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Abstract: Land use and land cover change (LULCC) are dynamic over time and space due to
human and biophysical factors. Accurate and up-to-date LULCC information is a mandatory part of
environmental change analysis and natural resource management. In Sri Lanka, there is a significant
temporal gap in the existing LULCC information due to the civil war that took place from 1983 to
2009. In order to fill this gap, this study presents a whole-country LULCC map for Sri Lanka over
a 25-year period using Landsat time-series imagery from 1993 to 2018. The LandTrendr change
detection algorithm, utilising the normalised burn ratio (NBR) and normalised difference vegetation
index (NDVI), was used to develop spectral trajectories over this time period. A land cover change
and disturbance map was created with random forest, using 2117 manually interpreted reference
pixels, of which 75% were used for training and 25% for validation. The model achieved an overall
accuracy of 94.14%. The study found that 890,003.52 hectares (ha) (13.5%) of the land has changed,
while 72,266.31 ha (1%) was disturbed (but not permanently changed) over the last 25 years. LULCC
was found to concentrate on two distinct periods (2000 to 2004 and 2010 to 2018) when social and
economic stability allowed greater land clearing and investment opportunities. In addition, LULCC
was found to impact forest reserves and protected areas. This new set of Sri Lanka-wide land cover
information describing change and disturbance may provide a reference point for policy makers and
other stakeholders to aid in decision making and for planning purposes.
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1. Introduction

Land use and land cover change (LULCC) has been identified as a change driver worldwide [1], with
the potential to adversely impact critical ecosystem services [2], including habitat fragmentation [2,3],
depletion of biodiversity [4–6], decreasing land productivity [7,8], and changing climatic conditions [7–11].
As such, mapping and understanding LULCC has become a priority for many scientific disciplines and
stakeholders across the planning, environmental and natural resource management areas [12,13].

South Asia is an economically developing region characterised by high (and growing) population
density and sociocultural diversity [11]. This economically developing region is also at times politically
unstable. These factors, when combined with ongoing climate variability, are likely to have had a
significant impact on the LULCC in the region [14]. The already-high population is forecasted to
exceed that of China by 2050, which may accelerate LULCC in some areas [11]. LULCC studies in this
region can help to unveil land use change and its consequences. However, these types of studies are
often hindered by a lack of historical records due to ongoing political and social unrest.

Land 2020, 9, 27; doi:10.3390/land9010027 www.mdpi.com/journal/land

http://www.mdpi.com/journal/land
http://www.mdpi.com
https://orcid.org/0000-0003-1285-1622
http://dx.doi.org/10.3390/land9010027
http://www.mdpi.com/journal/land
https://www.mdpi.com/2073-445X/9/1/27?type=check_update&version=2


Land 2020, 9, 27 2 of 19

In Sri Lanka, the major issue in land cover change analysis is the absence of large-area LULCC
studies. Available studies are highly localised and restricted to bitemporal comparisons [15–19].
However, it is evident that the country’s landscape has been evolving over a long period due to
human (socioeconomic, political) and natural (biophysical) causes. Following the introduction of
an open economic policy in the late 1970s, multiple socioeconomic and political changes have taken
place. These have resulted in the establishment of multipurpose river basin development projects (e.g.,
the Mahaweli river basin development project of 1980–2018), implementation of transportation and
highway development projects, agricultural expansion through irrigation and the emergence of new
urban centres and expansion of existing ones [15,20]. A civil war also afflicted the country from 1980 to
2009. Northern and Eastern Sri Lanka was severely affected, and during some phases of the war, the
entire country was affected and experienced negative economic development [21,22]. LULCC records
for these periods are missing or extremely limited. When the 30 years of civil war came to an end in
2009, infrastructure development intensified all around the country. The LULCC occurring in this
dynamic landscape is yet to be explored and quantified.

Satellite remote sensing is an ideal source for mapping LULCC, given its ability to provide
consistent and repeatable measurements at a spatial scale appropriate for capturing both natural and
human-induced phenomena (e.g., fires, disease, agriculture, urbanisation, deforestation) [2,23–28].
Following recent advances in computer technology (processing and storage) as well as data access
through open source policies, remote sensing has become a key technology used when characterising
landscape changes [29].

