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Abstract: Shifting cultivation has been shown to be the primary cause of land use change in the
Democratic Republic of Congo (DRC). Traditionally, forested and fallow land are rotated in a slash
and burn cycle that has created an agricultural mosaic, including secondary forest, known as the rural
complex. This study investigates the land use context of new forest clearing (during 2000–2015) in
primary forest areas outside of the established rural complex. These new forest clearings occur as either
rural complex expansion (RCE) or isolated forest perforations (IFP), with consequent implications on
the forest ecosystem and biodiversity habitat. During 2000–2015, subsistence agriculture was the
dominant driver of forest clearing for both extension of settled areas and pioneer clearings removed
from settled areas. Less than 1% of clearing was directly attributable to land uses such as mining,
plantations, and logging, showing that the impact of commercial operations in the DRC is currently
dwarfed by a reliance on small-holder shifting cultivation. However, analyzing the landscape context
showed that large-scale agroindustry and resource extraction activities lead to increased forest loss
and degradation beyond their previously-understood footprints. The worker populations drawn
to these areas create communities that rely on shifting cultivation and non-timber forest products
(NTFP) for food, energy, and building materials. An estimated 12% of forest loss within the RCE
and 9% of the area of IFP was found to be within 5 km of mines, logging, or plantations. Given
increasing demographic and commercial pressures on DRC’s forests, it will be crucial to factor in this
landscape-level land use change dynamic in land use planning and sustainability-focused governance.
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1. Introduction

The Democratic Republic of Congo (DRC) has one of the lowest per capita Gross National Incomes
(GNI) in the world, estimated in 2016 at $460, compared to the Sub-Saharan average of $1516 [1].
An estimated 63.6% of the population is living in poverty [1], making the country rank 176th out of
187 countries in the Human Development Index [2]. In 2016, the DRC’s Gross Domestic Product (GDP)
growth fell drastically to 2.4%, its lowest point since 2001 [3]. Further, a surge in violent conflict in
2017 has worsened an already critical humanitarian situation, adding to decades of brutal conflict and
bringing the number of Internally Displaced People (IDPs) to 4.3 million [4]. Revisited projections of
future global poverty highlight a paradox where the DRC, one of the countries with the most abundant
natural resources in the world, will remain as one of the poorest countries [5]. This bleak outlook in
fact occurs despite the country’s vast reserves of mineral deposits, potential for commercial plantations,
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and forests that are economically valuable not only for logging but also for conservation in payment
for ecosystem services (PES) schemes like Reduced Emission from Degradation and Deforestation
(REDD+) [6].

The population in the DRC is predominantly rural and relies for its livelihood on traditional
small-holder shifting cultivation, small livestock, hunting, and gathering of NTFP. Forests are also
used for gathering fuelwood, making charcoal, and building materials [6]. The footprint of this
predominantly agricultural mosaic inside the humid tropical forest block is called the rural complex [7].
Forest cover loss in the DRC has been mapped for over a decade using satellite imagery and the rural
complex has been observed and separated from primary forest [7–10]. However, advancements in
classification accuracy, spatial and temporal resolution [11,12] have only recently allowed the separation
of the rural complex from more isolated forest perforations [13]. These advances in synoptic forest
change monitoring have enabled the estimation of a baseline shifting cultivation fallow periodicity
within the core Congo Basin forest block of the DRC to be about 18 years [14]. Once primary forest is
appropriated into the rural complex mosaic, it is not returned to pristine forest areas until decades
later, if at all [15].

In the DRC, like in many countries, forest degradation from transforming unmanaged intact
forests into managed non-intact forests is as important a source of Greenhouse Gas Emissions (GHGs)
as deforestation [16], adding an estimated 6%–132% of emissions from forest lands [17]. There are a
number of reasons why anthropogenic forest cover loss and degradation occur outside of the rural
complex, but quantifying such dynamics is a challenge [18–20]. Shifting cultivation, hunting, and
gathering of NTFP spills out of the established rural complex when farmers are led to claim new
pristine forest because of increased demographic pressure and scarcity of available land, as well as
socio-economic factors including conflict, political, religious, gender and tribal considerations, and
economic incentives such as new transportation routes that allow access to new markets [6,15,21,22].
An important gender dynamic is at play in the spatial dynamics of shifting cultivation, as it is the
men who traditionally open new fields in the forest, whereas women do more of the farming itself.
Clearing of new forest in many places therefore remains also a cultural norm. Most women get land
rights only through their husbands or the village chief, while land tenure is secured when traditional
leaders allocate user rights among families and clan lines [23].

Forest fragmentation, and the erosion of core forests has important implications for the forest
ecosystem, from increased edge effects to a loss of biodiversity habitat [24,25]. Forest intactness is
therefore a good indicator of the conservation value of a forest landscape [26–28]. This is because
remote forests are much less susceptible to anthropogenic degradation [29] as a population, and
therefore deforestation rates drop with increased distance to roads [25,28,30,31]. Roads, including
logging roads, facilitate contagious development, but also contagious environmental degradation
if they are not planned and their impacts not fully integrated with their social and environmental
costs [32,33].

