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Abstract: The objectives of this study are to: (1) evaluate accuracy of tree height 

measurements of manual stereo viewing on a computer display using digital aerial 

photographs compared with airborne LiDAR height measurements; and (2) develop 

an empirical model to estimate stand-level aboveground biomass with variables derived 

from manual stereo viewing on the computer display in a Cambodian tropical seasonal 

forest. We evaluate observation error of tree height measured from the manual stereo 
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viewing, based on field measurements. RMSEs of tree height measurement with manual 

stereo viewing and LiDAR were 1.96 m and 1.72 m, respectively. Then, stand-level 

aboveground biomass is regressed against tree height indices derived from the manual 

stereo viewing. We determined the best model to estimate aboveground biomass in terms 

of the Akaike’s information criterion. This was a model of mean tree height of the tallest 

five trees in each plot (R2 = 0.78; RMSE = 58.18 Mg/ha). In conclusion, manual stereo 

viewing on the computer display can measure tree height accurately and is useful to estimate 

aboveground stand biomass. 

Keywords: aerial photograph; REDD+; stereo viewing; tropical forest; Cambodia 

 

1. Introduction 

Reducing emissions from deforestation and forest degradation in developing countries, especially in 

tropical regions, is recognized as a way to mitigate climate change. For example, 

the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report states that 

deforestation in the forest sector is the major factor in total carbon emissions, and tropical forest has 

the greatest mitigation potential in such sector [1]. An appropriate framework to reduce deforestation 

and forest degradation is needed [2]. Reducing emissions from deforestation and forest degradation, 

and the role of conservation, sustainable management of forests and enhancement of forest carbon 

stocks in developing countries (REDD+), is one example of a framework for climate change 

mitigation. REDD+ is expected to establish incentives for developing countries to protect and better 

manage their forest resources, by creating and recognizing financial value for the additional carbon 

stored in trees or not emitted to the atmosphere [3]. REDD+ activities must be based on scientifically 

robust forest monitoring systems [4]. 

Currently, remote sensing with ground-based inventories is recommended for forest monitoring 

systems, because remotely sensed data can be collected easily even for difficult places to access for 

field surveys, and the data acquired have consistency and transparency [5]. Light detection and ranging 

(LiDAR) is well suited to tree height, biomass, and other forest structural attribute measurement and 

estimation (e.g., [6–8]), and is currently the most accurate remote sensing system to obtain specific  

site-level data on forest structure and aboveground biomass. Although aircraft sensors such as LiDAR 

cover relatively small areas, forest carbon stocks calculated from airborne LiDAR can be used as 

values representative of each forest area to estimate those stocks across a country [9]. However, high 

acquisition cost and data volume hinder repeated monitoring of large forest areas [10]. Therefore, 

investigations of alternative approaches using remote sensing data are useful for forest monitoring 

systems. In addition to airborne LiDAR estimation, there are a lot of previous studies, which estimated 

aboveground biomass with different types of remote sensing data in tropical forests. Optical satellite 

data has been frequently used to obtain aboveground biomass in forests (e.g., [11–13]). Radar remote 

sensing has also been used to quantify forest biomass (e.g., [14–18]). However, biomass estimation 

with SAR in dense tropical forests is still a challenging task although a new approach to estimate and 

map aboveground biomass in tropical forests is now investigated in the BIOMASS mission [19]. 
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Aerial photographs have been used for many decades in forest inventory [20]. Quantitative and 

qualitative forest characteristics have been measured by manual methods of stereo photogrammetry  

(3D methods hereafter) using aerial photographs since the 1940s [21]. Progress in computer science, 

however, enables production of digital surface models (DSMs) automatically from a stereo pair of 

digital aerial photographs using stereo matching algorithms similar to those derived from airborne 

LiDAR first returns. A DSM from high spatial resolution digital aerial photographs can predict tree 

height, biomass, and other forest structural attributes very accurately, as accurate as airborne LiDAR 

estimation [22,23]. Progress in computer science also facilitates manual 3D stereo viewing methods on 

computer displays using digital aerial photographs and shuttered glass (manual stereo viewing 

hereafter), similar to conventional 3D methods using misreading-prone and a skill-demanding parallax 

bar on a hardcopy image. Manual stereo viewing is intuitive and there is no need for technical skills for 

measurement. Thus, investigation of tree height measurement and biomass estimation accuracy of 

manual stereo viewing may furnish another means for estimating carbon stocks and another option for 

forest monitoring systems. Nevertheless, there is very little research on this accuracy. 

