for SPI;
χ0—non-wetness area for CTI;
y0—non-stream power area for SPI.
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2.2.6. Landscape Metrics Calculations

Landscape metrics quantification was performed at two major levels and loosely grouped
according to the heterogeneity and spatial pattern of urban wetlands in the study area. These two
levels are landscape level (three major watersheds), and patch level (individual wetland core area).
Spatial statistics in Patch Analyst 5, an extension to the ArcGIS 10.6 software for spatial analysis
of landscape patches, and modeling was used for the analysis. The default map unit for area is in
meters (m) and was later stated in hectares (ha), which is an option provided by the Patch Analyst
tool. The choice of these metrics (Table 3) was based on the fact that most landscape metric results
are correlated and statistically redundant. That is, they may quantify a similar or identical aspect
of landscape patterns [10,11]. However, some metrics may be empirically redundant not because
they measure same aspect of the landscape pattern, but they are alternative ways of representing
similar information for the landscape under investigation [10]. The metrics used in this study took
into consideration the scale of change patterns of the variables under study. This was done with
specific consideration to the spatial pattern of the entire landscape and the patch types, bearing in
mind the heterogeneity of the terrestrial wetland area. The major components (extent, subdivision,
geometry, isolation, and connectedness) of habitat landscape composition and configuration were also
considered when interpreting the landscape structure of our study area. For the three major watersheds,
“landscape-centric” metrics were considered for measurement at this level. These are metrics that
summarized patches using the mean and the area-weighted mean [10]. Also, for the individual patches
such as wetlands, “patch-centric” quantifications were performed which measured or described the
spatial context of an isolated patch [10]. Landscape metrics quantification was performed on the
derived watershed polygons for the three major watersheds. This study followed the recommendation
of reference [45] to preserve wetland core habitats such as amphibians and reptiles. Table 3 depicts the
metrics used in this study, including acronyms, descriptions, and justification.
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Table 3. Landscape metrics selected for this study.

Acronym Name (Units) Description Justification

TCAI Total Core Area
Index (ha)

Total core area index is a measure
of the amount of core area in the

patch or landscape
Fragmentation

SI Shape index (ha) normalized ratio of patch
perimeter to area Fragmentation

CA Core Area (ha) The total size of disjunct core
patches (hectares). Fragmentation

ED edge density (m/ha) Amount of edge relative to the
landscape area Fragmentation

TE Total edge (m) Perimeter of patches Fragmentation

MPE Mean Patch Edge
(m/patch) Average amount of edge per patch Fragmentation

MPS Mean Patch Size (ha) Mean Patch Size of Patches (Class
or Landscape Level) Fragmentation

MSI Mean Shape Index (ha)
sum of each patch’s perimeter
divided by the square root of

patch area (in hectares)
Fragmentation

AWMSI Area Weighted Mean
Shape Index (ha)

AWMSI equals the sum of each
patch’s perimeter, divided by the

square root of patch area
(in hectares)

Fragmentation

MPFD Mean Patch Fractal
Dimension (ha) Measure shape Complexity Fragmentation

SDI Shannon’s Diversity
Index (ha) Measure of relative patch diversity Diversity

SEI Shannon’s Evenness
Index (ha)

Measure of patch distribution and
abundance Diversity

Adapted from McGarigal et al. [33].

3. Results

The analysis was based on the wetland (patch) and watershed (landscape) quantification in terms
of the level of heterogeneity of the study area. At the watershed level, the landscape level analysis in
this study included change detection statistics (CDS) analysis and landscape metrics. The CDS was
done to get a clearer view of the overall change in wetland coverage in the three major watersheds.
The landscape metric quantification was performed for the three major watersheds. The other part of
the analysis was at the wetland level that describes the patches. These include calculating and deriving
secondary terrain attributes and integration with extracted wetland files on one hand. On the other
hand, the quantification of patch metrics was performed to assess the ten major wetlands in the three
major watersheds in the study area.