Conflict has also fragmented forest areas by pushing farmers away from roads and further into the
core forest, in the attempt to avoid contact with militias [34]. Conflict has led to increasing demographic
pressure through migration and displacement [35]. For example, during the Rwandan genocide,
hundreds of thousands of IDPs took refuge across the border in the eastern DRC, where they settled
seeking shelter and sustenance. The burgeoning population density greatly increased forest loss
and degradation, as shifting cultivation, hunting and gathering of NTFP, and fuelwood extraction
provided livelihoods for refugees [35]. At the same time conflict has also prevented the safe operation
of industries and transportation of goods, slowing the development of large-scale commercial land
uses in many areas [35].

In addition to this, both artisanal and large-scale commercial operations for logging, mining, and
plantations all have an influence on land use change that goes beyond the area that is traditionally
and conservatively understood as their footprint, which is the land area visibly occupied by that
operation itself. These artisanal and commercial activities provide essential economic benefits and
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development pathways, but also have important social and environmental impacts that need to
be understood and planned [36,37]. These operations draw in worker populations, their families,
and at times an entire network and community of supporting providers of services, ranging from
general stores to prostitution [35,38,39]. The influence of large-scale commercial land uses, in the
same way as settlements and transportation routes, can reach far beyond their observable physical
boundaries [40–42].

While remote sensing cannot readily distinguish artisanal land uses like charcoal production or
artisanal logging from the forest clearing that is part of the shifting cultivation land cover mosaic,
large-scale commercial operations like plantations, mines and logging have a clear and unambiguous
footprint that is observable in both Landsat-scale and high resolution satellite imagery. In previous
research, [14] observed almost no large-scale commercial operations within the established rural
complex for the year 2000, positing that new, isolated clearings may be more likely associated with
extractive commercial land uses. In order to test this hypothesis, we set out to establish the proportion
of forest cover loss outside of the established rural complex. In the current study, we quantified the
co-location of remote-sensing-observable large-scale commercial land uses, roads and settlements.
In doing so, we built on previous work done on separating the established rural complex from rural
complex expansion (RCE) and isolated forest perforations (IFP) areas for the period 2000–2015 [13].

For the reasons above, forest cover loss and degradation need to be contextualized holistically
which requires expanding context beyond per-pixel observations to include land use of the surrounding
landscape. It is necessary to quantify the spatial and temporal characteristics of the successional
vegetation types that replace a patch of cleared forest [43] and to identify what other proximate
and underlying drivers influence land cover and land use change (LCLUC) [35]. Ultimately, the
expansion of the rural complex is particularly important to model and understand because of the
massive population growth predicted, reliance of this population on shifting cultivation, and estimates
of dwindling if not vanishing forest resources in the country by the end of the century [44].

2. Materials and Methods

2.1. Data

The Forest D’Afrique Central Evaluee par Teledetection (FACET) map [11] provided the necessary
data to map the baseline established rural complex for 2000. The growth of and separation of RCE and
IFP areas in subsequent epochs (2005, 2010, 2015) was mapped using forest cover loss observed in the
Global Forest Change (GFC) product [12]. Initially, a map was published using FACET only [13], which
only had forest loss observations to 2010. The map was subsequently recreated using the GFC product
as it became available, providing additional years of coverage at higher resolution. The GFC product
has annual forest cover loss observations from the year 2000 at a spatial resolution of 30 meters.

DigitalGlobe (DG) imagery obtained from Google Earth (GE) was used for photo-interpretation
of the sample points within the RCE and IFP (Figure 1). The National Geospatial Intelligence
Agency (NGA)’s very high resolution satellite imagery archive available through the NextView license
agreement [45] was also considered for filling in the sample points for which photo-interpretation
was not possible, due to the absence of data in GE, but ultimately declined. The NGA archive was
not used because it is predominantly composed of panchromatic imagery, which is sufficient for
photo-interpreting the land cover at each sample point centroid [14], yet is excessively time consuming
to interpret and not necessarily sufficient when photo-interpreting land cover within the broader
landscape-scale buffers.
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Figure 1. Examples of land cover visually interpretable in the imagery on Google Earth: (a) an area is 
being burned to clear vegetation residue and fertilize the soil, next to areas of active agriculture; (b) a 
patch of secondary forest that has been cleared. 

2.2. Sampling Design 

The RCE and IFP areas sampled are within the area of interest (AOI) published in [13], defining 
the humid tropical forest block of the DRC (Figure 2). Sample points were chosen by simple random 
sampling from a population of GFC forest cover loss pixels within the RCE and IFP areas, then 
converted to vector points. For each of the two areas, 500 sample points were initially selected, and 
sample points were photo-interpreted using high spatial resolution imagery (Figures 2 and 3). The 
list of sample points was randomly ordered and photo-interpreted in that random order. Finally, 
buffer areas around each sample point were also photo-interpreted to obtain a broader list of all the 
LCLU in proximity of the sample point, as explained below in Section 2.3. The methodology is 
outlined in Figure 4. Imagery was not available for photo-interpretation of all sample points, an issue 
revisited in the Discussion section. Our purpose was to describe the RCE and IFP holistically, and not 
to monitor individual LCLUC transitions at the pixel level. For example, a 2015 GFC forest cover loss 

Figure 1. Examples of land cover visually interpretable in the imagery on Google Earth: (a) an area is
being burned to clear vegetation residue and fertilize the soil, next to areas of active agriculture; (b) a
patch of secondary forest that has been cleared.