Data from the Landsat series of earth observing satellites, which have been imaging the Earth
since the 1970s, became freely available to the public in 2008 [30–34] through the United States
Geological Survey (USGS) website. Furthermore, they have been geometrically corrected and spatially
aligned and are available in an analysis-ready format [30,34] via the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) algorithm [30]. LEDAPS is a process that converts raw Landsat
(Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+)) satellite data into surface
reflectance (SR) products, removing much of the spectral variation caused by atmospheric effects
(e.g., water vapour and aerosols) [13]. On the other hand, Landsat 8 (Operational Land Imager (OLI))
SR products are generated using the Landsat 8 Surface Reflectance Code (LaSRC) algorithm [35].
These developments have collectively increased the number of time-series applications in change
detection studies from local to regional and global scales [2,30,36–39]. Multiple pixel-based time-series
approaches have also been designed and tested in the last decade to detect LULCC at a high temporal
scale [13,23,37,38,40–47]. Such innovations offer developing countries an opportunity for reconstructing
LULCC in recent decades.

For Sri Lanka, the Landsat archive is available from 1988 onwards. As such, the objective of
this paper is to construct an internally consistent, annual database of LULCC for the whole of Sri
Lanka, using the freely available Landsat archive. Specifically, we aim to: (1) identify areas that have
experienced LULCC during the time period 1993–2018 and (2) analyse detected large-scale changes in
the context of socioeconomic and political events that impacted the country from 1993 to 2018. This
study will help to overcome the information gap in LULCC mapping in the country caused by the civil
war and associated lack of large-area LULCC data.

2. Materials and Methods

2.1. Study Area

The island of Sri Lanka was used as the study area (Figure 1). Sri Lanka is a tropical island with
a land extent of 6.5 million hectares (ha) (65,525 km2), located between 5◦55′–9◦51′ N latitude and
79◦52′–81◦51′ E longitude (WGS 84-UTM Zone 44N). Sri Lanka is densely populated, with 20.3 million
people [48] who mostly reside in the southwestern portion of the island.
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Figure 1. Location of study area (top left—location of Sri Lanka in South Asia; bottom left—Landsat 
tiles (142/053, 142/054, 142/055, 141/053, 141/054, 141/055, 141/056, 140/055,140/056) of Sri Lanka; right, 
a composite image of Sri Lanka, 2017, coordinate reference system (CRS) WGS 84-UTM Zone 44N. 

Sri Lanka has a unique and diverse landscape due to its mountainous topography and dense 
network of rivers. Topographically, the country has two distinct regions: the central highlands and 
lowland plains extending to the coastal zone. The elevation of the Central Highlands varies from 300 
to 2500 m (Figure 2a). The central region also contains many complex topographical features such as 
ridges, mountains, plateaus, basins, valleys and escarpments. These topographical variations 
strongly influence the spatial patterns of wind, rainfall, temperature, relative humidity and other 
climatic elements. The country’s rainfall distribution varies from under 1000 mm per year (in the 
southeast and northwest) to over 2500 mm per year in the central mountainous region.  

The climate in Sri Lanka is dominated by tropical and monsoonal attributes and consists of two 
distinct monsoon seasons: the southwest monsoon from May to September and the northeast 
monsoon from November to February [13]. Based on the mean annual rainfall distribution, three 
rainfall zones are defined (i.e., climate zones): wet zone (>2500 mm of rainfall), intermediate zone 
(2500–1750 mm) and dry zone (<1750 mm) (Figure 2b). Further, the Central Highlands act as a 
watershed for more than 100 major and minor rivers that flow in a radial pattern towards the sea 
(Figure 2c). Natural river basins have greatly influenced present-day land use in Sri Lanka (Figure 
2d). The areas closest to the capital Colombo (western and southwestern areas) are more urban, with 
a higher density of human population (Figure 2e) and infrastructure (Figure 2f).  