The objectives of our study are to: (1) evaluate accuracy of tree height measurement of manual 

stereo viewing on a computer display using digital aerial photographs compared with airborne LiDAR 

height measurement; and (2) develop an empirical model to estimate stand-level aboveground biomass 

with variables derived from manual stereo viewing for a tropical seasonal forest. 

2. Study Area and Remote Sensing Data 

2.1. Study Area 

The study area is in Kampong Thom Province, central Cambodia (Figure 1). This province is 

1,244,764 ha in area. The rainy season is May through October and the dry season November through 

April, with 1700 mm annual precipitation [24]. Topography is lowland and nearly flat, with elevations 

from 1 to 80 m above sea level. The study area has three forest types, evergreen, degraded evergreen, 

and deciduous. Degraded is defined here as an evergreen forest with evidence of illegal logging (e.g., 

stumps) from field survey. 

Figure 1. Study area, Kampong Thom Province, Cambodia. 

 

Cambodia

±
0 100 20050

km

Kampong Thom



Land 2014, 3 1273 

 

 

2.2. Remote Sensing Data 

We used aerial photographs and airborne LiDAR data. Data from both were acquired on 18–21 January 

2012. No deciduous trees were in leaf-off condition. The measurement platform was equipped with a 

Global Positioning System (GPS) and an Inertial Measurement Unit (IMU). Altitude and tilt 

information of each aerial photograph and airborne LiDAR data were acquired. Camera focal length was 

51.2499 mm. Image size was 8984 × 6732 pixels and pixel size was 6.0 μm inside the camera. Mean 

altitude of aerial photographs was 510 m above sea level. Airborne LiDAR data were acquired by 

an ALTM3100 system (Optech, Toronto, ON, Canada) simultaneous with aerial photography. Pulse 

frequency was 100 kHz and first return density was 26 points/m2. Details of aerial photographs 

and airborne LiDAR data are described in Table 1. From first and last returns, we constructed  

a 1-m resolution grid of a digital canopy height model (DCHM). The DCHM was calculated 

by subtracting a digital terrain model (DTM) from a digital surface model (DSM). Standard practices 

were followed to create the DTM [25]. The DSM was created from the highest first return value of 

pulses for each grid cell. 

Table 1. Details of aerial photograph and airborne LiDAR data acquisition. 

Aerial Photograph Acquisition 

CCD 
DALSA Sensor + 60.5 Mp Image Sensor 

8984 × 6732 Full Frame CCD Color Image Sensor 
Number of pictures 16 

Acquisition date 18–21 January 2012 
Focal length (mm) 51.2499 

Scale (pixels) 8984 × 6732 
Pixel size (μm) 6.0 

Ground resolution (cm) 7 
Acquisition altitude (m) 478–545 

Airborne LiDAR Data Acquisition 

LiDAR system ALTM 3100 
Flight altitude (m) 510 

Pulse frequency (kHz) 100 
Scan frequency (kHz) 53 

Flight speed (m/s) 25 

3. Methods 

First, we conducted field survey. Trees located along a roadside were measured for the evaluation of 

tree height measurements from manual stereo viewing. Field data were also collected within 

permanent plots. Aboveground biomass of each permanent plot (Mg/ha) were calculated from field 

data. Then, we evaluated observation error of tree height measured from the manual stereo viewing 

based on field measurements. We performed tree height measurements by manual stereo viewing using 

digital aerial photographs. The measurements were compared with tree height measurements from 

field survey. Finally, we developed biomass estimation models based on tree height measurements 
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from manual stereo viewing. Aboveground biomass was regressed against indices calculated from 

height measurements using by manual stereo viewing using digital aerial photographs  

3.1. Field Survey 

To evaluate tree height measurement accuracy, we selected 17 trees in an evergreen forest and 

measured the heights during field survey. In that survey, tree height measurement in permanent plots is 

likely to include relatively large error, because it is often difficult to see treetops in dense forests like 

evergreen. Therefore, we selected trees located along a roadside and not within permanent plots for 

evaluating measurement accuracy. We used Vertex III (Haglof Sweden, Långsele, Sweden) for all tree 

height measurement. Measurements were done twice and we considered the average of these as 

tree height. 