2.2. Sampling Design

The RCE and IFP areas sampled are within the area of interest (AOI) published in [13], defining
the humid tropical forest block of the DRC (Figure 2). Sample points were chosen by simple random
sampling from a population of GFC forest cover loss pixels within the RCE and IFP areas, then
converted to vector points. For each of the two areas, 500 sample points were initially selected, and
sample points were photo-interpreted using high spatial resolution imagery (Figures 2 and 3). The list
of sample points was randomly ordered and photo-interpreted in that random order. Finally, buffer
areas around each sample point were also photo-interpreted to obtain a broader list of all the LCLU
in proximity of the sample point, as explained below in Section 2.3. The methodology is outlined in
Figure 4. Imagery was not available for photo-interpretation of all sample points, an issue revisited in
the Discussion section. Our purpose was to describe the RCE and IFP holistically, and not to monitor
individual LCLUC transitions at the pixel level. For example, a 2015 GFC forest cover loss pixel used
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to select the area to sample could be photo-interpreted with imagery from 2014. For our purposes this
is acceptable as the collective sum of all the interpretations allows us to trade space for time and assert
the quantitative LCLU percentages of the RCE and IFP, for the 15-year period of the study.
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Figure 2. The DRC area is colored in black. The southernmost extension of the country is not visible.
The boundaries of the humid tropical forest (our AOI) are highlighted with a green line. Only the
area within this AOI was part of our analysis. The stratification at the country level is visible in (a),
(b) shows the simple random sample point distribution in the RCE and IFP, and (c) provides a detailed
picture of Kisangani that illustrates the sample distribution in the two mapped areas.
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Figure 3. The methods of the paper can be summarized in three steps: Step 1) builds upon the map
published by [13]. In [14], the area of each land cover and land use (LCLU) type within the established
rural complex for 2000 was estimated; * Step 1 pertains to new forest loss during 2000–2015 that
occurred outside of the established rural complex.
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Figure 4. (a) The separation of GFC forest cover loss pixels in three areas: (1) in the baseline “established
rural complex” for the year 2000 which was established and sampled in [13,14], (2) in the rural complex
expansion area (RCE), and (3) in isolated forest perforations (IFP). Buta (2◦49′01.93” N, 24◦45′56.12” E);
(b) a zoomed in map detail for illustration.

2.3. Image Interpretation Protocol

The legend for the photo-interpreted land cover and land use categories is shown in Table 1. It is
composed of an initial set of classes that were previously photo-interpreted in [14], plus an additional
set of classes that are only observable at the broader landscape scale investigated in this paper. Primary
and mature secondary forests are not easily distinguished from one another, and young and old
fallows are similarly difficult to distinguish from each other. For these classes, there is a continuum of
vegetation maturity and species composition that requires its observation only through high resolution
remote sensing but also benefits from ground truthing [14,25,46]. As we were not able to perform
ground truthing, we instead opted to group these classes together when necessary, in the results.

Table 1. The legend of land cover and land use classes that can be attributed to each sample point and
their buffers in photo-interpretation.

Class Code Class Name Description Potential
Confusion:

Observed at
What Scale?

1 No-data
No imagery available with sufficient resolution,
or obscuration of the point by clouds, shadows,
or bad data

None All

2, 3, 4 Water, rivers,
ponds Water, rivers, and ponds None All

5, 6, 7 Roads, paths,
settlements Major roads, paths, and settled areas None All

8 Clearing Forest or fallow field that has been recently
cleared None All

9 Active Agriculture Field where crops are currently grown Fallows 500 m<

10, 11 Young and old
Fallows

Field either recently left fallow or overgrown,
with vegetation ranging from grasses and
shrubs to large shrubs, young trees, and
bamboo

Active ag. 500 m<
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Table 1. Cont.

Class Code Class Name Description Potential
Confusion:

Observed at
What Scale?

12 Secondary Forest

Forest stand with over 60% tree cover of trees
≥5 m tall; canopy consists of small, relatively
uniform tree crowns, resulting in a bright
spectral response

Primary
forest All

13 Rural Complex
Land cover mosaic of roads, rivers, settlements,
clearings, and active agriculture, secondary
and primary forest patches.

Grasslands >100 m

14 Primary forest

Forest stand with over 60% tree cover of trees
≥5 m tall; canopy consists of highly varying
crown size and vertical distribution, resulting
in greater canopy shadowing and a dark
spectral response

Sec. forest All

15, 16, 17
Wetland, gallery
and woodland
forests

Wetland forest: a stand with over 60% tree
cover of trees ≥5 m tall proximate to water
bodies & associated floodplains; Gallery forest:
were once wetland forest, and remain
unaltered as they are wet and low-lying,
usually surrounded by derived
savanna/grassland or rural complex landscapes.
Woodland forest: is sparser, at the edges of the
humid tropical forest, interfacing savannas

Primary and
sec. forest All

18 Grassland Natural and derived grassland/savanna areas Active ag.
and fallows All

19 Croplands

Agriculture that is semi-permanent, with a
larger field area and more regular boundaries.
They are not usually found in the rural
complex mosaic.