Land cover in Sri Lanka is dominated by agriculture; one-third of the total land area is covered 
by agricultural land use [15,20]. Rice paddy is the dominant form of agriculture, found all around the 
country except in the high mountains, coastal regions and the far north. Rice paddy is common in all 
these zones. Rice paddy lands have expanded into the dry zone, making use of new irrigation 
schemes. Paddy lands in the wet and intermediate zones are commonly found along riverbanks, even 
in highly urbanised areas (Figure 2g). Forest lands and their remnants are more common in the north–
central and the northeastern (Figure 2g) part of the country, where the human population is sparse. 
It is in these areas that Sri Lanka maintains a high biodiversity and ecosystem diversity. Some of the 

Figure 1. Location of study area (top left—location of Sri Lanka in South Asia; bottom left—Landsat
tiles (142/053, 142/054, 142/055, 141/053, 141/054, 141/055, 141/056, 140/055,140/056) of Sri Lanka; right,
a composite image of Sri Lanka, 2017, coordinate reference system (CRS) WGS 84-UTM Zone 44N.

Sri Lanka has a unique and diverse landscape due to its mountainous topography and dense
network of rivers. Topographically, the country has two distinct regions: the central highlands and
lowland plains extending to the coastal zone. The elevation of the Central Highlands varies from 300
to 2500 m (Figure 2a). The central region also contains many complex topographical features such as
ridges, mountains, plateaus, basins, valleys and escarpments. These topographical variations strongly
influence the spatial patterns of wind, rainfall, temperature, relative humidity and other climatic
elements. The country’s rainfall distribution varies from under 1000 mm per year (in the southeast and
northwest) to over 2500 mm per year in the central mountainous region.

The climate in Sri Lanka is dominated by tropical and monsoonal attributes and consists of two
distinct monsoon seasons: the southwest monsoon from May to September and the northeast monsoon
from November to February [13]. Based on the mean annual rainfall distribution, three rainfall zones
are defined (i.e., climate zones): wet zone (>2500 mm of rainfall), intermediate zone (2500–1750 mm)
and dry zone (<1750 mm) (Figure 2b). Further, the Central Highlands act as a watershed for more
than 100 major and minor rivers that flow in a radial pattern towards the sea (Figure 2c). Natural river
basins have greatly influenced present-day land use in Sri Lanka (Figure 2d). The areas closest to the
capital Colombo (western and southwestern areas) are more urban, with a higher density of human
population (Figure 2e) and infrastructure (Figure 2f).

Land cover in Sri Lanka is dominated by agriculture; one-third of the total land area is covered
by agricultural land use [15,20]. Rice paddy is the dominant form of agriculture, found all around
the country except in the high mountains, coastal regions and the far north. Rice paddy is common
in all these zones. Rice paddy lands have expanded into the dry zone, making use of new irrigation
schemes. Paddy lands in the wet and intermediate zones are commonly found along riverbanks,
even in highly urbanised areas (Figure 2g). Forest lands and their remnants are more common in the
north–central and the northeastern (Figure 2g) part of the country, where the human population is
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sparse. It is in these areas that Sri Lanka maintains a high biodiversity and ecosystem diversity. Some
of the forest areas are declared as protected areas to conserve biodiversity and, specifically, elephant
habitats (Figure 2h).

Plantation agriculture (commercial agriculture) consists mainly of tea, rubber, coconut and
palmyra and occupies a considerable proportion of the country. Tea plantations are restricted to the
western slopes of the Central Highlands, where rainfall is highest. In the west and the northwestern
provinces, coconut plantations are common, while southwestern regions are dominated by rubber
cultivation. Palmyra is restricted to the dry zone in the north, north–central and northeast regions [49].
Home gardens (homestead/gardens), a noncommercial form of agriculture also known as agroforestry
systems, are common throughout the country. However, home gardens vary greatly based on climatic
conditions and whether they are located in urban/non-urban areas. Examples of commonly occurring
land cover types are shown in Figure 3.
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Figure 2. Physical and cultural characteristics in Sri Lanka: (a) elevation [50], (b) climate zones,
(c) drainage [51], (d) river basins [52], (e) population density as reported in 2012 [53], (f) railway and
road network, (g) paddy and forest cover as reported in 2007 [54] and (h) protected areas as reported in
2010 [55].
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Figure 3. Image shows a heterogeneous landscape in the wet zone highlands. 1: Forest plantation,
2: Rice paddy, 3: Vegetable cultivation, 4: Home garden, 5: Periurban, 6: Recent land clearance for
tea cultivation, 7: Scrub, 8: Tea plantation, 9: Natural forest and 10: Stream. Image captured by
Chithrangani WM Rathnayake on 15/04/2019 at 7.1106966N, 80.75596E (Elevation: 1200 m).

