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Abstract: While geographers and economists regularly work together on the development 

of land-use and land-cover change models, research on how differences in their modelling 

approaches affects the results is rare. Answering calls for more coordination between the 

two disciplines in order to build models that better represent the real world, we (two 

economists and a geographer) developed an economically grounded, spatially explicit, 

agent-based model to explore the effects of environmental policy on rural land use in New 

Zealand. This inter-disciplinary collaboration raised a number of differences in modelling 

approach. One key difference, and the focus of this paper, is the way in which processes 

that shape the behaviour of agents are integrated within the model. Using the model  

and a nationally representative survey, we compare the land-use effects of two  

disciplinary-aligned approaches to setting a farmer agent’s likelihood of land-use 

conversion. While we anticipated that the approaches would significantly affect model 

outcomes, at a catchment scale they produced similar trends and results. However, further 

analysis at a sub-catchment scale suggests the approach to setting the likelihood of  

land-use conversion does matter. While the results outlined here will not fully resolve the 

disciplinary differences, they do outline the need to account for heterogeneity in the 

predicted agent behaviours for both disciplines. 
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1. Introduction 

With an increase in demand for strong, evidence-based environmental policy and management, 

scientists have called for methods to accurately capture the complex nature of socio-ecological  

systems [1,2]. This call is driven by the need to understand the likely consequences and trade-offs of 

proposed policies on economic outcomes, land use, and social well-being [3]. A modelling approach is 

well suited to this task because the social, economic, and geographic factors that determine the choice 

and impact of land use are in themselves complex [4–7].  

Land use and land cover change (LULCC) models represent a well-developed approach to 

modelling and understanding processes that shape the environment [8–10] and have developed 

alongside our understanding of wider economic and social systems. As with most modelling 

approaches, early implementation of LULCC models focused on mathematical programming and 

rational utility theory, i.e., individuals are assumed to maximise profits [11–15]. These approaches are 

still common, and while these models capture trends in LULCC, they may fail to reflect accurately the 

underlying processes driving the change in LULCC [2]. 

More specifically, more economically focused LULCC models focus on management practices that 

maximise net returns for a given land use while omitting key spatial, bio-physical, and social  

details [2,16–21]. Such abstractions ignore the processes, people, and space within the model, thus 

making the “optimally derived” solution unrealistic [22]. Geographically defined LULCC models, on 

the other hand, typically account for heterogeneity across space and individuals, but often simplify the 

level of economic behaviour [23–27]. As such, geographic models are typically structured to include 

simplified economic approaches and to exclude explicit representations of land and commodity 

markets [23].  

Geographers and economists have rarely collaborated in undertaking these analyses, leading to calls 

for modellers from these two disciplines to coordinate efforts in order to build models that better 

represent the real world [23,28].  

LULCC is a complex, adaptive process that can also be explained through the use of computational 

tools such as agent-based models (ABMs) [2,29,30]. ABMs are well suited to analysing decentralised, 

autonomous decision making such as that underlying LULCC because they represent complex spatial 

interactions under heterogeneous conditions [30–32]. In addition, the ABM approach accounts for 

space, distance, and time in decision making.  

However, capturing the social and economic behaviour of farmers via ABMs to analyse LULCC is 

not without its own complexities and limitations [27,33–36]. For example, Burton [37] outlines 

numerous social processes that should be evaluated when assessing farmer behaviour, including 

cultural embeddedness [38], social networks, and technology transfer [39,40], and the dichotomy 

between social and economic approaches to farming [41,42]. Therefore, capturing the heterogeneity of 

farmer behaviour is essential when modelling rural land-use change. While this notion is widely 



Land 2015, 4 916 

 

supported [38,43], there is significant variation in how heterogeneity in farmer decision making is 

accounted in ABMs. Examples of such heterogeneity include: variation in different production 

strategies [35,44,45]; dealing with external factors [46,47]; and simulating key parts of the farming 

process [48–50]. In all cases, this variation depends on the objective of the ABM [51]. 

To answer these calls, the authors (two economists and a geographer) developed an economically 

grounded, spatially explicit ABM to explore the effects of environmental policy on rural land use in 

New Zealand. The Agent-based Rural Land Use New Zealand (ARLUNZ) is capable of analysing the 

impact of a variety of policies on land use, net revenue, and environmental indicators such as 

greenhouse gas (GHG) emissions, nutrient loadings, and soil erosion [36].  

This inter-disciplinary collaboration required that two differences in approach be resolved. The first 

is a disciplinary perspective on how individual agents enter into the model. Geographers have 

traditionally had a strong preference for defining types of agents within a population according to a 

typological framework [35,38,43,44,46] to limit complexity while still moving agents towards their 

predefined goals [52–55]. While economists recognise the need to limit computational complexity [34], 

they have also called for empirical calibration and validation of decision-making hypotheses through 

surveys, interviews, participatory modelling, and experimental economics [33,56,57]. Because we 

have access to a large-scale, nationally representative survey that accounts for demographics, social 

processes, and land use, we side with economists and rely on empirical distributions of farmer and 

forester characteristics to simulate a population of agents [58].  