3.1. Landscape Level Analysis

3.1.1. Change Detection Statistics (CDS)

At the landscape level, the CDS was used to measure the changes between a pair of images that
present the initial state (SPOT 1992) and the final state (SPOT 2017). This was performed for three
watersheds to quantify the total wetlands coverage between 1992 and 2017 in the study area. The CDS
results will guide the interpretation of the metrics and terrain analysis, as it provides prior knowledge
of the general wetland level. The CDS as summarized in Table 4 for SVM algorithms classification
reveals an increase in wetland coverage from 1992 to 2017. The result showed an increase of 21% class
change from the initial state (1992) to the final state (2017) for the three watersheds. The CDS in Table 5
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for K-NN algorithms revealed an 18% class change. This result is similar to the change observed for
SVM algorithm classification for the three watersheds between 1992 and 2017.

Table 4. SVM Change Detection Statistics (Initial State SVM 1992, Final State SVM 2017).

Initial State

Final State

Wetland (%) Row Total (%) Class Total (%)

Wetland 82.18 99.91 100.00
Class Total 100.00 100.00 100.00

Class Changes 17.82
Image Difference 9.17

Table 5. K-NN Change Detection Statistics (Initial State K-NN 1992, Final State K-NN 2017).

Initial State

Final State

Wetland (%) Row Total (%) Class Total (%)

Wetland 79.00 99.81 100.00
Class Total 100.00 100.00 100.00

Class Changes 21.00
Image Difference 8.08

3.1.2. Landscape Level Metric Calculation

The result of the metrics calculation examined at the landscape level for watersheds is shown in
Figure 5. For the landscape metric calculation, at the watershed level, the three major watersheds in the
Kansas City area were quantified. Indices used were SDI, SEI, AWMSI, MSI, MPFD, ED, and MPS. The
identified diversity indices used are SDI and SEI, which measure at the landscape level. For the shape
metrics MSI, we used MPFD, ED, and AWMSI to quantify the shape complexity of the watershed at the
landscape level. Further, MPS was used to quantify the size irregularities between the study periods.
The result of the metric calculations reveals SEI with little or no change for wetland distribution in
the three watersheds for the study periods. It shows an equal trend in wetland proportions, 0.81 ha
for 1992, and 0.82 ha for 2017. SDI, on the other hand, reveals a small increase in the distribution of
wetlands from 0.89 ha for 1992 to 1.14 ha for 2017. This indicates a slight dynamic in the diversity of
wetland patches for the watersheds in 2017. The result for MSI reveals 1.58 ha for 1992 and 1.55 ha for
2017. This quantification reveals little or no change for shape irregularities or complexity between 1992
and 2017 at the watershed level. However, both MPFD and AWMSI indexes for shape metrics reveal a
slight change in shape complexity between 1992 and 2017. MPFD has a slight change from 1.35 ha for
1992 to 1.40 ha for 2017, and AWMSI slightly increased in shape irregularity from 19.91 ha for 1992 to
21.58 ha for 2017. Further quantification reveals an increased ED from 64.85 m/ha for 1992 to 135.28
m/ha for 2017. This indicates an increase in edge density (ED) in 2017 relative to the landscape area in
1992. ED was calculated using the amount of edge present in 1992 as compared to the amount present
in 2017 for watershed at the landscape level. On the other hand, the MPS reveals a reduction in the
size of the watersheds for 2017 compared to the increase in 1992.
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Figure 5. Landscape level metrics at the watersheds scale.

