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Abstract: Climate and land use/cover changes are potential drivers of change in hydrology and water
use. Incidences of these factors on Bandama hydrological basin and Kossou hydropower generation
(1981–2016) in West Africa are assessed in this present work. Using Landsat products of United Stated
Geological Survey, results show that water bodies areas and land use have increased by 1.89%/year
and 11.56%/year respectively, whereas herbaceous savanna, savanna, forest and evergreen forest
coverage have been reduced by 1.39%/year, 0.02%/year, 2.39%/year and 3.33%/year respectively from
1988 to 2016. Hydroclimatic analysis reveals that streamflow presents greater change in magnitude
compared to rainfall though both increasing trends are not statistically significant at annual scale.
Streamflow varies at least four (two) times greatly than the rainfall (monthly and seasonally) annually
except during driest months probably due to land use/cover change. In contrast, Kossou hydropower
generation is significantly decreasing (p-value 0.007) at both monthly and annual scales possibly
due to water abstraction at upstream. Further works are required to elucidate the combined effects
of land use/cover and climate changes on hydrological system as well as water abstraction on
Kossou generation.

Keywords: Rainfall; streamflow; land use; land cover change; hydropower; hydropower generation

1. Introduction

Increasing share of renewable energy has received considerable attention in recent years due to
Paris Agreement. The ambition is to decrease greenhouse gas concentration in the atmosphere attributed
to anthropogenic activities such as energy production from fossil fuels and deforestation or conversion
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of vegetative areas to agricultural lands [1]. In the tropics and subtropics, deforestation is attributed to
large-scale commercial agriculture, subsistence agriculture, infrastructural development, urban expansion
and mining [2]. In Africa and according to the Food and Agriculture Organization (FAO), fuelwood
charcoal, timber logging, livestock grazing in forest and uncontrolled fires are the main contributors
of forest degradation [2]. Within a decade (2000–2010) in Africa, 8000 km2, 7000 km2, 2500 km2,
2000 km2 and 500 km2 of forest were converted every year to commercial agriculture, local agriculture,
infrastructure, mining and urban expansion, respectively [2]. Such trends in land cover change highlight
the growing pressure on African forest and natural lands. Land use and land cover changes play a role in
the change of regional patterns of temperatures, precipitation and vegetation [3,4]. Change in land cover
can reduce the amount of carbon sequestrated and can increase the greenhouse emissions; consequently,
they can influence the dynamics of local [5] and global [6] climate and hydrological systems [4].

Climate and land cover changes are already affecting the hydrological cycle in West African
countries [5,6]. Human-induced greenhouse gas emissions have contributed to the observed intensification
of heavy precipitation events [7]. A linear correlation has been found between the normalized difference
vegetation index and the precipitation in the Sudanian savanna region [8]. In the Côte d’Ivoire, it has
been proved that there is a strong correlation between the changes in vegetation cover and the decrease in
rainfall [9], which subsequently impacts hydrological cycles.

Land use and climate are two main factors directly influencing the catchment hydrology [6]
and understanding their respective effects is of great importance for land use planning and water
resources management [10]. It has been shown that climate change and land development have more
impact on changing the seasonal distributions of the streamflow than on altering average annual
amounts of the streamflow [11]. For instance, storm runoff extremes increase in most regions at rates
higher than suggested by Clausius-Clapeyron scaling, which are systematically close to or exceed
those of precipitation extremes over most regions of the globe, accompanied by large spatial and
decadal variability due to land anthropogenic change [12]. The changes in land cover/use and/or
degradation of the watershed that involved destruction of natural vegetative covers, expansion of
croplands, overgrazing and increased area under anthropogenic plantations have resulted partly to
an adverse change in observed streamflow [13]. In Sahelian areas, runoff coefficient generally increased
along with river discharges induced by decrease in vegetation cover [14]. In Ethiopia, simulation
results for the Tekeze dam watershed indicates that increasing bare land and agricultural areas resulted
in increased annual and seasonal streamflow and sediment yield in volumes [15]. The hydrological
response is more sensitive to land use/cover dynamics [16,17] mainly for the wettest month of the
year [18]. Apart from the hydrological responses to land use/cover change, this phenomenon has its
implication on water quality through sediment yield [11,16].