The second disciplinary disagreement—and a primary focus of this paper—is the way in which 

processes that shape the behaviour of agents are integrated within the model. Irwin [23] observes that 

the methods used for modelling land-use change vary significantly: economists tend to focus on 

econometric analyses, while geographers tend to base their analyses on simulations.  

Farmers’ information networks are framed around their social interactions and play a role in 

shaping their decision making processes [39,40,59,60]. Through the nationally representative survey, 

we could define the observable effects of each farmer’s networks into the agent-based model by 

directly affecting the likelihood of a certain type of behaviour, in this case land-use conversion. 

Conversely, we could simulate the agent’s interactions with their networks and observe how these 

interactions affect the agent’s likelihood of land-use conversion.  

Consequently, this paper analyses how each approach affects the resulting land use, net revenue, 

and environmental outputs at a catchment scale. We hypothesise that the two approaches will produce 

significant differences for each of these metrics. 

We note that these disagreements relate to representation of people and the empirical 

characterisation of agents within ABMs [1,51,57,58,61,62]. Specifically, the disagreements relate to 

how empirical data is used to capture and define the bounds of decision making available to the agents. 

Greater variety of on-farm management options (e.g., reducing stocking rates, fencing streams, and 

planting riparian buffers) and more information being made available to farmers (e.g., climate, 

biophysical and soils data) increase the complexity associated with defining farmer agents. Because of 

the significant empirical data required to inform the use of on-farm management options and to 

account for additional information through climate and biophysical models, we constrain farmer 

decision making in this manuscript to complete farm conversion from enterprise to enterprise. 
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The remainder of this paper is organised as follows: Section 2 describes the methodology used in 

this research and the approaches used to define an agent’s likelihood of land-use conversion; Section 3 

summarises the experimental design for the research specifically the region the model has been applied 

on; Section 4 presents the results from the experiment; and Section 5 concludes. 

2. Methods 

The ARLUNZ model was designed to analyse complex environmental issues in the rural landscape, 

to provide information about how farmers will adapt to change, and to inform policy that seeks to 

address vulnerability to resource scarcity. Specifically, ARLUNZ focuses on variability in decision 

making among farmers, moving away from a representative decision-making agent to a spatial and 

behaviourally heterogeneous population of farmers whose decision making reflects the real world.  

ARLUNZ is written in Version 5.0.5 of NetLogo [63] using the GIS, String, and Shell extensions. 

Python 2.7 is used to facilitate a loose coupling [64] between ARLUNZ and a modified version of the 

New Zealand Forest and Agriculture Regional Model (NZFARM) that provides economic information. 

NZFARM is a non-linear, partial equilibrium mathematical programming model of New Zealand land 

use operating at the sub-catchment scale [65]. The version used within ARLUNZ has been refined to 

produce an economically optimised result for each farm rather than an optimised landscape for a  

sub-catchment [66–69].  

Morgan and Daigneault [36] provides detailed information on the design, structure, outputs, and 

parameterisation of ARLUNZ and its coupling with NZFARM as well as its use to estimate the 

impacts of climate change policy on land use in New Zealand. In addition, Table S1 contains an 

ODD+D description [70] for the ARLUNZ model. 

2.1. Survey Research 

Some parametrisation in the ARLUNZ model is based on the Survey of Rural Decision Makers 

(SRDM), a nationally representative survey of land owners and other decision makers [71]. The survey 

was conducted online between March and July 2013.  

The survey gathered up to 192 data points on each respondent, land characteristics and use, current 

farm practice, demographics, succession plans, professional networks, sources of information 

regarding best practice, management objectives, income, risk tolerance, and values [71]. The 

questionnaire was developed in consultation with the Ministry for the Environment, the Ministry of 

Primary Industries, Dairy New Zealand, Beef + Lamb New Zealand, HortNZ, regional councils, 

AgResearch, the New Zealand Institute for Economic Research, farmer discussion groups, and  

other stakeholders.  

The sample was drawn from the AssureQuality AgriBase database [72]. Developed in 1993 to track 

foot and mouth disease, AgriBase records detailed information on privately held rural land across New 

Zealand. Inclusion in AgriBase is voluntary and entries are updated irregularly. As such, the median 

address was entered into the database seven years before the survey and some of the individuals 

contacted for the survey had left farming, making the true response rate difficult to ascertain. However, 

a total of 1564 responses were collected, yielding a response rate of at least 21%. Participation was 

incentivised via a donation made to a charity of each respondent’s choice and an invitation to view 
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summary results online after the survey had closed. The primary decision-maker for each property was 

asked to complete the survey, which, on average, took approximately 20 min to complete. 

Summary statistics for the variables of interest are shown in Table 1. The mean property comprises 

486 hectares, although this high average is driven by a handful of very large Sheep and Beef stations. 

The average age of respondents is 56.5, consistent with ages reported in New Zealand’s Agricultural 

Census [73]. The average farmer has 25 years of experience. One-third of farmers hold university 

degrees, while 27.8% have completed diplomas or post-secondary technical training in farming and/or 

farm management. 

Table 1. Summary Statistics from the Survey of Rural Decision Makers. 