Active ag. All

20 Commercial
Agriculture

Plantation land use associated with crops such
as palm oil None All

21 Mines

Clearings and operations that have the
appearance of mines: terraces, pits, and ponds
clustered together with sometimes worker
camps nearby

Clearings All

22 Logging Logging concessions, roads, skid trails. Clearings All

23 Other
Other features that are rare and do not fit in
any other class, like natural landslide area,
Inselbergs, etc.

n/a All

The classes that require contextual, broader photo-interpretation in order to be distinguished
include: gallery forests, commercial agriculture and logging concessions. A land cover category was
assigned to each sample point, and the presence and spatial dominance of additional adjacent land
cover types was assigned to each of four concentric circular buffer areas radiating around each sample
point and comprising the following distances from the center point: 1st buffer: 1 m–100 m, 2nd buffer:
101 m–500 m, 3rd buffer: 501 m–1000 m and 4th buffer: 1001 m–5,000 m (Figure 5).
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land cover class was observed throughout all the other buffer areas, then the photo interpreter 
recorded only the presence of these three unique land cover classes. The photo-interpreter in this case 
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primary forest, Slots 4–21: primary forest Conversely, in those cases where there were more than five 
unique land cover types observed within the buffers, the interpreter recorded only the five most 
spatially dominant classes by visually separating each circular buffer into four quadrants, and 
interpreting the size (dominance) of each land cover type detected (Figure 5). 

Figure 5. (a,b) (oblique view) Example of the photo-interpretation of a sample point and its buffers:
In this example (point 1055), the imagery is from 2014, the centroid is marked as “young fallow” and
the first slot of the interpreted land cover in each buffer shows the dominance of young fallow in the
100 m buffer and primary forest in the 500 m, 1 km, and 5 km buffer. The presence of other land cover
types is noted in order of their spatial dominance, or presence, in the buffer. (Located at 4◦29′15.23” S,
23◦39′28.05” E).

For each of the four buffer areas, the photo-interpreter recorded the first five most dominant land
cover types within the buffer, yielding a matrix of up to 21 photo-interpreted land-cover observations
for each sample point and its associated buffered areas (i.e., One land-cover class for the sample point
centroid, and up to 20 classes in the four circular buffer areas). However, not all sample points had
unique results for all 20 available slots for photo-interpretation in their buffers. For example, if a
clearing (Figures 5 and 6) was the interpreted class at the sample point centroid, and a settlement was
observed in the 100 m buffer area, surrounded by only primary forest, meaning no other land cover
class was observed throughout all the other buffer areas, then the photo interpreter recorded only
the presence of these three unique land cover classes. The photo-interpreter in this case would enter
the following information for the sample point: Slot 1: clearing, Slot 2: settlement, Slot 3: primary
forest, Slots 4–21: primary forest Conversely, in those cases where there were more than five unique
land cover types observed within the buffers, the interpreter recorded only the five most spatially
dominant classes by visually separating each circular buffer into four quadrants, and interpreting the
size (dominance) of each land cover type detected (Figure 5).
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such as: clearings, active and fallow fields, and secondary forest (3°4′52.34″ N, 20°38′17.95″ E). 
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types associated with the rural complex were detected within the buffer (i.e., clearings, active and 
fallow fields, and secondary and primary forest). Because of the minimum patch size of all these 
individual typologies of land cover, it was rare for them to all be present within the smallest buffer 
of 100 m, whereas this land cover mosaic was frequently found in all other buffer sizes. The presence 
of some land uses such as larger commercial land uses, roads, settlements and well established rural 
complex mosaics was easy to identify in the available multi-spectral imagery, even when photo-
interpreting at smaller scales (Figure 7).  

 

Figure 7. (a,b) illustrate the goal of contextualizing forest cover loss within its broader land cover and 
land use landscape. In (a) a large trunk road and settled area is within 5 km of the sample point. In 
(b) a large gold mine is within 5 km of the sample (Sample point 1036 located at 3°4′52.34″ N, 
20°38′17.95″ E; sample point 249 located at 4°20′4.63″ N, 23°42′6.38″ E). 

Figure 6. Sample 1036: The photo-interpretation of this point is labeled as “clearing”, although
visualizing the 100 m radius circular buffer area aids the interpretation by adding context to the sample
point. In this instance a number of shifting cultivation mosaic land cover types are observed, such as:
clearings, active and fallow fields, and secondary forest (3◦4′52.34” N, 20◦38′17.95” E).