The scientific community identified more than a decade ago the importance of land use change
on hydrology [19]. Nonetheless, the African continent has lack of sufficient observational data to
draw robust conclusions about trends in annual precipitation [20] and its relationship with streamflow
and land use/cover changes. Despite this, many studies have been carried out on climate variability
across West Africa [21,22]. These studies have shown that a drought trend emerged at the end of the
1960s [23,24] and a return to wet conditions between 1980s and 1990s over West Africa. In Côte d’Ivoire,
the results of studies on climatic fluctuations showed a decrease in both surface and underground
water resources due to a decrease in rainfall [25,26]. Most studies in West Africa have focused on the
impact of climate variability on water resources and agriculture but those focusing on hydropower
generation are rare. Hydropower generation relies on available water resources that depends on both
climate conditions and land use practices within basin. Currently, West Africa energy sector depends
largely on hydroelectric power, which is influenced by climate. Despite the fact that some hydropower
plants in the region have failed to deliver the demand due to some extremes climate events (drought
and flooding) [27], the dependence of the energy sector on climate is likely to increase due to the current
deployment of renewable energy projects, including building of hydropower infrastructures [28].
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The aim of this study is two-fold: (i) to assess the trends in rainfall and streamflow in the Bandama
basin and their potential impacts on the hydropower generation of Kossou dam; and (ii) to determine
the changes in land use and land cover in the basin and their incidences on the hydrological system.

2. Study Area

The Bandama basin is located in the Côte d’Ivoire (West Africa). Its catchment area roughly equals
97,000 Km2 and its length 1050 Km. Its climate relies in West Africa climate system which is controlled
by the movement of the Inter Tropical Convergence Zone (ITCZ) and influenced by the Monsoon and
Harmattan [29]. Harmattan is a very dry, dusty easterly or north-easterly wind on the West African
coast, occurring from December to February. When this wind meets the south-westerly humid wind
from the Atlantic Ocean (monsoon) it forms the ITCZ which determines the rainy zone.

Bandama basin’s hydroclimatic characteristics vary progressively along the latitude (north to
southward) [30]. The mean annual rainfall ranges from 1300 to 1000 mm (north to southward) with
an average temperature of 26 ◦C. Variation of temperature within a day can be significant during the
hot season with for instance daily maximum being higher than 40 ◦C while temperature at night can fall
below 15 ◦C. Bandama basin’s precipitation is subdivided into three regimes/climates. The first regime
is the northern part of the basin located in Sahelian zone with a dry season from November to April and
a rainy season from May to October. The second and third regime for the center (sudano-sahelain zone)
and southern (Guinean zone) parts of the basin respectively are characterized by four seasons (a long
dry season from December to February, a great rainy season from March to June, a short dry season
from July to August and the second rainy season from September to November). The second and third
regimes are differentiated from their rainfall amount and the start rainy season which is controlled by
the migration of ITCZ. Kossou dam is located in between the second and third precipitation regime.

Bandama basin vegetation is composed of three main types namely clear forest and easily
penetrable (called forest for next used); inaccessible gallery forest (evergreen forest for the next
used) and woody savanna associated with cocoa and coffee plantation (savanna and herbaceous
savanna for the next used) [30]. The Sahelian zone (north) and sudano-sahelian are mainly dominated
by savanna and forest respectively while the Guinean zone is made of more evergreen forest [31].
However, the Bandama soil is made of hydromorphic soil, eutrophic ferruginous brown tropical soil
and granite [30].

The population living in this basin is mainly rural and has rain fed agriculture as their main
activity [30]. The agriculture practice in the basin leads to major deforestation responsible for soil
erosion. Within the last decade, water consumption in the basin has increased due to activities such as
mining and irrigation. In Bandama basin are located two of the four largest hydropower plants of
Côte d’Ivoire (namely Kossou and Taabo). This study focuses on Kossou hydropower plant third
largest Côte d’Ivoire hydropower plant located between 6◦58 N–8◦06 N and 5◦18 W–5◦50 W and
the study domain covers an area of 58,700 km2 of Bandama basin with outlet at Taabo hydrological
station (Figure 1). Kossou hydropower plant has been initially built for power generation only [32].
Kossou hydropower was established in 1971 with a storage capacity of 27,675 million cubic meter and
an installed capacity of 174 Mega Watt (MW) [33].
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National Hydrological Services. However, monthly rainfall data (1981–2014) for the whole Bandama 
basin was extracted from the Global Precipitation Climatology Project (GPCP) data [34]. The GPCP 
products are merged data from rain gauge stations, satellites, and sounding observations to estimate 
monthly rainfall on a 2.5-degree global grid from 1979 to the present [35]. GPCP was used in some 
previous works in the region [36,37]. The GPCP data was compared with basin mean observed 
(computed from 10 meteorological stations using Kriging method; see Figure 1) rainfall for the period 
1981–2005. We noted that they are strongly correlated (with correlation coefficient =0.8) with the same 
trend (Figure 2). The main difference is that GPCP data overestimates the rainfall over the basin in 
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The inter-annual variability of GPCP rainfall over Bandama basin and streamflow at Kossou 
station was investigated (1981–2014) using non-parametric Mann-Kendall test with significance level 
of 95% [39]. Some basic statistical analysis (standard deviation, mean and coefficient of variation) was 
performed to assess the link between streamflow and rainfall variability and land cover/use dynamic 
at annually, monthly and seasonally time scale for the 1981–2014 period. 

Figure 1. Location of Bandama basin.