There were 38 permanent plots in the study area, which included 32 plots of 0.09 ha and six of  

0.08 ha (Figure 2; 12 in evergreen forest, 11 in degraded evergreen forest, and 15 in deciduous forest). 

The location of all plots was measured by GPS. Because the GPS instrument we used was not a 

differential GPS receiver, the accuracy of plot corner coordinates determined by the GPS instrument 

was open to question. Therefore, we checked these coordinates in the field in May 2013. We selected 

the most reliable GPS corner coordinated for each plot comparing with a tree position map created 

from field measurements, aerial photographs, and forest structures in the field. From the selected 

corner, we determined the other corners mathematically from the size and azimuth direction of each 

plot. We measured DBH (Diameter at Breast Height), tree height and tree species for all trees that were 

larger than 5 cm in DBH. Then we calculated the aboveground biomass of each tree using the biomass 

estimation model developed by Brown [26]; 

Biomass = 42.69 − 12.800DBH + 1.242(DBH)2 (1)

where Biomass = aboveground biomass (kg), DBH = diameter at breast height (cm). 

Figure 2. Location of permanent sample plots. 
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3.2. Evaluation of Tree Height Measurement Accuracy of Manual Stereo Viewing 

Tree height measurement was performed for 17 selected trees by manual stereo viewing, using 

digital aerial photographs and a DCHM from airborne LiDAR data. Although not all trees were 

identified, the identified species of measured trees were Sindora siamensis, Diospyros bejaudii, 

Peltophorum dasyrhachis, Dipterocarpus alatus, Lophopetalum duperreanum and Chionanthus 

thorelii. This measurement was done using Stereo Viewer Pro version 2.02 (Photec, Sapporo-shi, 

Japan). This software requires altitude and tilt information of each aerial photograph to conduct 

manual stereo viewing for the measurement. Tree height was calculated by subtracting tree base 

elevation from tree top elevation. For the 17 trees, we defined road elevation as tree base elevation, 

because the topography was nearly flat and all trees were located along the roadside. First, 

an interpreter measured road elevation near the trees and detected their tops, then each tree top 

elevation was measured. The spatial distribution (longitude, latitude, and altitude) of each tree top was 

automatically registered and tree height was automatically calculated by Stereo Viewer Pro. 

Tree height measurement of the DCHM from airborne LiDAR data was done using ArcMap  

version 10.1 (ESRI, New York, NY, USA). We defined the highest DCHM height of each tree as tree 

height. We superimposed the treetop data layer from aerial photographs on the DCHM layer to 

confirm that we had measured the same trees with Stereo Viewer Pro and ArcMap. 

We defined as error the difference between tree height measured via manual stereo viewing or 

DCHM from airborne LiDAR and the field survey height. To evaluate the accuracy of tree height 

measurement, we compared Root Mean Square Error (RMSE) of manual stereo viewing and that of 

DCHM from airborne LiDAR data. RMSEs were calculated as follows. 


=

−=
n

i
ii xXn

RMSE
1

2)(
1

 (2)

where Xi = tree height measured from field survey of the ith tree; xi = tree height measured from  

manual stereo viewing or DCHM from airborne LiDAR data of the ith tree; and n = number of  

measured trees (i.e., 17). 

3.3. Stand-Level Aboveground Biomass Estimation 

Stand-level aboveground biomass estimation models were developed with 38 permanent plots.  

This biomass from field survey were used as response variables. Tree height indices and a tree density 

index derived from manual stereo viewing were investigated as explanatory variables. Tree height 

measurement with manual stereo viewing was done for each plot and all visible trees from aerial 

photographs were measured. Tree height indices and a tree density index were calculated from results 

of these tree height measurements. We developed two estimation models using two types of 

explanatory variables; one is based on all measured trees from manual stereo viewing and the other is 

based on specific parts of them. 

Based on all measured trees from manual stereo viewing, we investigated three tree height indices, 

which were mean tree height, mean overstory height and median tree height of each plot. We defined 

tree height indices as follows. Mean tree height is that of all trees in each plot. Mean overstory height 

is mean tree height of the tallest 50% trees in each plot. Median tree height is for each plot. In addition, 
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we examined whether a combination model of tree height indices and tree density index improved 

the biomass estimation model. We used tree density per hectare calculated by visible trees from aerial 

photographs in each plot as a tree density index. 