3.2. Wetland-Level Analysis

3.2.1. Terrain Calculation

The analysis at this level deals with individual wetland patches; ten major wetlands were calculated
in the study area using digital terrain analysis. The terrain analysis involves integrating extracted
wetland files, buffered at a distance of 340-m from the core area with secondary terrain attributes. The
results are summarized in Figure 6a–d. All the major wetlands except the Heritage Park Lake showed
a slight reduction in the core area for 2017. Similarly, nine out of the ten major wetlands examined
for wetness vulnerability using the CTI reveal potential wetness in wetlands within the study area in
2017 (see Appendix A: Table A1). The only wetland that did not show a slight wetness potential is
Heritage Park Lake, with –0.16%. On the other hand, the SPI calculated revealed a relatively no change
in stream power, except for three averagely small wetlands. The three wetlands slightly increased with
a net change of 3.31% for East Lake Wood, 2.97% for Lake Jacomo, and 2.71% for Prairie Lee Lake in
2017 (see Appendix B: Table A2).

 11 of 24 

 
Figure 5. Landscape level metrics at the watersheds scale. 

3.2. Wetland-level Analysis 

3.2.1. Terrain calculation 

The analysis at this level deals with individual wetland patches; ten major wetlands were 
calculated in the study area using digital terrain analysis. The terrain analysis involves integrating 
extracted wetland files, buffered at a distance of 340-m from the core area with secondary terrain 
attributes. The results are summarized in Figure 6a–d. All the major wetlands except the Heritage 
Park Lake showed a slight reduction in the core area for 2017. Similarly, nine out of the ten major 
wetlands examined for wetness vulnerability using the CTI reveal potential wetness in wetlands 
within the study area in 2017 (see Appendix A: Table A1). The only wetland that did not show a 
slight wetness potential is Heritage Park Lake, with –0.16%. On the other hand, the SPI calculated 
revealed a relatively no change in stream power, except for three averagely small wetlands. The 
three wetlands slightly increased with a net change of 3.31% for East Lake Wood, 2.97% for Lake 
Jacomo, and 2.71% for Prairie Lee Lake in 2017 (see Appendix B: Table A2). 

 
(a) 

0 20 40 60 80 100 120 140 160

SDI
SEI

AWMSI
MSI

MPFD
ED

MPS

hectares

m
et

ri
cs

Landscape Metrics 

2017 1992

0 4000000 8000000 12000000

Missouri River
Lake Tapawingo

Blue Springs Reservoir
East Lake Wood

West Lake Wood
Lake Jacomo

Prairie Lee Lake
Longview Lake

Heritage Park Lake
Loch Lloyd Lake

hectares

W
et

la
nd

s

Estimated Core Area

Core Area 2017

Core Area 1992

Figure 6. Cont.



Land 2020, 9, 29 12 of 25
 12 of 24 

 
(b) 

 
(c) 

 
(d) 

Figure 6. (a–d) Estimated core area, SPI, and CTI for each wetland. 

0.00 5.00 10.00 15.00 20.00 25.00

Missouri River
Lake Tapawingo

Blue Springs Reservoir
East Lake Wood

West Lake Wood
Lake Jacomo

Prairie Lee Lake
Longview Lake

Heritage Park Lake
Loch Lloyd Lake

percentage of potential wetness

W
et

la
nd

s
Combined CTI and SPI Estimate 

SPI 2017

SPI 1992

CTI 2017

CTI 1992

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Missouri River
Lake Tapawingo

Blue Springs Reservoir
East Lake Wood

West Lake Wood
Lake Jacomo

Prairie Lee Lake
Longview Lake

Heritage Park Lake
Loch Lloyd Lake

percentage potential wetness

W
et

la
nd

s

Estimated CTI

CTI 2017

CTI 1992

0.00 5.00 10.00 15.00 20.00 25.00

Missouri River
Lake Tapawingo

Blue Springs Reservoir
East Lake Wood

West Lake Wood
Lake Jacomo

Prairie Lee Lake
Longview Lake

Heritage Park Lake
Loch Lloyd Lake

percentage of potential stream power

W
et

la
nd

s

Estimated SPI

SPI 2017

SPI 1992

Figure 6. (a–d) Estimated core area, SPI, and CTI for each wetland.