Variables Mean Std. Dev. Min. Max. 

intend to intensify over the following 5 years (1–10) 2.678 3.046 0 10 

intend to de-intensify over the following 5 years (1–10) 3.569 3.452 0 10 

effective land quantity (hectares) 486.440 1932.137 2 34,000 

age (years) 56.471 10.098 24 87 

experience (years) 25.100 15.812 1 66 

high school education (dummy)  0.393 0.488 0 1 

diploma/tech training (dummy) 0.278 0.448 0 1 

university or higher (dummy) 0.329 0.470 0 1 

importance of being highly productive (1–10) 6.535 2.787 0 10 

profitable business (dummy) 0.785 0.411 0 1 

respondent exceeds median # of farm/farmer visits (dummy) 0.487 0.500 0 1 

risk tolerance (1–10) 5.437 2.403 0 10 

enterprise = sheep and beef (share) 0.444 0.497 0 1 

enterprise = dairy (share) 0.209 0.407 0 1 

enterprise = deer and other livestock (share) 0.035 0.183 0 1 

enterprise = horticulture and viticulture (share) 0.107 0.309 0 1 

enterprise = arable (share) 0.030 0.171 0 1 

enterprise = dairy support (share) 0.045 0.207 0 1 

enterprise = forestry (share) 0.079 0.270 0 1 

enterprise = other enterprise (share) 0.052 0.222 0 1 

number of land uses on this operation (#) 1.684 0.884 1 5 

region = Auckland (share) 0.031 0.173 0 1 

region = Bay of Plenty (share) 0.054 0.226 0 1 

region = Canterbury (share) 0.178 0.382 0 1 

region = Gisborne (share) 0.024 0.154 0 1 

region = Hawke's Bay (share) 0.084 0.277 0 1 

region = Marlborough (share) 0.057 0.232 0 1 

region = Manuwatu-Whanganui (share) 0.066 0.249 0 1 

region = Northland (share) 0.053 0.224 0 1 

region = Otago (share) 0.128 0.334 0 1 

region = Southland (share) 0.086 0.280 0 1 

region = Tasman and Nelson (share) 0.067 0.250 0 1 

region = Taranaki (share) 0.043 0.203 0 1 

region = Waikato (share) 0.074 0.262 0 1 

region = Wellington (share) 0.036 0.186 0 1 

region = West Coast (share) 0.020 0.139 0 1 
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The importance of being highly productive was self-evaluated on a scale of 0 to 10, where 0 

indicates that being highly productive is “not at all important’ and 10 indicates that being highly 

productive is “extremely important”. The mean score for the importance of being highly productive is 

6.53. Risk tolerance is measured by the question “Are you a person who is generally prepared to take 

risks?”, where 0 indicates “don’t like to take risks” and 10 indicates “fully prepared to take risks”. The 

mean score for risk tolerance was 5.44, indicating a moderate level of risk-taking. 

Some 78.5% of respondents report that their business is either profitable or that it breaks even. Having 

a “large” professional network is defined by visiting more than the median number of farms (i.e., five) or 

meeting more than the median of farmers to discuss productivity (i.e., four); by definition, half of the 

survey respondents meet these criteria. The main reported farm enterprises by area include sheep and 

beef (44%), dairy (21%), horticulture and viticulture (11%), forestry (8%), dairy support (4%), deer and 

other livestock (3%), and arable (3%). The average number of different enterprises on the farm is 1.68, 

although a small number of farms have as many as five different enterprises. Respondents in Canterbury 

(the region on which this paper focuses) account for 17.2% of the total sample.  

2.2. Defining the Likelihood of Land-Use Conversion 

Decision making within the model rests entirely with the farmer agent. The economic component of 

the model returns the net revenue-maximising land-use for each farm along with the expected net 

revenue for each enterprise that could be undertaken on each farm. If the economically optimal land 

use differs from the enterprise currently undertaken, then the farmer agent chooses whether or not to 

convert through an evaluation against each farmer’s “likelihood of land-use conversion”.  

The likelihood of land-use conversion is thus fundamental to decision making within the model. We 

adopt several methods for evaluating this value. The first (the homogeneous approach) ignores 

individual attributes of farmers and assigns an identical likelihood to each farmer. The second  

(the network approach) allows farmers to interact with peers and to make decisions that are informed 

by peer performance, either via networks or imitation. The third (the survey approach) uses  

empirical data from the Survey of Rural Decision Makers to predict this likelihood based on  

individual characteristics. 

2.2.1. Homogeneous Approach 

For this approach, which we class as the baseline, we ignore all farmer attributes and define the 

likelihood of land-use conversion at 0.2 (or 20%) for all farmer agents. We use this approach to 

represent a common type of economic LULCC model that uses a single rational, profit-maximising 

agent to make decisions.  

2.2.2. Network Approach 

This approach uses social and geographic networks to shape the farmer agent’s likelihood of  

land-use conversion. Farmer’s information networks are framed around their social [39,40,59] and 

geographical [74,75] interactions and play a role in decision-making processes [39,50,75]. Two 

theoretical frameworks inform how networks influence farmer decision making—endorsements and 
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imitation. While endorsements and imitation in social networks are understood, the scale and impact 

that these processes have on decisions are difficult to quantify in the farming context.  

Studies have found that the proximity to the people in one’s network is not as important as the 

stature of those people [59,76]. Therefore we assume that two-way interactions such as endorsements 

are preferred by farmers and provide a higher level of information acceptance compared with one-way 

interactions such as imitation. Consequently, we specify that endorsements obtained through social 

networks have higher weightings than those obtained through imitation. 