2.2. Landsat Imagery and Spectral Indices

The overall methodology of this study is summarised in Figure 4. As the first step, all available
Landsat TM, ETM+ and OLI surface reflectance products [56] from 1 January to 31 December for
the years 1988–2018 were obtained from the USGS data archive. A total of 4440 Landsat images
covering the nine Landsat tiles for Sri Lanka (Figure 1) were used. Fmask [57] was applied to remove
clouds and shadow. After unsuccessfully attempting to create seasonal composites, for wet and dry
periods, we decided instead to create annual median composites for each of the 28 years (1989 and
1990 were not used due to the poor quality of available imagery during these early years). The reason
for the failure of season-based compositing was the high incidence of cloud and data dropouts (Scan
Line Corrector (SLC) in Landsat 7 imagery). Subsequently, we opted to create annual composites.
We then experimented with several spectral indices and transformations (these included Tasseled
Cap components [27], the Normalised Burn Ratio or NBR and the Normalised Difference Vegetation
Index or NDVI). NBR and NDVI were found to be the most sensitive to interannual change in a Sri
Lankan context. NBR calculates the normalised difference in reflectance between the NIR and SWIR
wavelengths as recorded by Landsat. NDVI calculates a similar ratio using the NIR and red portions of
the electromagnetic spectrum (Table 1) [35]. Annual median composites for NBR [58] and NDVI were
created in the R programming language using LandsatLinkr [59].

Next, the LandTrendr (Landsat-based detection of trends in disturbance and recovery) [29]
algorithm was applied to detect change events that occurred across the landscape, which may be
associated with LULCC. LandTrendr is a segmentation and fitting algorithm specifically developed
for identifying vegetation changes using Landsat time-series data [29,60]. Examples of land cover
transitions can be seen in Supplementary Materials (Figure S1). LandTrendr provides a range of
analytical outputs that can be utilised in the prediction of land cover change [29]. In this study, we
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included several commonly used LandTrendr outputs in our LULCC model: the greatest disturbance
year, greatest disturbance magnitude, disturbance duration, predisturbance value, post-disturbance
value, recovery year, recovery magnitude and recovery duration (Figure 4). Several initial images
are needed to begin to build a trend and detect any breaks (implying there has been a disturbance
or change). Therefore, in this study, we analysed images from 1991–2018 and report changes from
1993 onwards.

Table 1. Normalised Difference Vegetation Index (NDVI) and Normalised Burn Ratio (NBR) calculation
formulas and Landsat bands used for deriving these.

Index Landsat 4–7 Landsat 8

NBR (NIR - SWIR)/(NIR + SWIR) (Band 4 − Band 7)/
(Band 4 + Band 7)

(Band 5 − Band 7)/
(Band 5 + Band 7)

NDVI (NIR − R)/(NIR + R) (Band 4 − Band 3)/
(Band 4 + Band 3)

(Band 5 − Band 4)/
(Band 5 + Band 4) [35]
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2.3. Reference Data, Classification and Validation

A reference dataset is essential for the attribution of land cover change and its subsequent
validation [17,61,62]. A random sample consisting of 2117 pixels, stratified according to administrative
districts (eight) and major land cover classes (eight) [49,54], was created (Table 2). Reference pixels
were interpreted and attributed using a multiple lines of evidence approach [63], which has proven
to be more accurate than a single human interpretation approach [2,41,64,65]. Google Earth imagery,
Landsat time-series trajectory, Landsat images and land use maps (2007) were used in the change
identification and labelling process. Reference pixels were interpreted as either unchanged, disturbed
but unchanged (e.g., water surfaces experiencing disturbances due to seasonal variations, i.e., dry and
wet periods) or changed (implying there has been a conversion of one land use land cover class to
another such as from forest to water) during the years for which imagery was available (1988–2018).