3.2.2. Patch Level Metric Calculation

Similar to the terrain analysis, the patch metrics were calculated for the ten major wetlands in the
study area. Patch-centric metrics were used to quantify the patch in terms of shapes and sizes. Indices
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used include MPE, CA, MSI, SI, and TE. As summarized in Figure 7a–e, CA reveals a general decrease
for all ten wetlands for 2017. Heritage Park Lake and Loch Lloyd Lake revealed the least decrease in
terms of core area change for 2017. Heritage Park Lake showed 108666.04 ha for 1992 and 103089.57 ha
for 2017, with a net loss of 5576.467 ha between 1992 and 2017. Similarly, the Loch Lloyd Lake showed
287215.62 ha for 1992 and 271206.34 ha for 2017, with a net loss of 16009.28 ha. Blue Springs Reservoir
revealed the most decreased core area change for 2017 with 3107875.70 ha for 1992 and 2338980.60
ha for 2017, a net loss of 768895.01 ha. On the other hand, the SI and MSI indices used to quantify
the wetland shape revealed increased shape complexity and irregularities for all the ten wetlands in
2017. This was not the case for the TE and MPE used to quantify the wetland edge. While nine of the
ten wetlands show an increase in the edge difference, Blue Springs Reservoir did not increase edge
difference for 2017, as compared to 1992.
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4. Discussion

Firstly, the study revealed a similar trend for class change for the two algorithms used, with SVM
having a better accuracy assessment report compared to K-NN. The CDS was performed with two
algorithms and the change detection revealed K-NN with a value of 21% and SVM with a value of 18%.
This indicates that the total percentage change in pixels from other classes to wetland increased for
K-NN by 21% but not as much for SVM at 18%. The two algorithms were compared to achieve a better
result for the image classification, which avoids the possible misinterpretations that could have resulted
from using different multispectral images [46]. Regardless of the class change in the CDS, results from
using both algorithms revealed a swell in the wetland coverage for the study area. This swell may be a
result of increased precipitation in the past decade [6], and improved streamside ordinance protection
for wetlands [1] in the study area. In addition, this result is similar to a study by Ji [1] which showed
that larger wetlands accumulated more precipitation, while the smaller wetlands were prone to human
impacts. Similarly, Zubair et al. [6] in their study of urban wetland modeling in the study area observed
that wetlands increased in two of the major watersheds historically, but reduced as a result of urban
expansion in one. These results generally support our findings that wetlands swelled in the study area
within our study period, and this can be associated with the effects of human and natural factors as
suggested by previous studies, such as reference [1].

Secondly, the resulting indices for terrain analysis that showed an increase in potential wetness
for nine out of ten wetlands studied may indicate the level of activities around these wetlands. This
may be associated with the size of the wetland core area. Heritage Park Lake is one of the smallest
of the ten major wetlands, and the effect of natural and human activities may have more influence
on this wetland. This is similar to the study by Tomaselli et al. [32] where the small landscape that
could harbor biodiversity were highly fragmented in small patches. On the other hand, wetlands
with a slight increase for CTI can be an indirect influence on soil moisture and provide information
about the soil condition near the wetland. O’Neill et al. [39] in a similar study revealed how the topsoil
is lost through erosion because of fragmentation due to distance between patches. This can also be
an indirect indication of changes in the type of vegetation surrounding the terrestrial wetland areas
over the years. Furthermore, Weilert et al. [9] when studying the effects of a streamside ordinance
protecting the riparian vegetation within the ordinance area, found that the streamside ordinance
can effectively reduce human impacts within the protected area. Most vegetated areas are close to
the wetlands, and the availability of moisture in a protected wetland can improve the growth rate
of trees and reduce erosive power. The condition of the wetland terrestrial soil and vegetation can
impact on biodiversity, especially for reptiles and amphibians. The slight stream power increase for
the averagely small wetlands can result in vulnerability of the terrestrial wetlands. These impacts may
indirectly increase the erosive potential for the terrestrial wetland and expose the locations to severe
gullies [13]. In addition, the results of the topographic indices can be used to assess the vulnerability
of the wetland habitat condition available for biodiversity sustainability, as shown in the studies
conducted by Murcia [44], and Semlitsch and Bodie [45].