Specifying these weightings for these network types required additional experimentation as there 

was no empirical data on the level of acceptance of information obtained through them. Sociological 

opinion in New Zealand suggests that the relative weighting of the information provided via farmer 

networks should range between 0.05 and 0.15 [77]. Based on this, we defined the weightings for the 

likelihood of information uptake as 0.10 for Endorsement and 0.05 for Imitation. To explore the 

influence that these weightings have on the outputs of the model, we undertook a local sensitivity 

analysis (Supplementary Material 2). We found that the model outputs are relatively insensitive to 

small variations in the weightings used for both endorsements and imitation.  

Endorsements work on the concept that information about a product, process, or person (i.e., the 

endorsed) is transferred from one individual (i.e., the endorser) to another individual (i.e., the receiver) 

through a social process. The information that is transferred by the endorser is subjective and is 

validated by the receiver based on his or her understanding of the endorser and the product, process, or 

person. Thus, endorsements capture a “subjective but socially embedded agent’s reasoning process 

about cognitive trajectories aimed at achieving information and preferential clarity over another, 

endorsed agent” ([78]; p. 1). 

With endorsement in ARLUNZ, each farmer agent incorporates information on the success of the 

farming operation for ten farmer agents who are located closest to the decision maker and who 

undertake the same enterprise as the farmer agent. Each farmer agent learns the profitability/ha of each 

of the farmer agents within his or her social network; using these values, a mean profitability/ha value 

is derived for the farmer agent’s network and is then compared to farmer agent’s profitability/ha value. 

If the farmer agent’s profitability/ha is higher than the mean profitability/ha of the farmer agent’s 

social network, then his or her likelihood of land-use conversion is decreased by 0.10 percentage 

points to 10%. If the farmer agent’s profitability/ha is lower than the mean profitability/ha of the 

farmer agent’s social network, then his or her likelihood of land-use conversion increases by  

0.10 percentage points to 30%. The ARLUNZ model assumes that each farmer in the social network 

has identical stature. 

The theory of Social Learning [79,80] describes imitation as a process in which a person observes 

another person being rewarded for understandable and reproducible behaviour. The original person 

might then imitate that behaviour to try to achieve the same reward [81]. Imitation transfers knowledge 

through a one-way network in which information is “absorbed” from the person’s surroundings and 

then used to inform the decisions they make. Farming practices are visible to all, particularly so to 

farmers in close proximity because of the regular exposure [75,82].  

With imitation in ARLUNZ, the farmer agent incorporates information from the farms that are 

geographically adjacent to his or her own farm, regardless of the enterprise undertaken. If the 

economic component of the model proposes a change in land use, then each farmer agent in the 
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geographic network that undertakes the proposed land use provides his or her profitability/ha value. 

Using these values, a mean profitability/ha value is derived for the farmer agent’s network, and this 

figure is compared with the farmer agent’s profitability/ha value. If the farmer agent’s profitability/ha 

is higher than that of his or her geographic network, then his or her likelihood of land-use conversion is 

decreased by 0.05 percentage points to 15%. If the farmer agent’s profitability/ha is higher than that of 

his or her geographic network, then the agent’s likelihood of land-use conversion is increased by  

0.05 percentage points to 25%. 

2.2.3. Survey Approach 

This approach is based on empirical data from the Survey of Rural Decision Makers, which 

accounts for the decision to de-intensify land use as well as the decision to intensify land use based on 

the predicted net revenue of each enterprise.  

The perceived likelihood of changing your current land use to more intensive or less intensive uses 

over the following five years was evaluated using an 11-point scale, with 0 representing “extremely 

unlikely” and 10 representing “extremely likely”. The average reported likelihood of intensification 

was 2.68, which we interpret to mean that there is a 26.8% probability of intensifying in the next five 

years, on average. Similarly, the average reported likelihood of de-intensification was 3.57, which we 

interpret to mean there is a 37.5% probability of de-intensifying in the next five years, on average. 

Importantly, survey participants were asked about intensification and de-intensification, which 

could mean a change in management on the farm (such as an increase in the number of livestock per 

hectare) rather than wholesale conversion of a farmer’s land use. As these are the best empirical 

indicators of intentions, however, we ignore this possibility in the analysis that follows. 

For the purposes of this research, we ranked the three most common land uses based on the 

intensiveness of their land use (Figure 1). Dairy farming represents the most intensive land use, 

followed by sheep and beef farming. Forestry is the least intensive land use. 

 

Figure 1. Land uses within the ARLUNZ model ranked by the intensiveness of their  

land use. 