3. Data and Methods

3.1. Hydroclimatic and Energy Production Data Sources and Analysis

The hydropower generation of the Kossou hydropower plant (1981–2014) was obtained from
the Ivorian Electricity Company. Observed rainfall (rain gauges data for the 1981–2005 period) and
streamflow data (1981–2014) were obtained from the Meteorological National Agency and from the
National Hydrological Services. However, monthly rainfall data (1981–2014) for the whole Bandama
basin was extracted from the Global Precipitation Climatology Project (GPCP) data [34]. The GPCP
products are merged data from rain gauge stations, satellites, and sounding observations to estimate
monthly rainfall on a 2.5-degree global grid from 1979 to the present [35]. GPCP was used in some
previous works in the region [36,37]. The GPCP data was compared with basin mean observed
(computed from 10 meteorological stations using Kriging method; see Figure 1) rainfall for the period
1981–2005. We noted that they are strongly correlated (with correlation coefficient = 0.8) with the same
trend (Figure 2). The main difference is that GPCP data overestimates the rainfall over the basin in the
range of 14.5 mm/year and this difference is not significant at monthly time scale. Similar bias in GPCP
dataset has been shown in central part of Africa [38].

The inter-annual variability of GPCP rainfall over Bandama basin and streamflow at Kossou
station was investigated (1981–2014) using non-parametric Mann-Kendall test with significance level
of 95% [39]. Some basic statistical analysis (standard deviation, mean and coefficient of variation) was
performed to assess the link between streamflow and rainfall variability and land cover/use dynamic
at annually, monthly and seasonally time scale for the 1981–2014 period.
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Figure 2. Comparison of observed rainfall (rain gauges) and GPCP precipitation over Bandama basin
for the 1981–2014 period.

3.2. Land Use and Land Cover Data Assessment

To assess the trends in land use and land cover changes, Landsat data from United State Geological
Surveys was used: The Landsat Thematic Mapper (TM), the Enhanced Thematic Mapper (ETM) and
the Operational Land Imager (OLI) were analyzed for 1988, 2002 and 2016 respectively. All these data
were extracted for the driest and cloudless months January and February in order to enhance the
Landsat data quality. The Landsat data level 2 has been ordered for atmospheric correction. Bands
of the same resolution were composited for land cover classification [40]: the bands 7, 4, and 2 were
merged for TM products, and the bands 5, 4, 3, 2 and 1 were combined for ETM products while the
bands 7, 5, 4,3,2 and 1 were used for OLI products to get the true value (natural color). The analyses
on land use and land cover changes in this study are done with the maximum likelihood pixel-based
classification method, which is the most commonly used method for Landsat images [41].

The land cover of the basin has been categorized in six clusters namely water bodies, land use
(built-up area and agricultural land), herbaceous savanna, savanna, forest and evergreen forest. Here,
“water bodies” are defined as the streamline, small reservoirs, dugouts, lakes and dams. The “land use”
cluster refers in one hand to built-up which is made of urbanized areas and the roads or land covered
by buildings and other man-made structures, residential, commercial services, industrial area, mixed
urban or built-up lands as well as barren land. In another hand, “land use” refers to the agricultural
land which represents the farmland areas, or the lands covered with temporary crops followed by
harvest period, crop fields and pastures. “Savanna” cluster represents grassland with scattered trees,
grading into either open plain or woodland while “herbaceous savanna” refers to grassland. “Forest”
cluster refers to trees and other plants covering a large area while the “evergreen forests” are forest
made up of rainforest trees in tropical zone or dense forest.

To calibrate and validate the land cover classification the accuracy assessment was performed,
and the kappa coefficient was used as the statistical parameter [42]. To statistically quantify errors,
a random selection of pixels from ground truth (Google Earth imagery) was compared to classified
satellite images as recommended in Ref. [43]. This approach consists of the reclassification of land
cover data in another way by following the step described in Foody [43] and Congalton [44] studies
and later used by Xu et. [45] and Koglo et al. [46].
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The kappa coefficient K, a discrete multivariate technique used in accuracy assessments of thematic
maps, is an efficient approach to derive information from an image via the confusion matrix. K > 0.80
represents strong agreement and good accuracy, 0.40–0.80 is middle, and <0.40 is poor [42,47].

4. Results

4.1. Hydroclimatic Context of Bandama Basin

The inter- and intra-annual (1981–2014) GPCP rainfall (P) data analysis over study basin trends are
not statistically significant at 95% confidence level except the month of November. The same conclusion
is made at inter-annual for streamflow (Q). However, the intra-annual variability of streamflow is
statistically significant at 95% confidence level for the months of February, March, April, October,
November and December (Table 1).

Table 1. Basic statistics of monthly and annual GPCP rainfall (mm) over Bandama basin and
streamflow(m3/s) at Kossou station (1981–2014).