Random forest classification [66,67] was used to produce a map showing the distribution of the
three classes (unchanged, disturbed but unchanged and changed). Predictor variables used as input
into the random forest models included NBR trajectory, NDVI trajectory, seasonal rainfall, seasonal
temperature (WorldClim Version2 [68]) and elevation (derived from Aster GDEM version 3) [50].
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Multiple random forest models were generated, changing the number of variables available for splitting
at each tree node (2, 3 or 4) and the number of trees (200, 300, 400, . . . , 1000) used. Each model was
trained with 75% of the reference data, with the remaining 25% used to evaluate the classification
outcomes. The model using 4 splitting variables and 500 trees produced the highest accuracy. Results
for this model were evaluated based on the assessment of a confusion matrix created using the
reference data.

Table 2. Distribution of sample pixels according to different land cover classes.

Land Cover Description No. of Sample Pixels

Forest Areas of natural forest 306
Home
garden Areas of homestead and gardens 600

Paddy Areas of rice cultivation 374
Periurban Areas of transforming to urban 50

Plantation Areas of main plantation crops (tea, rubber,
coconut, forest plantation and palmyra) 467

Scrub Areas of shrubs, grass and barren lands 145
Urban Areas of main towns, cities and buildups 53
Water A body of water 122
Total 2117

3. Results

3.1. Reference Data, LULCC Map and Accuracy

Figure 5 shows a summary of interpreted reference pixels using a multiple lines of evidence
approach. The general trend across all land cover categories, except water and urban classes, was that
around 50% of reference pixels experienced change. The home garden class experienced the most
change, with 81% having changed during the reporting period. The second most dynamic land cover
was plantation, which changed by 70%. Forest and scrub pixels changed at a rate of 67% and 64%,
respectively. The change rate of paddy was 17%, which is less than the other vegetation covers. Water
and periurban pixels changed even less, and urban pixels remain unchanged (as expected).

Land 2020, 9, x FOR PEER REVIEW  7 of 19 

Table 2. Distribution of sample pixels according to different land cover classes. 

Land Cover Description No. of Sample Pixels 
Forest Areas of natural forest 306 
Home garden Areas of homestead and gardens 600 
Paddy Areas of rice cultivation 374 
Periurban  Areas of transforming to urban  50 

Plantation Areas of main plantation crops (tea, rubber, 
coconut, forest plantation and palmyra) 

467 

Scrub Areas of shrubs, grass and barren lands 145 
Urban Areas of main towns, cities and buildups 53 
Water A body of water 122 
Total  2117 

Random forest classification [66,67] was used to produce a map showing the distribution of the 
three classes (unchanged, disturbed but unchanged and changed). Predictor variables used as input 
into the random forest models included NBR trajectory, NDVI trajectory, seasonal rainfall, seasonal 
temperature (WorldClim Version2 [68]) and elevation (derived from Aster GDEM version 3) [50]. 
Multiple random forest models were generated, changing the number of variables available for 
splitting at each tree node (2, 3 or 4) and the number of trees (200, 300, 400, …, 1000) used. Each model 
was trained with 75% of the reference data, with the remaining 25% used to evaluate the classification 
outcomes. The model using 4 splitting variables and 500 trees produced the highest accuracy. Results 
for this model were evaluated based on the assessment of a confusion matrix created using the 
reference data. 

3. Results  

3.1. Reference Data, LULCC Map and Accuracy   

Figure 5 shows a summary of interpreted reference pixels using a multiple lines of evidence 
approach. The general trend across all land cover categories, except water and urban classes, was that 
around 50% of reference pixels experienced change. The home garden class experienced the most 
change, with 81% having changed during the reporting period. The second most dynamic land cover 
was plantation, which changed by 70%. Forest and scrub pixels changed at a rate of 67% and 64%, 
respectively. The change rate of paddy was 17%, which is less than the other vegetation covers. Water 
and periurban pixels changed even less, and urban pixels remain unchanged (as expected).   

 

 
Figure 5. Summary of reference pixels (2117) that experienced land cover change over the 1988 to 2018.

An evaluation of the accuracy results of the classified land cover change created using random
forest is presented in Table 3. The predicted land cover change classification achieved an overall accuracy
of 94%. The ‘changed’ (implying a change in LULCC) and ‘unchanged’ (implying either not disturbed
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or changed) classes achieved a 99.78% and 91.71% producer’s accuracy and 84.28% and 99.89% user’s
accuracy, respectively. The ‘disturbed’ (disturbed but no LULCC) class achieved the highest producer’s
accuracy. The Kappa coefficient value is 0.94. The most important predictor variables were the NDVI
predisturbance value, NBR disturbance magnitude, NDVI disturbance magnitude and precipitation
(rainfall) seasonality (the relative importance of each variable is shown in Figure S2).