Using attributes defined by geospatial information (specifically, predominant land use and farm 

size) and empirical data from the Survey of Rural Decision Makers (specifically, age, experience, 

education level, importance of productivity, profitability, and network size), we define the likelihood 

of a farmer intensifying or de-intensifying his or her land use econometrically. Specifically, the 

probabilities of moving from a low-intensity activity to a high-intensity activity over the subsequent 

five years and vice versa are estimated using Tobit models in which the dependent variables are 

censored at 0 and 10. Specifically, 
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௜ݕ
∗ ൌ ௜઺܆ ൅ ,௜ݑ ݑ ∼ ܰሺ0, Մଶሻ (1)

where ݕ௜
∗ is a latent variable equal to the observed variable, ݕ௜ , only when the latent variable falls 

between the values of 0 and 10, ܆ is a vector of explanatory variables, and the error term, ݑ , is 

normally distributed. Thus, we have: 

௜ݕ ൌ ቐ
10 if ௜ݕ

∗ ൒ 10
௜ݕ
∗ if 0 ൏ ௜ݕ

∗ ൏ 10
0 if ௜ݕ

∗ ൑ 0
 (2)

In contrast to the ordinary least squares with censored data, the tobit estimator is consistent [83]. 

Table 2 presents the tobit estimates based on the national level data. The ઺ are interpreted as the 

expected change in the uncensored latent variable, i.e., the uncensored likelihood of intensification or 

de-intensification associated with a marginal change in an explanatory variable. For example, 

increasing age of the decision maker by 1% reduces the predicted (uncensored) perceived likelihood of 

intensification by 0.034 points on the 11-point scale, an effect that is statistically significant at the  

0.01 level. Similarly, having a diploma or technical training increases the predicted (uncensored) 

perceived likelihood of intensification by 0.570 points, also significant at the 0.01 level. Neither of 

these explanatory variables has a statistically distinguishable effect on the perceived likelihood  

of de-intensification.  

Table 2. Predicted intensification and de-intensification for the survey approach  

(tobit model). 

Variables Intensify De-Intensify 

log of effective land quantity 0.206 * 0.150 
(0.105) (0.118) 

log of age –3.374 *** –0.0697 
(0.767) (0.923) 

log of experience 0.380 *** 0.352 ** 
(0.145) (0.164) 

diploma/tech training  0.570 * –0.337 
(0.329) (0.370) 

university or higher 0.295 –0.159 
(0.323) (0.373) 

importance of being highly productive 0.140 ** –0.0216 
(0.0605) (0.0657) 

profitable business –0.842 ** –0.342 
(0.373) (0.410) 

respondent exceeds median # of farm/farmer visits 1.272 *** 0.787 ** 
  (0.286) (0.328) 
risk tolerance 0.179 *** 0.0248 

(0.0619) (0.0705) 
Constant 6.874 ** –3.812 
 (3.330) (3.988) 
Enterprise dummies YES YES 
Region dummies YES YES 
Observations 1,507 1,507 
McFadden’s adjusted R-squared 0.0449 0.0182 

Note: * p < 0.10; ** p < 0.05; *** p < 0.01. 
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To use the likelihood of land-use conversion values as defined above, we take a random draw from 

a uniform distribution between 0 and 1. If the value of the random draw is less than the farmer’s 

likelihood of land-use conversion, then the proposed land-use change is accepted by the farmer agent 

and the farm is immediately converted to the proposed enterprise. In addition to converting between 

enterprises, the farmer agent also realises the predicted net revenue for that land use as defined by the 

economic component. If the random draw exceeds the likelihood of land-use conversion, then the 

incumbent enterprise is retained until the next time step of the model. 

3. Experimental Section  

To illustrate the variation in the predicted land use, economic outcomes, and environmental impacts 

caused by various approaches to assigning farmers’ likelihood of land-use conversion, we explore the 

effects on landowners in the Hurunui-Waiau catchment in the Canterbury region of New Zealand’s 

South Island (Figure 2). These catchments have a large and diverse set of land uses that are expected to 

see significant changes in the future.  

 

Figure 2. Location of the Hurunui-Waiau catchment. The catchment is located within the 

Canterbury region of New Zealand’s South Island. Planners in the catchment anticipate 

significant changes in land use over the next several decades. 

To provide a sample that encompasses the range of possible outcomes, the model was run using  

50 simulations for each of the three approaches being investigated (i.e., the homogeneous approach, 
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the network approach, and the survey approach). The results in the following section are based on the 

averaged values over all 50 simulations for each of the three approaches. 

The model covers a time horizon of 50 years with ten incremental time steps, each of which 

represent five years. The scenario assumes a real annual increase in farm commodity prices (i.e., milk, 

meat, and timber) of 2%, which is commensurate with the last 50 years of commodity prices [84]. 

Climate and available technology are held constant over the entire model simulation. We note that the 

economic picture is consistent across scenarios and that the strength of milk prices relative to meat and 

timber prices produces a trend toward dairy conversion.  

The land-use map used in the model was captured in June 2010 [85] (Figure 3a), and although the 

map includes seven different land uses, the model focuses on the three key enterprises that represent 

94% of the productive land available within the catchment: dairy, sheep and beef, and plantation 

forestry. The cadastral land parcel boundaries used are derived from Land Information New Zealand 

and represent the cadastral structure of the catchments as at August 2012 (Figure 3b), which was the 

closest database to the 2010 land use map. Farmer agents are only created for farms exceeding 100 ha 

in order to focus on commercially operated enterprises. Productivity zones are delineated by land use 

classification [86] and slope and are classified into productivity zones—flats, foothills, or hills  

(Figure 3c). Any land owned by the Crown (e.g., native forest) is assumed to be non-productive in use 

and hence no farmer agent is created.  