Rainfall (P) Streamflow (Q)

Mean(mm) SD CV (%) Score (S) Mean(m3/s) SD CV (%) Score (S)

Jan 11.67 13.11 112.36 69 4.52 7.20 159.25 −109
Feb 42.15 20.11 47.71 89 7.69 * 14.31 186.07 −167
Mar 95.42 28.84 30.22 35 12.64 * 15.70 124.18 −272
Apr 127.84 22.40 17.52 35 18.70 * 18.79 100.51 −211
May 149.02 27.19 18.24 −45 22.22 17.44 78.47 −2
Jun 172.71 31.32 18.13 99 33.11 23.03 69.57 −100
Jul 140.75 39.28 27.91 −75 55.67 39.76 71.42 14

Aug 166.82 50.95 30.54 −79 208.57 138.88 66.58 17
Sep 178.69 39.56 22.14 33 412.92 190.43 46.11 99
Oct 132.74 34.95 26.33 61 282.43 * 141.06 49.94 199
Nov 57.71 * 22.75 39.42 137 59.95 * 48.13 80.28 139
Dec 21.10 14.34 67.95 43 6.22 * 8.47 136.01 −138

Annual 1296.62 121.34 9.36 33 93.72 34.48 36.79 86
Dry season 30.16 * 10.02 33.25 149 23.57 16.35 69.36 89
Wet season 145.50 14.77 10.15 −13 130.79 50.18 38.37 83

NB: * refers to the statistically significant trends at 5% significance level or p < 0.05 (95% confidence level). Dry
season refers to the months from November to February (months with total monthly rainfall less than 60 mm) and
wet season the months (from March to October).

At seasonal time scale, streamflow trend (upward) is not statistically significant for dry (November
to February; p-value = 0.192, score = 89) and wet (March to October; p-value = 0.224, score = 83)
seasons which is the case of rainfall at wet season with negative score (p-value = 0.85, score = −13).
In contrast at dry season, rainfall is statistically significant (p-value = 0.028, score = 149). Despite,
the negative score of rainfall at wet season, streamflow presents a positive score though both trends are
not statistically significant.

Moreover, the change magnitude of streamflow is greater compared to the rainfall using score
or Mann-Kendall statistic at annually, monthly time scale as well as wet season. For illustration at
monthly resolution, the rainfall scores are lower than the streamflow score for the months of October
and November in which the streamflow is statistically significant (upward trend) as well as at annual.
Even for some months with downward trend of rainfall the streamflow shows an upward trend
(July August).

Some basic statistical analysis namely the standard deviation (SD), the mean and the coefficient of
variation (CV) expressed in percentage of rainfall (mm) and streamflow (m3/s) at monthly and annual
time scale are also presented in Table 1. The streamflow varies greatly (greater CV) compared to the
GPCP rainfall at annual and monthly time scale. The streamflow CV is 36.79% while the rainfall CV is
9.36% annually. At wet (dry) season, streamflow CV is 38.37% (69.36%) while rainfall CV is 10.15%
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(33.25%). At the annual time scale, the streamflow varies four times greater than the rainfall and at the
monthly and seasonally time scale the streamflow varies at least two times greater than the rainfall
except the month of January. The same conclusion was made when using in situ observed rainfall over
Bandama basin (1981–2005) with Kossou streamflow. As changes in rainfall in the whole basin are
not significant, our hypothesis is that the variations of streamflow described above could be basically
due to land use and land cover change. Indeed, it was demonstrated that climate change and land
development have more impact on changing the seasonal distributions of the streamflow than on
altering average annual amounts of the streamflow [11] mainly in the wettest month of the year [18].

4.2. Land Use and Land Cover Changes and Their Incidences on Streamflow

4.2.1. Land Use and Land Cover Changes

The land cover and land use were grouped in six (06) clusters namely the water bodies, land use
(built-up and agricultural land), herbaceous savanna, savanna, forest and evergreen forest. The land
cover maps of the Bandama basin is presented in Figure 3. The evergreen forest covers the south-western
part while the southern part is mainly covered by forest savanna. From the central to the northern part
herbaceous savanna and land use are in abundance. The water bodies are located at the reservoirs,
small dams and streamflow locations. The land use is increasing in detriment of vegetative area
(savanna, herbaceous savanna, forest and evergreen forest), which hereafter will be referred to as
vegetative area for short.Land 2018, 7, x FOR PEER REVIEW  8 of 23 
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Figure 3. Bandama Basin land use and land cover maps.

The trend analysis for the periods 1988–2002, 2002–2016 and 1988–2016 was assessed. The results
show an increase in water bodies, land use (built-up areas and agricultural land) while the vegetative
area (herbaceous savanna, savanna and the evergreen forest) are decreasing during all the period
considered (Table 2). The savanna cluster presents an increasing trend during 2002–2016 period
probably due to agroforestry practice in the basin. The basin experienced an increasing trend in
forest for the first period and a decreasing for the second one. Generally, for the period 1988–2016,
the basin presented a rapid increasing trend of water bodies (1.89%/year), land use (11.56%/year) while
a decrease is noted for the herbaceous savanna (−1.39%/year), the savanna (−0.02%/year), the forest
(−2.39%/year) and evergreen the forest (−3.33%/year).