The class “rural complex” was used from the 100 m buffer outwards, when all the land cover types
associated with the rural complex were detected within the buffer (i.e., clearings, active and fallow
fields, and secondary and primary forest). Because of the minimum patch size of all these individual
typologies of land cover, it was rare for them to all be present within the smallest buffer of 100 m,
whereas this land cover mosaic was frequently found in all other buffer sizes. The presence of some
land uses such as larger commercial land uses, roads, settlements and well established rural complex
mosaics was easy to identify in the available multi-spectral imagery, even when photo-interpreting at
smaller scales (Figure 7).
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2.4. Estimating Proportion of Area

The results of the photo-interpretation were used to estimate the proportion of each land cover
class within each of the RCE and IFP areas, and the proportion of area of large-scale commercial land
uses such as plantations, logging, and mining co-located within 100 m, 500 m, 1 km, and 5 km buffers
of the sample points. The estimated proportions were converted into estimates of the area of each
land cover class, and the standard error of each estimated land cover class was also computed. The
formulas are below.

The estimated proportion of area of land cover class i is:

pi =
ni
n

(1)

where ni = number of sample points identified as class i and n = the sample size. The estimated area of
class i was provided by the following equation:

Ai = Atot × pi (2)

where for RCE Atot = 46,779 km2 (the total area of the RCE in the AOI in 2015) and for IFP
Atot = 25,428 km2 (the total area of the IFP in the AOI in 2015). Both the estimator of the proportion of
area (pi) and the estimator of the area (Ai) of each class are unbiased estimators ([47], Chapter 3). The
formula for estimating the variance of the estimated proportion was the following:

V(pi) =
pi(1− pi)

n− 1
(3)

The standard error formula for the estimated proportion of area of class i was:

SE(pi) =
√

V(pi) (4)

The standard error for the estimated area of land cover class i is:

SE(Ai) = Atot ×

√
V(pi) (5)

The standard errors quantify the uncertainty or precision of the sample-based estimates. Clearly
the standard error decreases as a function of the square root of the sample size n (e.g., a four-fold
increase in sample size will halve the standard error) and the standard error also depends on pi.

3. Results

The total RCE area in 2015 was 46,779 km2 and the total area of IFP was 25,428 km2. These
areas are composed of GFC-mapped forest cover loss areas in the period 2000–2015, together with
“edge” primary and secondary forest and non-forest (Table 2) [13]. The area of GFC mapped forest
cover loss for the 2000–2015 period within the RCE and IFP was 7338 km2 and 1137 km2 (16% and
3% of all GFC loss for the period), respectively, and occurred predominantly as primary forest loss.
For reference, between 2000 and 2015, 36,905 km2 of GFC-mapped forest loss occurred within the
established rural complex. The forest cover loss in the baseline area of established rural complex for
2000 was predominantly composed of secondary forest loss (81% of all GFC loss for the period).
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Table 2. Estimated area percent area of land cover classes in the RCE and IFP.

RCE IFP RCE-IFP

SE Area SE SE Area SE SE

Class (i) Class Code Count % Area % Area (km2) (km2) Count % Area % Area (km2) (km2) % Area % Area

Primary For. 14 93 33.9 2.86 15,878 1338 91 41.4 3.32 10,518 844 −7.5 4.38

Sec. Forest 12 78 28.5 2.73 13,317 1275 48 21.8 2.78 5548 708 6.7 3.90

Old Fallow 11 37 13.5 2.06 6317 966 21 9.5 1.98 2427 504 4 2.86

Clearing 8 24 8.8 1.71 4097 799 20 9.1 1.94 2312 493 −0.3 2.59

Active Ag. 9 21 7.7 1.61 3585 752 10 4.5 1.40 1156 357 3.2 2.13

Young Fallow 10 16 5.8 1.42 2732 663 13 5.9 1.59 1503 404 −0.1 2.13

Grassland 18 3 1.1 0.63 512 294 3 1.4 0.78 347 199 −0.3 1.00

Road &Settled 5, 6, 7 1 0.4 0.36 171 170 4 1.8 0.90 462 229 −1.4 0.97

Commercial Ag. 20 1 0.4 0.36 171 170 - - 0.00 0 0 0.4 0.36

Wetland For. 15 - - 0.00 - 0 8 3.6 1.26 925 321 −3.6 1.26

Woodland For. 17 - - 0.00 - 0 1 0.5 0.45 116 115 −0.5 0.45

Logging 22 - - 0.00 - 0 1 0.5 0.45 116 115 −0.5 0.45

Grand Total 274 100% 46,779 170 220 100% 25,428
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The estimated percentages of the constituent land cover and land use components of the RCE
and the IFP areas for 2000–2015 are shown in Table 2. The dominant land cover in the RCE is primary
forest (34%), followed by secondary forest (29%), old fallows (14%), and clearings (9%). In the IFP,
the dominant land cover is primary forest (41%), followed by secondary forest (22%), old fallows
(10%), and clearings (9%). In the RCE, compared to the IFP, there is less primary forest (−7.5%), more
secondary forest (+6.7%), more old fallows (+4%), and slightly less clearings (−0.3%) (see Table 2). The
total percentage of shifting cultivation related land cover components (i.e., secondary forest, fallows,
clearing, and active agriculture) in the RCE is 64% and in the IFP it is 51%. If we add the percentages of
primary forest, respectively, in the RCE and IFP, the percentage of available land for future shifting
cultivation is theoretically 98% in the RCE and 92% in the IFP. Clearings account for 9% of both the
RCE and IFP.