Apart from the estimation model using all measured trees, we tested how many trees we should 

measure per plot to obtain a certain accuracy for the biomass estimation. We investigated mean tree 

height of the tallest x trees in each plot as tree height indices (x from 1 to 16). Mean height of all 

measured trees were used, if the number of measured trees was less than x. 

To develop estimation models, we tested candidate estimation models as follows. 

log(Biomass) = logα + βlogH (3)

log(Biomass) = logα + βlogH + γlogN (4)

Biomass = αH + β (5)

Biomass = αH + βN + γ (6)

where H is the tree height index (m), N is the tree density index (trees/ha), and α, β and γ are regression 

coefficients. The best estimation models were determined for each type of explanatory variables in 

terms of the Akaike’s information criterion (AIC). For the aboveground biomass estimation models, 

RMSE of observed and predicted aboveground biomass were also calculated. All analyses were 

conducted using R software version 2.15.2. 

4. Results 

4.1. Tree Height Measurement Accuracy of Manual Stereo Viewing 

The results of tree height measurement using manual stereo viewing and DCHM from airborne 

LiDAR data are shown in Figure 3. In the field survey, tree heights of the 17 trees ranged from 11.1 m 

to 39.9 m, and mean height was 24.8 m. In the measurement of manual stereo viewing and DCHM 

from LiDAR, tree heights were from 13.0 m to 39.5 m and 10.4 m to 38.3 m, respectively, and 

corresponding mean heights were 24.8 m and 23.7 m. RMSEs of manual stereo viewing and of 

the DCHM from airborne LiDAR data were 1.96 m and 1.72 m, respectively. 

Figure 3. Result of tree height measurement in manual stereo viewing and DCHM from 

LiDAR. (a) Manual stereo viewing; (b) DCHM from LiDAR data. 
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4.2. Stand-Level Aboveground Biomass Estimation 

In the field survey, mean stand-level aboveground biomass of 38 plots was 170.94 Mg/ha, with 

a range from 8.98 Mg/ha to 481.80 Mg/ha. The number of measured trees per plot ranged from five to 

42, and the average was 16.55. Figure 4 shows the tree height distribution of all trees from the 

measurement of manual stereo viewing and the field survey. Mean tree height of the measurement of 

manual stereo viewing was 15.7 m and that of the field survey was 10.5 m. Kolmogorov-Smirnov test 

showed that tree height distribution measured from manual stereo viewing was significantly different 

from that measured from field survey (p < 0.05). 

Figure 4. Empirical cumulative distribution function and tree height distribution for all 

measured trees from the manual stereo viewing and the field survey.  

 

Table 2 shows the result of regression analysis based on all measured trees from manual stereo 

viewing. This analysis showed that logarithmic mean overstory height (Equation (3)) was the best 

single explanatory variable for biomass estimation (AIC = 429.2 and R2 = 0.74). RMSE of observed 

and predicted stand-level aboveground biomass was 63.36 Mg/ha (Figure 5a). For combined tree 

density and tree height indices, logarithmic mean tree height and tree density per hectare 

(Equation (4)) were selected as the best aboveground biomass estimation model (AIC = 426.1  

and R2 = 0.77); RMSE was 59.28 Mg/ha (Figure 5b). All combination regression models of tree density 
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Table 2. Results of regression analysis for biomass estimation model. 

 Variables AIC R2 RMSE (Mg/ha) RMSE (%) Link 

Single 

Hmean 429.3 0.74 63.45 37.12 identity 
Hoverstory 429.7 0.74 63.78 37.31 identity 
Hmedian 436.3 0.69 69.62 40.73 Identity 

N 480.5 0.00 124.44 72.80 identity 
log(Hmean) 432.0 0.72 65.77 38.48 log 

log(Hoverstory) 429.2 0.74 63.36 37.07 log 
log(Hmedian) 438.3 0.67 71.47 41.81 log 

log(N) 480.5 0.00 124.46 72.81 log 

Multiple 

Hmean, N 428.1 0.76 60.89 35.62 identity 
Hoverstory, N 431.6 0.74 63.77 37.31 identity 
Hmedian, N 435.6 0.71 67.14 39.28 identity 

log(Hmean), log(N) 426.1 0.77 59.28 34.68 log 
log(Hoverstory), log(N) 430.6 0.75 62.91 36.80 log 
log(Hmedian), log(N) 435.3 0.71 66.93 39.15 log 

Hmean: mean tree height, Hoverstory: mean overstory height, Hmedian: median tree height, N: tree density per hectare. 