Land 2019, 8, 103 8 of 21

Table 2. Land use land cover change trend analysis.

Land Cover Types Area (%) 1988 Area (%) 2002 Area (%) 2016
1988–2002 2002–2016 1988–2016

Change (%) Change Rate
(% /year) Change (%) Change Rate

(% /year) Change (%) Change Rate
(% /year)

Water Bodies 1.26 1.63 1.97 29.36508 1.98 20.8589 1.39 56.34921 1.89
Land use 9.43 35.39 42.15 275.2916 18.34 19.10144 1.27 346.9777 11.56

Herbaceous Savanna 57.72 42.43 33.63 −26.49 −1.77 −20.74 −1.38 −41.736 −1.39
Savanna 21.22 15.22 21.12 −28.2752 −1.89 38.76478 2.58 −0.47125 −0.02

Forest 3.62 1.29 1.14 −64.3646 −4.29 −11.6279 −0.79 −68.5083 −2.29
Evergreen Forest 6.74 4.04 0 −40.0593 −2.67 −100 −6.67 −100 −3.33
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The classified data presents a strong accuracy and Kappa coefficient for the years 1988, 2002, and
2016. The Kappa coefficient and accuracy assessment (Table 3) are computed from confusion matrix
described in Foody work [43] and widely used. The confusion matrix of classified data of 1988, 2002
and 2016 years are presented in appendices (Tables A1–A3).

Table 3. Kappa Coefficient and Accuracy Assessment of the land cover classification.

1988 2002 2016 Qualification

Bandama
Kappa Coefficient 88.33% 92.% 90% strong

Accuracy Assessment 90.28% 93.33% 90% Strong

4.2.2. Incidence of Land Use/Cover Changes on Streamflow

Table 4 presents the annual rate of changes in land cover types and the coefficient of variation
(CV) express in percentage of rainfall (mm) or streamflow (m3/s) at annual time scale. The streamflow
varies greatly than rainfall for all considered periods. The highest variation was observed with greatest
decreasing in vegetative coverage mainly evergreen forest during 2002–2014 period. During that period
the streamflow varies at least three times than the rainfall. Thus, the conversion of vegetative coverage
to land use could be a contributor to this observed variation and increasing trend of streamflow despite
no significant trend of rainfall is noted.

Table 4. Incidence of land use/cover change on streamflow at Kossou station (1981–2014).

Periods
Observation

1988–2002 2002–2014 1988–2014

CV (%)
Rainfall (P) 8.8 8.64 8.55 Less variation

Streamflow (Q) 30.05 31.14 30.54 High variation

Change %/year
(land cover/use

classes)

Land use 18.34 1.27 11.56 Increase in land use
Herbaceous Savanna −1.77 −1.38 −1.39

Decline in vegetative
coverage

Savanna −1.89 2.58 −0.02
Forest −4.29 −0.79 −2.29

Evergreen Forest −2.67 −6.67 −3.33

4.3. Incidences of Land Use/Cover and Climate Changes on the Evolution of Hydropower Generation in the
Kossou Dam

The annual trends of rainfall, streamflow and hydropower generation are presented in Figure 4.
Rainfall and streamflow are increasing though they are not statistically significant while the hydropower
generation is declined (Figure 4). The precipitation presents lower magnitude change compared to
streamflow. The downward trend of hydropower generation is statistically significant at 95% confidence
level (tau =−0.325; p-value =0.007).

Figure 5 illustrates the monthly hydropower generation from Kossou dam, the monthly GPCP
rainfall over the whole Bandama basin and of the monthly inflow to Kossou dam for three typical dry
years (1983, 1992, 2007 in Figure 5A) and three wet years (1985, 1995, 2014 in Figure 5B) are presented
in Figure 5. Indeed, rainfall anomaly from GPCP data was computed using Lamb definition [48].

Generally, the analysis shows a decrease in hydropower generation from October to July while it
increases from August to September. Hydropower generation follows the river streamflow pattern.
The first rainy season as defined earlier contributes to saturate the soil water content capacity and to
recharge the reservoir. At the end of the first rainy season (March-July) the reservoir is full. Then the
water is released mainly from July to October leading to a greater hydropower generation. In the
remaining months before the onset rainfall, the release of the water will be reduced in order to be able to
cover water demand for dam operation. This consequently results in a decline of power generation
from October to July.
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Figure 5. Monthly variation of total hydropower production (GWh in red), total GPCP precipitation
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The hydropower generation in the chosen wet years are greater compare to the generation in dry
years. However, we notice that the difference in total rainfall between wet and dry years is weaker than
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the difference in the streamflow magnitude. However, it is worth noting that streamflow increases
sharply during the last dry years (1992, 2007 in Figure 5A) despite the lowest magnitude of monthly
mean rainfall. This contrast in trend and magnitude of hydropower generation and rainfall could be
attributed to an increase in water abstraction at upstream of the hydropower plant. This is justified by
the presence of important number of small reservoirs (Figure 1) mainly for irrigation, mining, livestock
breeding activities.