Thirdly, the landscape structure was also quantified at the patch and landscape level. It is
important to interpret each metric in a manner appropriate to its scale [1,14,39]. At the patch levels,
which describe wetlands in this study, the indices used for the metric quantification are MPE, CA,
MSI, SI, and TE. In this study, decreases in the core area for all the ten wetlands were revealed for the
studied period between 1992 and 2017. According to McGarigal [47], all other things held constant,
increasing shape complexity decreases the core area, and increasing patch area increases the core area.
This decrease in the core area implies that wetlands during the period of study may have an increased
patch area. The complexities and irregularities in the core area may be a result of human activities
(e.g., agriculture etc.) around most of the terrestrial wetland areas [6,9]. The revealing effect of MSI and
SI on shape increased for 2017. This implies a decrease in the core area. In addition, the increase edge
effect revealed by the TE and MPE may also result in a decreased core area. The edge effect differs
among organisms at different ecological habitats [48]. This implies that an increase in edge effects may
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impact the wildlife and biodiversity around the terrestrial wetland areas, particularly the amphibians
and reptiles. Also, core areas are a much better predictor of habitat quality than patch areas [49]. Some
human-induced activities and can result in habitat loss and may have a considerable impact on the
terrestrial habitat. These effects are bound to affect most species with low mobility, a narrow feeding
niche, and low reproduction [50] around the terrestrial habitat. These effects can be very useful to assess
when monitoring the landscape structure surrounding wetland and riparian habitats. They provided a
good link between LULC and ecological modeling for predictions or informed management.

Fourthly, at the landscape level quantification, the diversity indices used SDI and SEI revealed
little or no proportional diversity within the study period. Similarly, the shape indices MSI, MPFD,
and AWMSI revealed slight shape complexity at the watershed level. An increase in edge density (ED)
in 2017 relative to the landscape area in 1992 was exhibited. This increased edge effect may reflect a
reduced core area resulting from more activities around the watershed in 2017 compared to 1992. This
indicates that some part of the wetland landscape areas might have been converted to other usages as a
result of urbanization, similar to in a study conducted by Liu et al. [51]. Generally, the landscape level
quantification revealed changes in ED and a slight increase in shape complexities and irregularities.
This might have resulted from human activities in the form of urbanization or agriculture impacting on
the area during the period of study. This is similar to another study by Zubair et al. [36] revealing the
depletion of wetland landscape at the sub-watershed level in this area due to agriculture activities. This
shows that response of species richness for agriculturally induced fragmented wetlands for wildlife
such as amphibians and reptiles can be monitored, even at a very large-scale map (small area), similar
to the study by Kolozsvary and Swihart [52].

5. Conclusions

Firstly, the general status of the coverage of the wetlands in the three major watersheds was
revealed statistically, using an object-based classification method. Secondly, the study has been able to
reveal some of the dynamics of urban wetlands as it relates to the terrestrial portion of the landscape.
The impact has been found to be more on the smaller wetlands as compared to the larger ones,
which could influence some of the wildlife. Thirdly, the impact on wetland core area in terms of
potential wetness and stream power was observed as it relates to terrestrial habitat. In addition,
the impacted areas that could affect wildlife such as amphibians and reptiles showed increased edge
effects and shape complexities, particularly at the patch level.