Table 3. Accuracy assessment of land cover change classification.

Class Changed Disturbed Unchanged Total Producer’s Accuracy

Changed 456 0 1 457 99.78
Disturbed 0 81 0 81 100

Unchanged 85 2 963 1050 91.71
Total 541 83 964 1588

User’s accuracy 84.28 97.59 99.89

Cross-validation results of the predicted model are shown in Table 4. The model prediction
achieved an overall accuracy of 94.14%. Unchanged and disturbed areas were predicted by the model
with high accuracy. The predicted accuracy of the changed class was more moderate (80%).

Table 4. Cross-validation results of classification prediction.

Prediction Reference

Changed Disturbed Unchanged Sum Accuracy

Changed 131 0 31 162 80.86
Disturbed 0 22 0 22 100

Unchanged 0 0 345 345 100
Total 131 22 376 529

Accuracy 100 100 91.75 94.14

The predicted LULCC map is shown in Figure 6. It illustrates the spatial distribution of all the
major land cover changes and disturbances that took place in Sri Lanka during the last 25 years.
Figure 7 shows the years when disturbance and LULCC occurred, whereas Figure 8 provides a yearly
summary of all LULCC detected in Sri Lanka, together with major sociopolitical events that occurred
during the study period. Earlier years were removed due to incomplete time-series data, and since
LandTrendr needs to initialise for a couple of years to attribute change correctly. Many of the changes
can be matched with the major development projects and associated land cover changes in Sri Lanka
during the 25-year study period, including the southern expressway (the first highway in Sri Lanka)
and the railway line along the southern coastal belt (2006–2018), Rambakenoya reservoir (2008–2013),
Mattala international airport (2009–2013), Moragahakanda reservoir project (2015–2018), Deduru
Oya reservoir project (2013–2014), the Yaldewi railway line and A9 highway (2010–2013) and the
Lunugamwehera reservoir project (2009-2013). A large proportion of the changes occurred after 2004
with further intensification subsequent to 2009 when the 30-year civil war was over. It is also clear that
the changes after 2009 are more pronounced in regional Sri Lanka, that is, in areas far from Colombo
(the capital of the country) (Figure 7).

3.2. LULCC and Protected Areas

Figure 6 shows how LULCC has impacted protected areas in Sri Lanka. Many of the protected
areas that are located in close proximity to district capitals have been notably impacted due to increasing
human population pressure and urbanisation. Figure 9a illustrates a specific case study in which
changes in a protected area were caused by the construction of a reservoir and a highway. Figure 9b
shows another case study in which a forest reserve/protected area was impacted by forest clearance for
agricultural expansion and highway construction.
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Figure 7. Distribution of land cover changes and/or disturbances by defined periods (1993 to 2018). The
numbers refer to examples of land cover diversification projects that occurred during the study period:
1. The southern expressway (the first highway in Sri Lanka) and the railway line, 2. Rambakenoya
reservoir, 3. Mattala international airport, 4. Moragahakanda reservoir project, 5. Deduru Oya reservoir
project, 6. Yaldewi railway line, 7. Lunugamwehera reservoir project and 8. Colombo International
Financial City project.
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Figure 9. Two specific case studies of land cover change in protected areas: (a) Land cover change in
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National Park and Ruhuna (Yala) National Park.
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4. Discussion

The main purpose of this study was to construct an internally consistent, annual database of
LULCC for the whole of Sri Lanka, using the freely available Landsat archive [33], for the past 30 years.
We found that during this period, 890,003 ha (13%) of the land area experienced change and a further
72,266 ha (1%) was disturbed (accuracy of 94.1%). These findings are consistent with other studies
in Sri Lanka that have detected LULCC at local scales [17–19,69–73]. Many comparable time-series
studies have been carried out using Landsat data, but they have been mainly restricted to vegetation
change analysis in mid-latitude countries [2,6,12,23,28,29,38,64]. The few studies that have attempted
time-series remote sensing in tropical regions concede it is a challenge given the high incidence of
clouds [26,41,74–78].