With the above quantified percentages, and assuming the 9% clearing rate from 2000–2015 to be
indicative of a theoretical annual clearing rate, every plot of available land in the RCE would take
approximately 11 years to be cleared once (98%/9%) and 10 years in the IFP (93%/9%). Comparatively,
in the established rural complex, the percentage of land used in the shifting cultivation cycle was
found to be 76% and 11% was primary forest, meaning that 87% of the established rural complex was
estimated to be available for future shifting cultivation [14]. With the derived annual clearing rate of
4.6% in the established rural complex, the theoretical reuse rate for all land to be cycled through the
shifting cultivation cycle once, was found to be ~18 years [14]. The reason why an almost double forest
clearing rate was found in the established rural complex compared to RCE and IFP is that the sample
population for the RCE and IFP was comprised of only GFC forest cover loss pixels, whereas in the
established rural complex it contained both GFC forest cover loss and also primary and secondary
forest mapped in 2000.

However, even if we assume a lower clearing rate equal to the one found in the established rural
complex (4.6%), then the reuse period of land in the RCE would be 21 years and 20 years in the IFP,
compared to 18 years in the established rural complex. This means that despite percentages of primary
forest as high as 41% in the IFP, and with the lowest average clearing rate observed [14], the temporal
reuse period of land would still not be long enough for all fallows to reach “primary forest-like”
maturity [46,48,49]. For fallows to transition to secondary forest and then eventually primary forest,
several decades of growth are necessary in which both stand structure and species composition change.
In the DRC, field observations estimate that this period begins after around 30 years from disturbance
and a secondary forest stand may become indistinguishable from a primary one at around 50 years
and beyond [46,48,49]. In sum, if all land in the RCE and IFP was available for shifting cultivation and
considering clearing rates to be somewhere between 4.6% and 9%, then it would take between 11 and
21years for all available land to be cleared once.

The results of the LCLU proportions within the buffers of the sample points are similar in
composition (Table 3). When considering their most proximate surroundings, as expected, the land
cover adjacent to the IFPs is more pristine with fewer signs of anthropogenic activity. In the 100 m buffer
of the IFPs, compared to that of the RCE area, active agriculture is more dominant and surrounded by
a less established (younger) shifting cultivation mosaic (less clearings, active agriculture, fallows and
secondary forest). In this area, we also find more settlements, logging, wetland forest, and woodlands
than in the same 100 m buffer of the RCE. However, the estimated proportions for many of these rarer
LCLU classes are within the uncertainty bounds defined by the standard errors (Table 3). In the entire
5 km of buffered area of the IFP, compared to that of the RCE, there is more primary forest throughout
and there is less rural complex mosaic, including roads and settlements, more grassland, and more
wetland forest. The inverse relationship between proximity to the rural complex and forest intactness
is what would be expected and validates our stratification map [14] (Table 3).
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Table 3. Percent land cover estimates for the sample points, compared to dominant land cover within the concentric circular buffer areas around them.

Class Code RCE IFP

Point 100 m 500 m 1 km 5 km Point 100 m 500 m 1 km 5 km

All primary forest types 14, 15, 16, 17 33.9 45.1 70.9 78.5 73.8 45.5 54.1 87.3 87.7 87.7

Secondary forest 12 28.5 20.4 5.5 1.1 - 21.8 15.0 0.5 0.5 0.5

Old fallows 11 13.5 10.2 0.7 - - 9.5 7.7 - - -

Clearings 8 8.8 8.7 2.2 - - 9.1 7.3 0.5 0.5 -

Active fields 9 7.7 3.6 - - - 4.5 2.7 0.5 0.5 -

Young fallows 10 5.8 3.6 - - - 5.9 3.6 - - -

Grasslands, Savannas, and cropland 18, 19 1.1 0.4 0.4 0.4 0.4 1.4 1.4 3.2 2.7 2.7

Roads, paths, and settlements 5, 6, 7 0.4 0.4 1.1 0.4 - 1.8 2.3 0.5 - 0.5

Rural complex (all elements of the RC mosaic) 13 - 7.3 18.2 18.9 23.6 - 5.5 6.4 6.4 6.4

Commercial ag. 20 0.4 0.2 1.4 1.8 2.4 0.4 0.2 0.4 0.6

Mines 21 0.0 0.0 1.4 2.6 0.0 0.6 1.0 1.8

Logging 22 0.0 0.2 0.0 1.0 0.5 0.6 0.6 0.6 1.4

Total of Commercial land uses 20, 21, 22 0.4 0.2 1.6 3.2 6.1 0.5 1.0 1.4 2.0 3.8

Other 23 - - - - 0.4 - - - -

Total
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The estimated percent of area in the RCE with commercial land uses within 5 km is 11.5% whereas
in the IFP it is 8.8% (Table 3). Many sample points that occurred in primary forest areas were proximate
to large anthropogenic disturbances such as areas of the rural complex, plantations, mining, and
logging (Figures 8–10). When mining was detected, it was within rural complex landscapes (Figure 11).
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4. Data Issues