 

Figure 3. Detailed map of the Hurunui-Waiau catchment by (a) 2010 land use; (b) 2012 

cadastral land parcels; and (c) productivity zone. The data layers are used within the model 

to define the initial land use, farm locations and extents, and the expected productivity for 

each farm. 
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The landscape provides a range of geospatial information about the catchment being modelled, such 

as cadastral boundaries, initial land use, and productivity zones. Using the cadastral boundaries, a 

farmer agent is generated at the centre of each cadastral parcel and makes decisions for the entire 

cadastral parcel (i.e., farm). This agent holds a range of social and economic attributes such as age, 

education, and the size of social networks. These attributes are defined empirically for all farmer 

agents through the Survey of Rural Decision Makers. For the homogeneous and network approaches, 

each agent’s initial likelihood of land-use conversion is set to 20%; in the case of the survey approach, 

each agent’s likelihood of land-use conversion is defined econometrically as described above. 

For the survey approach, there is significant variation in the farmer agents’ likelihood of land-use 

conversion between each of the three enterprises. Table 3 summarises this variation over the  

50 randomly generated populations used in the model. Farmers who undertake forestry have the lowest 

likelihoods of land-use conversion. These values reinforce two characteristics forestry, namely, its low 

intensity (an average likelihood of de-intensification at 0% highlights a lack of less-intensive options) 

and that farmers undertaking forestry are less likely to move to more intensive land uses (13% 

compared with 26% and 31% for sheep and beef and dairy farmers, respectively).  

Table 3. Mean values across the 50 simulations for the survey approach using ARLUNZ. 

Mean values, standard deviation, and confidence intervals for this figure are available in 

Supplementary Material 2. 

Forestry Sheep and Beef Dairy 

Intensify 12.99% 26.12% 31.06% 
De-Intensify 0.00% 29.10% 26.99% 

The simulated likelihoods of land-use conversion to more and less intensive enterprises for sheep 

and beef farmers are more balanced (26.12% vs. 29.10%, respectively), but sheep and beef farmers are 

more likely to de-intensify their land use over the next five years. The simulated likelihoods of  

land-use conversion for dairy farmers highlight the production-focused approach commonly associated 

with the enterprise: alongside a 27% probability that they will de-intensify their land use, there is a 

31% chance that they would further intensify their land use over the next five years. However, the 

model does not include a more intensive land use, so while this intention is accounted for within the 

model, it is not currently utilised. 

4. Results  

In this section, we compare results obtained after defining the likelihood of land-use conversion in 

each of the ways described above. At the catchment level, we project that the area of both dairy and 

forestry will increase over time (Figure 4). At the production zone level, dairy is estimated to increase 

in both the plains and foothills, while forestry is estimated to expand in the foothills and hills. The area 

of sheep and beef farms is estimated to decline in all three productivity zones. 

For the homogenous approach, the area allocated to dairy increases from the initial 16,900 ha to 

100,450 ha over the 50-year period (with a 95% Confidence Interval, hereafter 95% CI, of 1670 ha). 

This expansion is split between the highly productive plains region of the catchment and the less 

productive foothills.  
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Although such an expansion in dairy is large, it is not unrealistic. For example, the area of land 

allocated to dairy in Canterbury increased by 172% between 1996 and 2008, and it is projected to 

expand by an additional 51% by 2020 [87]. Moreover, the Hurunui-Waiau catchment have already 

witnessed conversion to dairy as forests in the highly-productive flat areas of the catchment reached 

harvest age. Third, there are ongoing discussions of implementing the Hurunui Water Project, which 

would expand the area of irrigated land by an additional 41,500 ha, bringing the total irrigated area of 

the Hurunui-Waiau catchment to over 72,000 ha [88].  

 

Figure 4. Regional land use area for “Homogenous” baseline projection. Mean values, 

standard deviation, and confidence intervals for this figure are available in Supplementary 

Material 3. 

The modelled change in land use relative to the homogeneous approach is shown in Figure 5. For 

both dairy and sheep and beef operations, both approaches to defining the likelihood of land-use 

conversion trend positively and begin to converge by 2060 (Figure 5, C4). Divergence between the 

network and survey approaches by 2060 can only be found in forestry and then only for the network 

approach which results in a level of land use similar to the homogeneous baseline.  

 

Figure 5. Cont. 
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Figure 5. Relative change in regional land use area from “Homogenous” baseline 

projection. Mean values, standard deviation, and confidence intervals for this figure are 

available in Supplementary Material 3. 

Using a sub-regional scale by productivity zone, the network approach results in impacts that are 

similar to the homogenous approach. In addition, the survey approach always results in a more rapid 

change in land use relative to the baseline and to the network approach. Under the survey approach, 

farmer agents make changes to their farms sooner than under the network approach, which may 

explain, which explains the rapid growth in dairy in the foothill productivity zone (Figure 5, A2) and 

forestry in the hills productivity zone (Figure 5, C3).  

In the model, forestry at a sub-regional scale is significantly affected by the change in approach to 

define the farmer’s likelihood of land-use conversion. For example, the area of forestry within the 

plains productivity zone significantly reduces for the network approach when compared with both the 

survey approach and the homogenous baseline (Figure 5, C1). This outcome is because the more 

intensive land uses on the plains (such as dairy or sheep and beef) are more profitable, which is 

translated into the farmer’s networks, particularly their geographic network. The increased profitability 

within their geographic network alters the behaviour of the forestry agents to increase the likelihood of 

their conversion to more intensive land uses. 