Figure 5. Observed and predicted biomass estimation: (a) one variable; (b) two variables. 
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Figure 6. Result of regression analysis for mean tree height of the tallest x trees in each  

plot: (a) AIC (x from one to 16); (b) Observed and predicted biomass estimation for the  

best model (x = 5). 
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These results show that combination models of tree height indices and tree density index can improve 

aboveground biomass estimation accuracy, although the tree density index alone cannot be used to 

estimate that biomass. Regression analysis using the tallest x trees showed that logarithmic model 

using the tallest five trees per plot was the best within the tallest x trees models and the tallest five trees 

was better than the best combination model using all measured trees in terms of RMSE, AIC and R2. 

Moreover, the logarithmic model using the tallest five to ten trees were better than regression model 

using all measured tree. It seems to be preferable because of time saving in practical use. We conclude 

that the measuring the tallest five to ten trees per plot was enough to obtain a certain accuracy for stand 

level biomass estimation, although it may be difficult to select the tallest five trees among other 

candidate trees within plots. 

Compared with previous studies using airborne LiDAR, aboveground biomass estimation from 

manual stereo viewing can be comparable with that of airborne LiDAR data. Mascaro et al. [30]  

reported that the accuracy of aboveground carbon density estimation using these data was R2 = 0.84 

and RMSE = 17 Mg·C/ha, corresponding to 17.6% of the mean density in Panama. For biomass 

estimation in the United States, Lefsky et al. [6] reported R2 = 0.80 and RMSE = 75.1 Mg/ha, 

corresponding to 31.8%. These studies suggest that the accuracy of aboveground biomass estimation 

using tree height from manual stereo viewing in our study (R2 = 0.78 and RMSE = 58.18 Mg/ha, 

corresponding to 34.0%) is comparable with that of airborne LiDAR estimation, especially in terms 

of R2. 

Being comparable with aboveground biomass estimation using airborne LiDAR, manual stereo 

viewing can be used for aboveground biomass estimation in forest management. Brown et al. [31] 

showed that an aerial photograph with ground-based inventory approach was three times more cost 

effective than conventional field methods. In addition, measurement data of manual stereo viewing are 

recorded in digital format, in contrast to conventional 3D methods on hard copy images. This leads to 

robust transparency of biomass estimation in REDD+ forest monitoring systems, because measurement 

results can be confirmed by a third party. Operationally, manual stereo viewing can be used as 

references for REDD+. Asner et al. [32] demonstrated that biomass estimated from airborne LiDAR 

and field measurement was available as reference data for large area biomass estimation. The 

estimated biomass using manual stereo viewing may be available as the alternative of airborne LiDAR 

data, which is used by Asner et al. [32]. In conclusion, manual stereo viewing is a method of moderate 

accuracy in biomass estimation, with cost effectiveness and robust transparency, and is useful for 

forest monitoring systems in tropical regions. 

However, there are limitations in this biomass estimation approach. We assumed no variation in 

wood specific gravity for biomass estimation models although it is an important predictor for biomass 

estimation [33]. This could lead estimation errors when wood specific gravity varies according to 

environmental change. In addition, this method is still needed to be investigated for REDD+ forest 

monitoring systems. Further studies to improve the accuracy and utility of this method should be 

pursued. Tree height measurement of manual stereo viewing requires roads near forests or gaps in 

forests as a substitute for tree base elevation. Studies are required to assess the utility of this method 

for the forests, in which there are neither gaps nor roads. Also, studies in steep forests are required to 

validate the utility of the method for various kinds of topography.  
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6. Conclusions 

We investigated accuracy of tree height measurement and stand-level aboveground biomass 

estimation of manual stereo viewing on a computer display using digital aerial photographs in 

a Cambodian tropical seasonal forest. Accuracy of tree height measurement of manual stereo viewing 

was nearly the same as measurement of the DCHM from airborne LiDAR data. Also, the model using 

variables derived from manual stereo viewing was comparable with previous studies that used LiDAR 

data to estimate biomass and aboveground carbon density. In conclusion, manual stereo viewing on the 

computer display can measure tree height accurately and is useful to estimate aboveground 

stand biomass. 
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