GE imagery was more frequently available in higher radiometric quality and spatial and temporal
resolution in areas close to larger settlements and trunk roads. In more isolated areas, imagery was
often Landsat-resolution only (30 m), sometimes either extremely bright or dark with cloud and haze
cover. The percentage of sample points with no data in the rural complex area was 45%, whereas in
isolated forest perforations no data occurred for 56% of the sample points. However, if we consider
only the sample points within a 15 km area radiating from the established rural complex, then the no
data percentage of the sample becomes 49%. In other words, the no data percentage of the sample is
above 49% only for the most remote and isolated areas (Figure 12). As illustrated in Figure 13, the
sample points for which imagery is not available are not geographically clustered and appear to be
missing at random, therefore providing us some assurance that the absence of data is not associated
with any feature we are investigating, such as land cover types. Furthermore, the imagery available
in the RCE was also more recent, as 58% of it was taken since 2015, versus only 45% in the IFP. This
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indicates that GE has more recent imagery closer to settlements. Practitioners should recognize and
consider these caveats in sample-based studies that use the GE platform to photo-interpret land cover.
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High resolution satellite imagery acquisitions are needed to accurately interpret land cover. Planet
labs’ aspirations to acquire and provide such imagery [50,51], as well as datasets from DigitalGlobe [45]
could prove to be useful for the photo-interpretation of land cover over large areas [52]. However,
the benefit of acquiring and processing commercial high-resolution imagery must be substantial
to overcome the limitations of coarser resolution free imagery such as Landsat. This is especially
relevant in large-scale country and regional studies. Novel cloud-based solutions for accessing high
resolution imagery include DigitalGlobe’s EV-WHS, which operates under the auspices of the NextView
license agreement to make imagery available to U.S. government-affiliated researchers through the
NGA. However, this platform does not facilitate efficient use for photo-interpretation of hundreds of
sample points in the cloud, as it is oriented instead towards a standard manual “select and download”
paradigm. Other platforms like DigitalGlobe’s GBDX might fulfill these requirements, but it is only
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available at a cost. Conversely, nascent initiatives such as Radiant Earth Foundation’s earth observation
platform will provide free imagery, but the efficiency for photo-interpretation and adequacy of the
available image archive have to be tested [53]. The efficiency of the photo-interpretation protocol could
also be improved by using specific and custom tools, like Collect Earth, in cases where more than one
photo-interpreter is used [54].

5. Discussion

Currently shifting cultivation remains the primary proximate driver of deforestation in the DRC.
The directly-observed impacts of commercial land uses, interpreted from satellite remote sensing, are
dwarfed by the reliance of the population on shifting cultivation and associated gathering of NTFP for
food, building materials and energy needs, both within the rural complex mosaic and outside of it in
more pristine primary forest. These results echo what was recently found by [44].

Photo-interpretation of hundreds of images reinforces our belief that in the DRC’s tropical humid
forest block some land uses with small spatial footprints are not directly observable, even in the
highest resolution satellite imagery, (e.g., the harvesting of fuelwood, hunting, gathering, and charcoal
production). Counterintuitively, we found that the LCLUs with large spatial extents, such as commercial
plantations, mining and selective logging also have spatial footprints whose direct observation from
remote sensing is not straightforward. While at first these large commercial land uses seem to have
clear cut boundaries, they instead have often a heterogenous and fragmented boundary and contain
within their footprint a mix of small-holder land uses that are associated with shifting cultivation.

While only 0.4%–0.5% of the area of RCE and IFP is strictly co-located with commercial land uses
like mining, logging, or plantations, an estimated 8.9%–11.7% of the RCE and IFP area has large-scale
commercial land uses within 5 km or closer. These results therefore support the conclusion that
commercial land uses, such as logging, mining and plantations, might influence forest cover loss in
a proportion that could be much larger than what is directly observable in strictly per-pixel sample
point photo-interpretation.

The hypothesis that commercial land uses in the DRC have a larger proportion of influence on
forest cover loss than what is directly observable in per-pixel satellite remote sensing is supported by
several studies. For example, [38] observed how mining operations provide livelihoods for miners
but also for their families and entire support communities that are present because livelihoods are
possible within a context of extreme poverty. These services include transport, catering, and leisure,
so much so that in some cases the internal economy is dependent on the mined minerals for business
transactions, with gold being used also to pay a tax to the village chief [38]. Obviously, the food, energy,
and building materials needed for these worker populations comes from shifting cultivation and NTFP.
In another study it was found that each household managed 1–3 active fields along with 5–10 plots
that are at different phases of fallow, for about 5–10 ha of land in total [23]. [38] also found that often,
new rural complex areas are formed when transportation routes are established to reach areas where
natural resources are extracted, such as in the north-east of Kisangani, where the informal (smuggling)
of mined minerals has been cited as the main driver for rural complex expansion [38].

Results validate our map of the rural complex, the RCE and the IFP. Indeed, throughout the
sample buffer area and up to 5 km around it, the IFP has more primary forest and less rural complex
areas, including roads and larger settlements. The RCE has a larger proportion of area of LCLU classes
associated with longer-term shifting cultivation agricultural landscapes, such as active agriculture,
fallows and secondary forest. The RCE also has more commercial plantations. In contrast, the IFP has
a greater proportion of area of primary forest, more individual settlements (bush camps and other
outposts), and more logging areas.

