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Abstract: Tranquility is typically associated with low noise levels and remote natural areas. Various
methods for preserving potentially tranquil places have been proposed, although these typically
involve setting aside places with low noise levels located in remote areas. To gain the benefits of
tranquility in accessible urban areas, we need to identify the characteristics of tranquil spaces. This
study focuses on the landscape-based, visual aspects of the phenomena. We investigated the role of
visual context using a nationwide dataset of crowdsourced photographs from Sweden. Text mining
identified personal perception and accompanying photographs identified the physical features. The
photographs were characterized by time period and landscape conditions using computer vision
technology. We found that waterbodies consistently enhanced tranquil views, while grass, flowers,
and other dense vegetation were generally not well connected. Trees were positively correlated during
daylight hours but had a negative impact at night. Dynamic objects such as people and vehicles
were negatively associated, potentially due to aural considerations. Their effect was less significant
during hours when noise would generally be less of a factor. This study provides insights for
future research and design practices aimed at promoting tranquil experiences in urban environments
and demonstrates the potential for crowdsourced data to help understand the qualities of built
environments as perceived by the public.

Keywords: tranquil place; perceived environment; social media; computer vision; semantic segmen-
tation; visual landscape of tranquility; quietness; Flickr

1. Introduction

Tranquil places have been characterized as pleasant and calming environments that can
provide recreational and restorative benefits to people [1,2]. Previous studies have noted
positive associations between “tranquility” and human health through stress reduction [3],
emotional and attention restoration [4], and pain relief [5]. These benefits to public health
have encouraged policymakers to delimit and protect areas that can provide a tranquil
experience. For example, the European Union has an Environmental Noise Directive (END)
that advances the notion of “quiet areas” and requires EU member states to identify, map,
and formulate strategies to protect such places [6]. These “quiet zones” are frequently
identified by their (lack of) proximity to anthropogenic noise sources such as highways
or residential or industrial facilities [7] and are therefore typically far removed from daily
urban life. Although well-intentioned, these places have limited utility in terms of their
effect on public well-being because few people can experience their benefits. In addition,
quiet areas focus on aurally defined places; we suspect that there are also visually driven
considerations in assessing tranquil places. In this study, we focus on the landscape-based,
visual aspects of the phenomena.
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A host of previous studies have proposed multiple ways to assess tranquility and
visual context [8–10]. The tranquil experience has been recognized as a process of multi-
sensorial interactions [2] which include both acoustic and visual factors [9,11]. Hunter
et. al. (2010) noted that tranquil views increased connectivity within the auditory cortex,
which facilitated a feeling of tranquility despite being situated in environments where
the acoustic characteristics resemble noise [11]. However, the ways in which different
landscape elements influence the determination of tranquility remain unclear. Because
tranquility is a personal construct, traditional data collection methods (personal survey
interactions) are usually costly, time-consuming, site-specific, and difficult to generalize.

In this study, we propose a big-data approach to quantify what makes a tranquil place
from the perspective of the visual landscape. We analyze image-based and text-based
crowdsourced posts to identify areas in urban settings that have been noted to promote a
state of tranquility. Content analysis of the images helps to determine the key landscape
attributes of these settings in support of improving landscape design decisions. The use of
non-experimental, observational data means our study does not control for ambient noise
levels. However, areas with high noise levels are unlikely to be identified as tranquil in
our analysis.

The work addresses the following research questions: (a) Can tranquil urban places
be identified from crowdsourced observational data? (b) If so, what are their landscape
component parts? And (c) How do they contribute to a sense of tranquility? We investigate
the place features of tranquil experiences through user-generated landscape photographs
shared via social media. Semantic segmentation techniques help to quantify eye-level
visual features in these photos to discern the landscape characteristics that represent
tranquil places. Our research offers recommendations for urban landscape practice aimed
at fostering tranquil spaces, provides insights for experimental studies on tranquil scene
visualization, and underscores the value of leveraging crowdsourced social media data to
enhance our understanding of built environment perceptions.

This paper is structured as follows: Section 2 reviews the literature on tranquility,
crowdsourced data, deep learning, and computer vision technologies. Section 3 details
our methodology and analytical framework. In Section 4, we present our findings, and
Section 5 interprets the results, discusses design implications, and acknowledges limitations.
Section 6 concludes by considering future directions informed by this Swedish case study.