4.1. Farm Net Revenue 

For reference, all monetary figures from the model are reported in 2012 New Zealand dollars. Farm 

net revenue is estimated to increase over time under all approaches (Table 4), increasing from  

$153 million/yr in 2010 to between $745 and $807 million/yr by 2060 (95% CIs of $8 million and  

$6.8 million respectively). The increase over time stems from the assumption that all commodity 

prices and yield combinations (i.e., farm revenue per hectare) increase by 2%/yr and the expansion of 

dairy. Interestingly, while the survey and network approaches vary, the difference in net revenue for 

the two approaches at a catchment scale over time is negligible ($807 vs. $804 million/yr by 2060 

respectively, with 95% CI’s of $6.8 million/yr and $8.2 million/yr respectively).  
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Table 4. Total annual farm profits for Hurunui-Waiau catchment (million NZD/yr).  

Mean values, standard deviation, and confidence intervals for this figure are available in 

Supplementary Material 3. 

Year 
Total Dairy Sheep and Beef Forestry 

Homo Networks Survey Homo Networks Survey Homo Networks Survey Homo Networks Survey 

2010 $153 0.0% 0.0% $30 0.0% 0.0% $115 0.0% 0.0% $7 0.0% 0.0% 

2020 $214 0.9% 6.6% $83 1.2% 15.3% $110 1.8% –6.8% $21 0.0% 25.0% 

2030 $308 3.1% 7.8% $156 4.3% 15.7% $118 1.7% –10.3% $34 2.9% 19.0% 

2040 $421 4.5% 8.7% $246 7.2% 16.0% $126 1.6% –10.5% $49 –2.1% 9.3% 

2050 $568 4.9% 8.4% $369 7.1% 14.0% $139 0.0% –14.9% $60 1.6% 13.0% 

2060 $745 7.3% 7.7% $514 11.4% 12.7% $153 –3.4% –15.9% $78 –1.3% 9.3% 

While net revenue at a catchment scale is similar, the distribution in net revenue between the three 

enterprises differs. Total dairy profits are estimated to increase from $30 million in 2010 to between 

$514 and $589 million (95% CIs of $9.1 million and $8.3 million respectively) in 2060 (Table 4). The 

largest increases are estimated to occur under the survey approach, where annual profits are, on 

average, 15% larger than under the homogenous approach.  

The expansion of forestry in the catchment also yields increased net revenue from an initial  

$7 million in 2010 to between $77 and $86 million (95% CI of $3.4 million and $3.4 million 

respectively) in 2060. Again, the survey approach is estimated to yield increased profits (10% or 

more/yr) relative to the homogenous approach. Profits in sheep and beef farming are estimated to 

increase from $115 million in 2010 to between $132 and $153 million (95% CI of $2.9 million and 

$3.3 million respectively) in 2060 even though the area devoted to this land use is expected to contract 

because of yield and commodity price changes that increases the per hectare revenue of sheep  

and beef farming.  

Interestingly, the distribution in net revenue for sheep and beef under the network approach is 

estimated to be higher than under the homogenous approach up until 2060 (Table 4). The opposite is 

found for the survey approach, which sees a reduction in the level of profit for sheep and beef 

compared with the baseline.  

4.2. Environmental Outputs 

As land-use change impacts key environmental indicators, the ARLUNZ model captures a range of 

environmental outputs such as GHG emissions, forest carbon sequestration, nitrogen (N) and 

phosphorus (P) loss [36]. As seen in Table 5, the expansion of dairy—which often has a higher 

stocking rate per hectare than sheep and beef—causes an 18% increase in livestock GHG emissions 

compared with the homogeneous approach. The network and survey approaches show additional 

livestock GHG emissions of 6% and 3%, respectively. 

This growth in livestock GHGs are offset by increases in carbon sequestration through forestry 

under two of the three approaches. Specifically, the networks approach shows a reduction in forest 

carbon sequestration of 2% relative to the baseline while the survey approach shows a 9% increase in 

the amount of carbon sequestered. This result highlights the detrimental effects of the network 
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approach on forestry in more marginal production zones. Even so, the overall expansion of forestry in 

all three approaches results in a net GHG reduction of between 50% and 68% between 2010 and 2060.  

Table 5. GHG outputs for Hurunui-Waiau catchment (tons/yr). Mean values, standard 

deviation, and confidence intervals for this figure are available in Supplementary Material 3. 