Agriculture intensification is often proposed in the DRC to be a ‘land sparing’ alternative to
shifting cultivation, but the academic debate regarding this continues [21,55]. Some aid organizations
active in the DRC believe that supporting small farmers might help reduce the risk of larger scale
deforestation carried out by loggers, large-scale plantations, and other investors. This results in aid
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projects proposing alternatives to development. But while some farmers appreciate alternatives offered,
others are less optimistic, especially women, who expressed concerns in a series of interviews for
a USAID project that many alternatives require more labor, which they are unable or unwilling to
provide [23].

REDD+ aims to curb deforestation and habitat reduction, while at the same time providing a source
of income for communities, monetizing and therefore, it is thought, protecting the common community
forests. Yet, national REDD+ policies rarely include the complexity of shifting cultivation within rural
complex LCLU mosaics, instead adopting a simple land-sparing hypothesis [56]. REDD+ has been
criticized for being another type of “land grabbing” [57], sometimes referred to as “green-grabbing”:
a land acquisition and transaction that works within inherently corrupt socio-political systems where
the rule of law is not adequately entrenched to guarantee that the monetary and power transactions
between private and public groups occur transparently and fairly [58]. Some authors have asked
whether REDD+ projects in the DRC are merely a distraction from the goal of avoiding future large-scale
industrial plantations and logging for world markets, such as palm oil [59]. The most accurate LCLU
estimates are needed in order to incorporate REDD+ in effective and fair land use planning.

Future research should examine the density of the rural complex and its comparative size relative
to the settlements it surrounds, as this characteristic can be an indicator of degradation of the rural
complex area and an indicator of food security. Households that are closer together participate
in inter-household cooperation and are able to improve food and nutrition security, whereas more
isolated households (households with high pressure on productive individuals) are at risk for food
insecurity and malnutrition [60]. Populations in the cities attract resources produced in rural areas
and transported to these larger markets by road and river. A study found that 75%–95% of bushmeat
harvested in rural areas is commonly consumed by hunters and neighbors, whereas 80% of bushmeat
hunted within 10 km of urban areas is sold to markets [61].

On top of these concerns, the effects of conflict on land degradation have been shown to persist
well after conflict [34,35]. Local research suggests conflict leads to militia rule, higher levels of charcoal
production for refugee camps, and illegal logging and mining [62]. In the DRC, an estimated more
than 200 people have died protecting natural parks [62,63]. Yet, conflict itself also counteracts on
impacts on deforestation, for example making forests less viable for large-scale commercial operations
by creating serious safety concerns and logistical barriers. Land-sparing therefore does not work alone
in situations where feeble rule of law, large population growth, and displacement and conflict all make
people compete for land and erode remote forest areas.

6. Conclusions

Between 2000 and 2015, the total percentage of shifting cultivation land cover components
(secondary forest, fallows, clearing, and active agriculture) in the RCE was 64% and in the IFP 51%.
If the proportion of primary forest area is added to the existing shifting cultivation, then the proportion
of available land for future shifting cultivation is theoretically 98% in the RCE and 92% in the IFP.
Clearings account for 9% of both the RCE and IFP. During the study period, 81% of GFC-observed
forest cover loss occurred in the established rural complex, 16% in the RCE, and 3% in IFP. Commercial
land uses occupied a very small proportion of the RCE (0.4%) and of the IFP (0.5%). The combined
percentage of area (0.9%) of large-scale commercial land uses in these areas of new primary forest cover
loss is therefore even lower than the 2.2% found in the baseline established rural complex for 2000 [14].

However, we caution that this result does not mean that there is considerably lower commercial
land use further away from the established rural complex. Instead, we suggest that these land uses are
dwarfed by the reliance of DRC’s population on shifting cultivation and the lack of infrastructure that
allows core forest areas to remain impractical or impossible to exploit for natural resources. A more
accurate accounting of the role of commercial land uses is obtained from a landscape-scale investigation,
in which we found that there were commercial land uses within 5 km of the forest cover loss areas in
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11.5% of the RCE and 8.8% of the IFP, a much larger percentage than the 0.4%–0.5% observed if only
taking into consideration the sample point centroids.

If for example, the process in this study were to be repeated subsequently at decadal intervals, the
results would inform the decadal change of LCLU composition of the studied areas. The resulting
trends would inform land use planning quantitatively, yet also contextualizing forest cover loss at the
broader landscape scale.

Multi-scale studies of deforestation, like the one presented here, are seldom performed because it
is difficult to obtain consistent datasets, particularly at local scales [42]. “Results reveal that given lack
of cross scale studies, policy makers are lacking context specific relevant information at local scales needed to
design efficient effective and equitable policies” [42]. To effectively intervene in LCLUC trajectories, a mere
description of patterns and identification of causal effects does not suffice [42]. Therefore, the only
way to correctly internalize the economic, social, and environmental effects of large-scale commercial
operations such as logging, plantations and mining, is to contextualize these activities within their
landscapes, and to attempt to include the forest cover loss and degradation that they cause and enable,
into their footprints.
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