At the patch level, the analysis is effective in revealing the fine-scale structure of urban wetlands.
The general change pattern of wetland coverage can be better observed individually at the patch
level than at the landscape level. As shown in the result of the terrain analysis, most major wetlands
in the study area experienced an increase in wetness potential, which may have contributed to the
swell of wetland at the landscape level. The dynamics of the wetlands were better depicted at the
patch level using the terrain attribute data. In addition, the effects on size, shape, and edge that
were generalized at the landscape level could be better identified at the patch level. Increased edge
effects and shape complexity were more obvious at the landscape level, and this may be associated
with various urban development activities in the study area. Though it may not be practical when
monitoring dynamic changes, acquiring remote sensing data with a similar anniversary date will assist
in improving the change detection results. In addition, the ability to capture landscape functionality
and spatial heterogeneity will further improve future studies.
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Compound Topographical Index Estimate

1992 2017 Wetland Impact
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Loch Lloyd 
Lake 
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CTI 

1992 = 0.78% 
2017 = 4.33% 

Longview 
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Estimated 
CTI 

1992 = 1.22% 
2017 = 1.42% 
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1992 = 1.57% 
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Prairie Lee 
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2017 = 1.45% 
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Estimated CTI
1992 = 6.55%
2017 = 6.55%
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Table A2. Estimated SPI at 340-m from the wetland core area. 

Stream Power Index Estimate 
1992 2017 Wetland Impact

Blue Springs 
Reservoir 

Estimated SPI 
1992 = 15.40% 
2017 = 14.85% 

East Lake Wood 
Estimated SPI 
1992 = 18.33% 
2017 = 21.64% 
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West Lake 
Wood 

Estimated 
CTI 

1992 = 1.24% 
2017 = 1.55% 

Appendix B 

Table A2. Estimated SPI at 340-m from the wetland core area. 

Stream Power Index Estimate 
1992 2017 Wetland Impact

Blue Springs 
Reservoir 

Estimated SPI 
1992 = 15.40% 
2017 = 14.85% 

East Lake Wood 
Estimated SPI 
1992 = 18.33% 
2017 = 21.64% 

West Lake Wood
Estimated CTI
1992 = 1.24%
2017 = 1.55%



Land 2020, 9, 29 20 of 25

Appendix B

Table A2. Estimated SPI at 340-m from the wetland core area.

Stream Power Index Estimate

1992 2017 Wetland Impact

19 of 24 
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Wood 

Estimated 
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1992 = 1.24% 
2017 = 1.55% 
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Table A2. Estimated SPI at 340-m from the wetland core area. 

Stream Power Index Estimate 
1992 2017 Wetland Impact

Blue Springs 
Reservoir 

Estimated SPI 
1992 = 15.40% 
2017 = 14.85% 

East Lake Wood 
Estimated SPI 
1992 = 18.33% 
2017 = 21.64% 

19 of 24 

West Lake 
Wood 

Estimated 
CTI 

1992 = 1.24% 
2017 = 1.55% 
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Table A2. Estimated SPI at 340-m from the wetland core area. 

Stream Power Index Estimate 
1992 2017 Wetland Impact

Blue Springs 
Reservoir 

Estimated SPI 
1992 = 15.40% 
2017 = 14.85% 

East Lake Wood 
Estimated SPI 
1992 = 18.33% 
2017 = 21.64% 

Blue Springs Reservoir
Estimated SPI
1992 = 15.40%
2017 = 14.85%

19 of 24 

West Lake 
Wood 

Estimated 
CTI 

1992 = 1.24% 
2017 = 1.55% 
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Stream Power Index Estimate 
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2017 = 14.85% 

East Lake Wood 
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1992 = 18.33% 
2017 = 21.64% 
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2017 = 1.55% 

Appendix B 

Table A2. Estimated SPI at 340-m from the wetland core area. 