Additionally, the annual hydropower generation varies according to the rainfall of previous years
and to the distribution of rainfall within the year. For instance, the largest power generation observed at
the first months of dry year 1983 (Figure 5A) is justified by the fact that 1983 year follows some normal
years. Lower power generation at the first months (January to June) in 1985 and 1995 (Figure 5B) for
example could be explained by the fact that they follow 1983 and 1992 dry years respectively affecting
the power generation of the next following year. Moreover, the hydropower production presents
a sharp decreasing trend during 1983 dry year can also be explained by the weak rainfall amount in the
year as well as its distribution. As a small amount of water was stored in the extremely dry year 1983,
the production of energy was not possible in 1984 (not shown) until the start of rain season of year
1985. The consecutive dry years 1991, 1992 and 1993 have negatively affected the energy production of
the wet years 1994 and 1995 (Figure 5B).

From 2007 to 2014 (Figures 4 and 5A,B), the trend of hydropower generation is decreasing at
both inter and intra-annual. Despite the high amount of rainfall in 2014 (Figure 5B) and the previous
years which were quite normal, the power generation of 2014 is lower compared to the production
of other wet years and dry years. This is due to the reduction in Kossou reservoir water level/filling
rate (not shown) resulting in reservoir area reduction [49]. The land use dynamic maps have shown
that water bodies are increasing in the basin due to small dams and reservoirs for irrigation which
may justify the decline in water level and the downward trend of hydropower generation. The rainfall
anomaly over Bandama basin is presented in Appendix B.

Furthermore, as the basin is under pressure of different land use practice, namely the conversion of
vegetative area to agricultural land and built-up; the increase in land use and land cover changes could
lead to silting and the sedimentation of reservoir. This land use change effects on reservoir could also
be assess deeply. Under this condition reservoir capacity could reduce, consequently reducing amount
of water stored and energy produced. However, this hypothesis of reservoir reduction associated with
sediment transport and silting as result of land use and land cover change and leading to de decrease
of hydropower generation needs to be investigated further.

Hydropower generation (Figure 6a,b) is strongly correlated with reservoir water level (WL) and
streamflow (Q). The hydropower depends on streamflow and water level of the reservoir. However,
Water level is not correlated with both streamflow and precipitation (Figure 6d&e). Despite the
strongest correlation of streamflow and precipitation (Figure 6f), the energy generation is not correlated
with precipitation (Figure 6c). This may be due to LULCC and water abstraction in upstream of
the dam.
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5. Discussion

This study shows that trends in annual rainfall in the Bandama basin and in annual streamflow at
Kossou station from 1981 to 2014 are not statistically significant at 95% level of confidence. At monthly
time scale, the rainfall trend is statistically significant only in November while the streamflow is for
February, March, April, October, November and December months. At seasonally scale, though the
rainfall downward trend is not statistically significant during wet season (from March to October),
the stream flow presents an upward trend which is not significant too. The magnitude change of
streamflow is greater compared to the rainfall one. in addition, streamflow varied much more than
rainfall at all scale. This difference in trend, magnitude and variation could be due to land cover/use
dynamic in the basin as found by Bewket [13].

The analysis of land cover changes in the basin between 1988 and 2016 reveals that water bodies
and land use (built-up and agricultural land) have increased while the vegetative area (savanna,
herbaceous savanna, forest and evergreen forest) has decreased. These results are in accordance
with previous studies in the region [42,46,50]. The increase in water bodies is due the increase in the
construction of small reservoirs, dugouts and dams within the basin. West African basins have received
more attention in term of small reservoirs and dugouts, domestic water supplies and for livestock
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breeding as well as reservoirs for hydropower plants. The increase in water bodies in the basin is
one of main cause of declining in reservoir filling rate. West Africa has rapid population growth
rate associated with an increase in urbanization. This has led to the rapid growth in built-up areas.
In addition, the increase in population growth rate has also led to an increase in food consumption and
food production, explaining the expansion of land use, and coherent with a decline of the vegetative
areas (savanna, herbaceous savanna, forest and evergreen forest) [42,46]. Furthermore, the increase
in land use could add pressure on water availability by increasing water withdrawal for irrigation,
mining and livestock breeding.