Disturbed (but unchanged) areas were found to be mainly concentrated in the dry zone. These
areas have a distinct dry period and are predominantly occupied by rice paddies, scrub and water
surfaces (Figure 3). Water and rice paddies in the dry areas represent these temporary or ephemeral
disturbance characteristics. For example, dry low-lying areas are highly sensitive to seasonal rainfall
variations, flooding and drying up in the wet and dry seasons, respectively. Rice paddy lands exhibit
similar characteristics due to seasonal cropping calendars based on monsoon rains. The inclusion of
the ‘disturbance’ class is therefore seen as highly beneficial, because it allows for the separate analysis
of these events and avoids the misinterpretation of permanent land cover ‘change’.

Our research found that over the thirty-year study period, most LULCC occurred in the northern,
southeastern and eastern regions of Sri Lanka. LULCC during the 1990s concentrated in the north
and some areas around Trincomalee and Batticaloa. This was likely due to open economic reforms,
expansion of agricultural lands, population redistribution and infrastructure enhancements, which
became more pronounced after 2009 [20,22]. LULCC between 2004 and 2008 was mostly evident along
the southeastern region from Hambantota to Ampara and the northwestern portion of the island.
Such changes were likely the result of land clearance for resettlement programs and agricultural land
expansion. After the civil war finally ended in mid-2009, the government focused on enhancing the
country’s infrastructure, especially via highway and reservoir construction (which is seen in Figure 4).
Some transportation projects that enhanced the existing road/railway network captured in our results
include the Southern Expressway from Colombo to Galle, which was opened to the public in 2011, and
its continuation from Matara to Hambantota in recent years, as well as the Yaldewi railway line and
A9 highway from Kandy to Jaffna (2010–2013) (Figure 4). A number of reservoirs were also detected,
including Moragahakanda (2014–2018), Deduru Oya (2014), Lunugamwehera (2013–2014), Upper
Kotmale (2011) and the Rambakenoya reservoir (2007–2013). After 2009, change was much more
pronounced over regions that are farther from the capital. These recent infrastructure development
programs and the war-free environment had significant impacts in terms of LULCC around new
suburbs such as Hambantota [73], Monaragala, Ampara and Batticaloa. Additionally, the western
region—where Colombo is located—expanded by reclaiming new land from the ocean, which has
been one of the largest projects in the country, as well as by adding eastern suburban areas through
expanding a new set of suburbs, which is consistent with recent studies. Subasingha et al. (2016) [17]
and Fonseka et al. (2019) [79] detected a dramatic expansion of the Colombo metropolitan region
between 2004 and 2016 and 1988 and 2016, respectively. Of note is that mountain areas, i.e., above 1500
m, have experienced limited LULCC, as these areas are harder to access [15].

Considering the chronology of annual LULCC in Sri Lanka, as shown in Figure 5, the period starts
in the early 1990s with relatively low annual change. This was due to political instability resulting
from a state of emergency following the assassination of the president in 1993. Subsequently, a new
series of infrastructure development programs were introduced under new leadership in 1994 and
1995, resulting in LULCC throughout the dry zone. The area under home gardens increased in many
districts during this period, and forest cover dramatically dropped [80]. However, the 1990s were a
particularly unstable period for Sri Lanka due to many sociopolitical crises, including a civil war.



Land 2020, 9, 27 13 of 19

The initial phase of the civil war was characterised by low rates of LULCC (1993–1999). Following
the ceasefire agreements in 2000, LULCC rose substantially, particularly due to agricultural expansion
in certain areas. Hotspots of change can be seen around the northern regions of Anuradhapura,
Vavuniya and Kilinochchi, east of Polonnaruwa, southeastern areas around Ampara and Hambantota,
south of Colombo around Kalutara and Nuwara Eliya and south of Kandy. In 2001, a terrorist attack
on the national airport of Sri Lanka destroyed much of the national airline’s fleet. This event and other
destabilising factors had a negative effect on the economy, which experienced a negative per capita and
industrial growth rate, thus affecting many infrastructure development activities and halting proposed
development projects (Figure 7). As a result, 2002 experienced lower rates of change (Figure 10). This
trend was exacerbated by two natural disasters in 2003 and 2004: a major flood and the catastrophic
Indian Ocean Tsunami. The tsunami in December 2004 devastated the coastal region around the
country and resulted in the loss of 35,000–40,000 lives [73]. Part of the affected coastline from Batticaloa
to Ampara (about 50 km), Hambantota and Galle is captured in Figure 3. The year following this
immense natural disaster, LULCC remained low, as attention focused on disaster recovery rather than
new infrastructure projects.
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national account data.