Stream Power Index Estimate 
1992 2017 Wetland Impact

Blue Springs 
Reservoir 

Estimated SPI 
1992 = 15.40% 
2017 = 14.85% 

East Lake Wood 
Estimated SPI 
1992 = 18.33% 
2017 = 21.64% 

East Lake Wood
Estimated SPI
1992 = 18.33%
2017 = 21.64%

20 of 24 

Heritage Park 
Lake 

Estimated SPI 
1992 = 8.00% 
2017 = 8.01% 

Stream Power Index Estimate 
1992 2017 Wetland Impact 

Lake Jacomo 
Estimated SPI 
1992 = 16.40% 
2017 = 19.37% 

Loch Lloyd 
Lake 

Estimated SPI 
1992 = 17.29% 
2017 = 17.06% 

20 of 24 

Heritage Park 
Lake 

Estimated SPI 
1992 = 8.00% 
2017 = 8.01% 

Stream Power Index Estimate 
1992 2017 Wetland Impact 

Lake Jacomo 
Estimated SPI 
1992 = 16.40% 
2017 = 19.37% 

Loch Lloyd 
Lake 

Estimated SPI 
1992 = 17.29% 
2017 = 17.06% 

Heritage Park Lake
Estimated SPI
1992 = 8.00%
2017 = 8.01%
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Stream Power Index Estimate

1992 2017 Wetland Impact
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Estimated SPI 
1992 = 12.86% 
2017 = 11.52% 

Stream Power Index Estimate 
1992 2017 Wetland Impact 

  

Lake 

Tapawingo 
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1992 = 21.19% 
2017 = 17.25% 
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1992 = 10.11% 
2017 = 9.95% 

  

Prairie Lee Lake 

Estimated SPI 

1992 = 16.01% 
2017 = 18.72 
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1992 = 19.51% 
2017 = 19.22% 
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1992 = 19.51% 
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Longview Lake
Estimated SPI
1992 = 12.86%
2017 = 11.52%
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Stream Power Index Estimate

1992 2017 Wetland Impact

21 of 24 
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Estimated SPI 
1992 = 12.86% 
2017 = 11.52% 

Stream Power Index Estimate 
 2017 Wetland Impact
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1992 = 21.19% 
2017 = 17.25% 

Missouri River 
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1992 = 10.11% 
2017 = 9.95% 

Prairie Lee Lake 
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1992 = 16.01% 
2017 = 18.72 

West Lake 

Wood 

Estimated SPI 

1992 = 19.51% 
2017 = 19.22% 
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Lake 
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Estimated SPI 

1992 = 21.19% 
2017 = 17.25% 

Missouri River 

Estimated SPI 

1992 = 10.11% 
2017 = 9.95% 

Prairie Lee Lake 

Estimated SPI 

1992 = 16.01% 
2017 = 18.72 

West Lake 

Wood 

Estimated SPI 

1992 = 19.51% 
2017 = 19.22% 

Prairie Lee Lake
Estimated SPI
1992 = 16.01

%2017 = 18.72
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Longview Lake 
Estimated SPI 
1992 = 12.86% 
2017 = 11.52% 

Stream Power Index Estimate 
2017 Wetland Impact

Lake 

Tapawingo 

Estimated SPI 

1992 = 21.19% 
2017 = 17.25% 

Missouri River 

Estimated SPI 

1992 = 10.11% 
2017 = 9.95% 

Prairie Lee Lake 

Estimated SPI 

1992 = 16.01% 
2017 = 18.72 

West Lake 

Wood 

Estimated SPI 

1992 = 19.51% 
2017 = 19.22% 
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Longview Lake 
Estimated SPI 
1992 = 12.86% 
2017 = 11.52% 

Stream Power Index Estimate 
2017 Wetland Impact

Lake 

Tapawingo 

Estimated SPI 

1992 = 21.19% 
2017 = 17.25% 

Missouri River 

Estimated SPI 

1992 = 10.11% 
2017 = 9.95% 

Prairie Lee Lake 

Estimated SPI 

1992 = 16.01% 
2017 = 18.72 

West Lake 

Wood 

Estimated SPI 

1992 = 19.51% 
2017 = 19.22% 

West Lake Wood
Estimated SPI
1992 = 19.51%
2017 = 19.22%
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