Year 
Livestock GHGs Forest Carbon Sequestration Net GHGs 

Homogenous Network Survey Homogenous Network Survey Homogenous Network Survey 

2010 988,619 988,619 988,619 –200,686 –200,686 –200,686 787,933 787,933 787,933 

2020 1,009,062 1,027,099 1,007,832 –517,043 –502,681 –677,464 492,020 524,418 330,368 

2030 1,052,232 1,080,009 1,060,729 –682,562 –697,085 –833,184 369,670 382,924 227,545 

2040 1,080,496 1,125,738 1,113,336 –807,773 –792,856 –896,421 272,723 332,881 216,915 

2050 1,134,640 1,179,598 1,164,413 –810,228 –821,304 –930,562 324,412 358,294 233,851 

2060 1,166,265 1,238,713 1,201,127 –867,407 –847,212 –947,868 298,859 391,501 253,259 

In contrast, the expansion of dairy farming in the plains and foothills, results in a large increase in 

nutrient loadings that could impact the environmental quality of the local waterways (Table 6). We 

estimate that N and P will increase by 86% and 43%, respectively, over the next 50 years under the 

homogenous baseline. The networks approach predicts increases in both N and P by an additional 8% 

relative to the baseline, while the survey approach predicts additional increases of 8% and 5%, 

respectively. Consequently, while the expansion of dairy farming in the catchment produces economic 

benefits, the negative impacts on water quality are non-negligible. 

Table 6. Nitrogen and Phosphorus outputs for Hurunui-Waiau catchment (tons/yr). Mean 

values, standard deviation, and confidence intervals for this figure are available in 

Supplementary Material 3. 

Year 
Nitrogen Phosphorus 

Homogenous Network Survey Homogenous Network Survey 

2010 4039 4039 4039 37 37 37 

2020 4899 4970 5171 40 41 41 

2030 5701 5882 6115 44 45 45 

2040 6339 6652 6899 46 49 49 

2050 7009 7370 7599 50 53 53 

2060 7517 8136 8111 53 57 56 

5. Conclusions  

We anticipated that the two different approaches to defining the likelihood of land-use change 

would significantly affect model outcomes. However, the results from this experiment show that the 

approach has a limited effect at a catchment scale for both the distribution of land use and the resulting 

total net revenue. Nevertheless, the differing distributions of land use across productivity zones suggest 

that the approach to estimating the likelihood of land-use change ultimately does matter.  

Simulating the social process of information transfer between agents through the network approach 

resulted in less economically optimal land use for all three enterprises. For dairy, the network  
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approach predicts less conversion vis-à-vis the survey approach. Still, results for both approaches 

converge by 2060.  

The network approach to defining the likelihood of land-use change profoundly impacts model 

outcomes for sheep and beef farmers in the hill productivity zone. Within this zone, it appears that the 

level of productivity is very similar at a per hectare level for each sheep and beef farmer. This 

similarity of profitability for these farmer agents reduces the likelihood of conversion to the more 

profitable enterprise of forestry within the network approach. For the small amount of forestry on the 

highly productive plains in the initial state of the model, the network approach enabled the farmer 

agents to easily recognise significant increases in average net revenue if they converted to different 

enterprises, primarily dairy. This resulted in a steady decrease in the area of forestry on the plains. In 

the foothill zone, many sheep and beef farms convert to dairy.  

Defining the agents’ likelihood of land-use conversion through the survey approach provides 

greater deviation from the baseline for all sub-regional results. This deviation is particularly evident in 

the early steps of the model simulation, where variations in area of up to 55% compared with the 

baseline are observed. This result highlights the design of the survey approach, where land that suits 

the two ends of the spectrum of land-use intensity—dairy and forestry—quickly sees the influx of new 

farms, in contrast to the slow changes that occur under the network approach. 

The results for the survey approach highlight two interesting observations. First, even with the 

significant increase in net revenue when converting forestry to other enterprises in the plains 

productivity zone, the amount of forestry in this zone increases under the survey approach. This result 

is embedded in the initial land-use conversion values defined for a move to a more intensive enterprise. 

For example, regardless of the significant increase in net revenue, the survey found that foresters are 

unlikely to convert to a more intensive enterprise, highlighting the static nature of the survey approach, 

which—unlike the dynamic network approach—is unable to account for changes in preference  

over time. 

A second interesting result is the fact that substantively different approaches to defining the 

likelihood of land-use conversion produce similar trends. This observation raises questions that cannot 

be fully answered in this paper: If the attributes of a population can be reliability and accurately 

captured through surveys, can the agent-based model that uses these data be simplified by removing 

the need to simulate social processes? And would this facilitate greater uptake among end users 

because the process used to define behaviour within an agent-based model is easier to understand?  

Malanson and Walsh [29] recently noted the problems of calibration and validation stemming from 

complex interactions in agent-based models. While agreeing that the challenge for applied agent-based 

models is in correctly parametrising the agents, we found that the survey approach provided enough 

detail to generate reliable populations of agents and did not over parametrise the model.  

We believe that model design should be informed by model purpose. Where comprehensive surveys 

are available, we advocate using empirical data to define an agent’s likelihood of a type of behaviour. 

However, if there is limited information about the size and importance of a farmer’s social and 

geographical networks or if a key purpose of the model is to account for the effects of these networks, 

then developing the structure within the model to simulate, test, and document the effects of changes in 

the networks is preferred. 
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For LULCC models—especially those in applied settings—exploring the impacts of different 

approaches to modelling the likelihood of land-use conversion is critical. Understanding the effects of 

key model parameters on economic, social, and environmental factors will facilitate the continued 

acceptance of ABM of LULCC among end users and will improve the results generated by both the 

economic and geographic ABMs of LULCC. While the results outlined here will not fully resolve the 

disciplinary differences, they do outline the need to account for heterogeneity in the predicted agent 

behaviours for both disciplines. 
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