By contrast, the 10-year post-war period following 2009 was politically stable and resulted in a
notable increase in LULCC (Figure 5). Given that 80% of Sri Lanka’s land belongs to the state [15,45],
change is primarily driven by major infrastructure investments. The significant drop in LULCCs in 1993,
1998–1999, 2005, 2010 and 2015 is directly connected to the political instability of the country (Figure 5).
GDP (gross domestic production) is highly dependent on the political stability of a country, attracting
more investment when it is stable [74]. Low rates of change seen in recent years (2015–2018) can result
from ongoing internal political and economic crises. Nevertheless, some changes are still evident during
this recent period (Figure 5). Examples include the establishment of the Moragahakanda reservoir
project in the central region (2016–2018) aimed at rural development and hydropower generation [81],
clearing of large patches of forest south of Mannar in the northwest and the reclamation of 269 ha of
land from the ocean north of Colombo financed by the Colombo International Financial City project
(2014–2018) (Figure 5).
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When examining areas that have experienced change against the location of forest reserves and
protected areas (Figures 3 and 6), it is apparent that many of the protected areas are being impacted by
ongoing LULCC [19,80,82]. These have evidently been impacted by multiple infrastructure projects
(e.g., construction of reservoirs and roads). Figure 6a,b shows how some forest reserves located in the
north–central region have been impacted by road construction and encroachment along roads, while
protected areas in the southeast have experienced change due to reservoir and highway construction.
Although beyond the scope of this study, changes in forest reserves and protected areas can lead to
increasing fragmentation, which can negatively impact the biodiversity of the area [39,83].

A lack of historical LULCC information in Sri Lanka is currently an impediment to the effective
implementation of environmental management and planning. The results presented in this paper show
that time-series remote sensing using Landsat data can be used to detect LULCC in Sri Lanka. Some of
the critical areas that could benefit from these new Earth observations of LULCC include biodiversity
conservation and ecosystem management, watershed and water resource management, management
of human–elephant conflict and conservation of elephant habitats, natural disaster management and
national land use planning. Our study provides an internally consistent synoptic overview of the
island state, a view that is historically absent for Sri Lanka for much of the 1990s and early 2000s.

5. Conclusions

This study presents the major land cover change characteristics of Sri Lanka using freely available
Landsat time-series data from the last three decades. It provides the first internally consistent dataset
on LULCC for Sri Lanka. We created a land cover change map for Sri Lanka incorporating NDVI and
NBR LandTrendr metrics, temperature, rainfall and elevation using a random forest model. To achieve
this, we created a reference dataset using a multiple lines of evidence approach, representing all major
land cover classes, which enabled a holistic view of land cover change across the country. Major results
include a high correlation between periods of political instability, war and changes in land use and land
cover. LULCC tended to increase during politically stable years when the government implemented
infrastructure development schemes and decrease during periods of conflict. Given that 80% of the
land in Sri Lanka is state owned, this is perhaps unsurprising. It was also shown that significant
LULCC occurred in protected areas. This change and disturbance map has the potential help land
managers, nongovernment organisations (NGOs) and policy makers to prevent further disturbance
within the ecologically sensitive areas. This study has proposed a time-series remote sensing analytical
tool chain that can be used to map LULCC in highly dynamic tropical landscapes and fill a knowledge
gap caused by factors ranging from political instability to poor cloud-free image availability.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-445X/9/1/27/s1,
Figure S1: Examples of temporal change trajectories: A: Plantation changed to urban, B: Home garden changed to
peri-urban and subsequently to urban, C: Forest changed to water, D: Peri-urban changed to urban, E: Rice paddy
changed to water, F: Forest changed to urban, Figure S2: Variable importance graph prepared based on mean
decrease accuracy of the random forest model.
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