Land use and land cover changes are known to influence the climate system [3]. Afforestation
option is predicted to increase the rainfall over West Africa [51] while deforestation will reduce it [52].
Some study have shown how the change in vegetation affect the rainfall in the region [8,51]. Land
use/cover change has an implication on hydrometeorological system [6] as well as in water balance [53].
Land cover plays an important role in climate system of a basin as well as in runoff generation and
rainwater infiltration rate. It has been demonstrated that the less vegetative a land is, higher the runoff

generation and weaker the infiltration rate [42]. The results indicate that this might be the case in the
Bandama basin. The study shows that at the monthly and seasonally (annual) time scale, the streamflow
varies at least two times (four times) greatly than the rainfall except for the driest months December
and January. This could be due to land use/land cover change in the basin. Soro et al. (2013) have
also concluded that the modifications of land cover has led to changes on hydrological behavior of
upstream of Bandama catchment [30]. The annual runoff change is highly sensitive to land use change.
Some literature in the region [42,47] and elsewhere [13] confirmed that the relative hydrological effects
of forest changes and climatic variability are largely dependent on the magnitude of the change and
watershed characteristics. Sahelian rivers in West Africa present an increase in runoff coefficient despite
the increase in the number of dams [54] and this is attributed to land use practice [55]. It has been
demonstrated that such Sahelian basin has loss their soil water hold capacity [55] and causes large
increase in global storm runoff extremes driven by climate and anthropogenic changes [12]. The same
phenomenon is the cause of the Sahelian paradox [14,22], which results in increase in streamflow
despite the decrease in rainfall over Niger basin.

However, land use land and cover change threats agricultural lands by erosion or physical
deterioration, land degradation or salt deposits and loss of micro/macro fauna and flora, as well as
declines in soil fertility up to 32.5% and soil water holding capacity up to 11.7%, and changes in soil
texture up to 3.3% [46]. This contributes to the strong reduction of crops yield and make farmers to shift
towards new lands more fertile or to adopt climate smart practices, with an emphasis on cost-effective
drip irrigation systems and other modern practice [46]. This could add pressure on water availability
for hydropower generation and create conflict among water users’ sectors within country and among
countries. This may be the case of Bandama basin too. Furthermore, the decline in vegetative cover
associated with an increase in land use could lead to low underground recharge and high runoff
generation during the rainy period. The Bandama basin underground recharge water is decreasing due to
the land use and land cover change associated with changing climatic conditions [56]. Consequently,
this could contribute to the increase of river discharge [30] as showed in Chemoga river in Blue Nile
basin [13] and in Black Volta basins [42,47]. The hydrological dynamic of basin is more sensitive to land
use/cover dynamic [57] and this also influence the sediment yield of the river [11,16]. Nevertheless,
the combined effect of climate change and land development have more impact on changing the seasonal
distributions of the streamflow [58] and nitrogen load than on altering average annual amounts of the
streamflow and nitrogen load [11].

Consequently, this increase in river discharge could also affect positively the hydropower generation.
For instance, Obahoundje et al. (2017) showed that the increasing conversion of vegetative area to
agricultural land and built-up has led to an increase of streamflow and has favored Bui hydropower
generation in Ghana [42]. In Tekeze dam catchment (Ethiopia) the mean annual streamflow increased
by 6.02% due to land use/cover changes [15]. However, it has been demonstrated that land use/cover
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dynamics plays an important role in sediment yield [59] and in water quality of a basin [11,16,17,60,61].
Thus, the change in land cover combined with change in rainfall could lead to increase soil erosion [62]
and could result into siltation and sedimentation of rivers as well as of the dam’s reservoir volume.
Added to the water withdrawal at upstream, this may explain the declined observed in reservoir area
which initially was estimated at 1500 km2 for a minimum coastline of 203 m and presently, the current
average area of lake Kossou is about 900 km2 with an average coastline of 184 m according to the Food
and Agriculture Organization of the United Nations [49]. However, this need to be further investigated
in order to quantify the resultants effects of land use/cover change on Kossou hydropower plant, and use
of GIS-based research model such as WetSpass (Water and Energy Transfer between Soil, Plants and
Atmosphere under quasi-Steady State) model will help to better compute the components of the water
balance [63] and to better capture hydrological impacts of climate/land use changes [64,65].

6. Conclusions

This study assessed the climate, land use and land cover changes in the Bandama basin and their
impacts on hydrological system and on the hydropower generation of Kossou dam for the period
1981–2014. The results show that trends (upward) at inter-annual time scale of rainfall and streamflow are
not statistically significant. At intra-annual timescale, the streamflow presents a statistically significant
positive trend for the months of February, March, April, October, November and December, while
rainfall is statistically significant on the month of November. Despite rainfall exhibits a downward
trend during wet season while the streamflow shows an upward trend though they are not statistically
significant. In addition, a statistical analysis reveals that at annual (monthly and seasonally) time scale,
the streamflow varies at least four (two) time greatly than the rainfall and at least three times at monthly
time scale except the driest month January. Moreover, the change magnitude of streamflow is greater than
rainfall. This difference in magnitude, trend and variation could be attributed to land use/cover change.

Despite, the observed upward trends of streamflow and rainfall though they are statistically
significant, the hydropower generation at Kossou dam exhibits a statistically significant downward
trend. This contrast in events is attributed in one hand to water abstraction at upstream of the dam for
different land use practices (irrigation or mining activities).

Indeed, the studied basin as well as the area around reservoir are under pressure of different land
use practices. The results show that land use (built-up, barren, agricultural land) and water bodies are
increasing while the vegetative areas (savanna, herbaceous savanna, forest and evergreen forest) are
declining. This change in land cover could alter the hydrological of the basin.

Land use change (conversion of vegetative area to agricultural land and urbanization) could
result into increase in the streamflow, which is favorable for hydropower generation which is without
consequences on plant system. It is urged to carry out a deep study in this basin in order to rank the
degree of contribution of each factor (water abstraction, climate and land cover/use changes), their
potential consequences on hydrological and hydropower system of the basin. Thus, a new GIS-based
research is planned in the future to quantify water balance components of the basin. Lastly, the managers
of dams and river basin authorities should carefully carry out studies on the potential impacts of land
use and land cover changes on existing and projected hydro power plants in the future under changing
climatic conditions.
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Appendix A

The classified Landsat images can be subjected to some errors. A statistical approach to quantify
these errors is the random selection of pixels from the classification map to be compared to the reference
map which produces a confusion matrix. Ten pixels times the number of land cover classes were
randomly selected (eg: In 1988, 10× 6 = 60 pixels were selected for each land cover class). The confusion
matrix has been widely used for accuracy assessment of the land use land cover maps [30,47]. The main
statistical information derived from the confusion matrix are: overall accuracy, commission error,
omission error, the producers accuracy, the users accuracy and Kappa Coefficient K described in [43]
study. The confusion matrices of the classified images are presented in Tables A1–A3 for 1988, 2002
and 2016 respectively.
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Table A1. Confusion matrix of the land use/cover classification for 1988.

1988
Ground Truth (Google Earth imagery) Number of

Classified
Pixels

User’s Accuracy Commission
ErrorWater Land Use Herbaceous

Savanna Savanna Forest Evergreen
Forest

Classified
Satellite

image as:

Water 60 1 0 0 0 0 61 98.36 1.64
Land use 0 54 0 0 0 0 54 100.00 0.00

Herbaceous Savanna 0 0 50 3 0 0 53 94.34 5.66
Savanna 0 0 10 52 6 0 68 76.47 23.53

Forest 0 0 0 5 49 0 54 90.74 9.26
Evergreen Forest 0 5 0 0 5 60 70 85.71 14.29

Number of ground truth 60 60 60 60 60 60 360
Producer’s Accuracy 100.00 90.00 83.33 86.67 81.67 100.00 Total Accuracy 90.28%

Omission error 0.00 10.00 16.67 13.33 18.33 0.00 Kappa Coefficient 88.33%

Table A2. Confusion matrix of the land use/cover classification for 2002 year.

2002
Ground Truth (Google Earth Imagery) Number of

Classified
Pixels

User’s Accuracy Commission
ErrorWater Land Use Herbaceous

Savanna Savanna Forest Evergreen
Forest

Classified
Satellite

image as:

Water 54 0 0 0 0 0 54 100.00 0.00
Land use 6 60 0 0 0 0 66 90.91 9.09

Herbaceous Savanna 0 0 42 0 0 0 42 100.00 0.00
Savanna 0 0 18 60 0 0 78 76.92 23.08

Forest 0 0 0 0 60 0 60 100.00 0.00
Evergreen Forest 0 0 0 0 0 60 60 100.00 0.00

Number of ground truth 60 60 60 60 60 60 360
Producer’s Accuracy 90 100 70 100 100 100 Total Accuracy 93.33%

Omission error 10 0 30 0 0 0 Kappa Coefficient 92.00%
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Table A3. Confusion matrix of the land use/cover classification for 2016 year.

2016
Ground Truth (Google Earth Imagery) Number of

Classified
Pixels

User’s Accuracy Commission
ErrorWater Land Use Herbaceous

Savanna Savanna Forest

Classified
Satellite image

as:

Water 50 0 0 0 0 50 100 0
Land use 0 45 0 0 0 45 100 0

Herbaceous Savanna 0 0 40 10 0 50 80 20
Savanna 0 0 10 40 0 50 80 20

Forest 0 5 0 0 50 55 90.91 9.09
Number of ground truth 50 50 50 50 50 250

Producer’s Accuracy 100 90 80 80 100 Total Accuracy 90%
Omission error 0 10 20 20 0 Kappa Coefficient 87.5%
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Appendix B

The rainfall (GPCP precipitation) anomaly computed from 1981 to 2014 using Lamb definition [48]
is presented in Figure A1.Land 2018, 7, x FOR PEER REVIEW  1 of 23 
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