2. Literature Review

Tranquility is said to be experienced as a calm mental state [12]. Noted as more than
a quiet acoustic environment, it has at times been conceptualized as “cognitive quiet” [9].
Tranquility is generally recognized as a personal construct that results from a complex
array of experiential and multi-sensorial sources [2,9]. Previous studies have identified
the tranquil experience as a process of visual-auditory interactions [8–11,13]. For example,
Carles et al. (1999) found a deep coherence between sound and image on the perception of
the total environment [8]. Viollon et al. (2002) assessed how visual settings affect listeners’
judgments of urban acoustic environment and argued that these two modalities interact and
reinforce each other in complex ways [10]. According to Pheasant et al. (2008), a tranquil
place is determined by both auditory and visual factors, namely maximum sound pressure
level (LAmax) and the percentage of natural features in the visual context [9]. Hunter et al.
(2010) conducted a laboratory experiment with functional magnetic resonance imaging
(FMRI) and found that tranquil scenes enhance activity in different regions of the brain
depending on the view [11]. Finally, Herzog and Chernick (2000) found that the presence of
landscape elements enhances a feeling of tranquility, in their case waterbody elements [13].
These findings highlight the contribution of visual context in eliciting perceived tranquility.

Descriptors, measurements, and prediction models from multiple disciplines have
been proposed to assess perceived tranquility [3,14]. For example, Payne (2013) developed
the Perceived Restorativeness Soundscape Scale (PRSS) to assess perceived tranquility
and its potential in attention restoration [14]. Öhrström et al. (2006) investigated the
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“perceived soundscape” based on different environmental noise levels [3]. These studies
conducted direct assessments of the personal tranquility states of the participants, and
these approaches are primarily based on environmental-psychological approaches such
as laboratory experiments and socio-acoustic surveys. These direct assessments and their
required intensive data collection methods have several weaknesses: they tend to be site-
specific, they are limited by the sample size of participants, and they can be time-consuming
and expensive.

Spatial models have been utilized to characterize and map tranquil areas. The Quiet-
ness Suitability Index (QSI) is an important evaluation model that considers contextual
auditory information in an assessment of tranquility [6]. QSI identifies areas that are po-
tentially quiet using noise classes and the way people perceive noise [15]. It suggests that
anthropogenic noise directly affects tranquility, although the disturbance declines with
distance-based curves according to land use and population. In contrast, the Tranquility
Rating Prediction Tool (TRAPT) recognizes tranquil space as a product of both auditory
and visual criteria. The tool predicts tranquility using a linear expression of sound pressure
level and natural visual elements like vegetation and water. Introduced in 2008, TRAPT has
been used to develop a country-wide sound policy in the United Kingdom [9]. Subsequent
studies have expanded visual components, incorporating a broader range of natural and
contextual features including buildings, landmarks, monuments, and other landscape
elements [16]. Each of these models contributes to identifying and proposing zones that
have a high potential for supplying tranquil experiences.

Both TRAPT and QSI demonstrate the supply side of tranquility by pointing out
places that theoretically minimize anthropogenic noise. But we also need to understand the
demand side of tranquility—that is, where tranquility is actually perceived, experienced,
and appreciated. The increasing availability of geo-tagged social media photos enables
us to address the latter issue with large geographic place-based experiences and almost
real-time simulations.

2.1. Crowdsourced Data

A large and growing body of advanced data-processing technologies has provided
ways to gain new insights into the human perception of the built environment by mining
data generated from crowdsourcing, social media, and other platforms. These platforms
enable users to share texts and photographs that often include geographic information along
with descriptions, perceptions, and personal interactions about specific places. This allows
researchers to capture geo-based experiences passively, without the direct involvement
of respondents [17,18]. Given the enormous number of participants, this passively and
inexpensively collected information has the potential to help shape design decisions.

Crowdsourced social media data offer a continuous and direct flow of data on human
activities with wide coverage and easy access. They have been widely adopted in many
environmental studies fields including conservation science, hazard preparedness, tourism,
and cultural ecosystem services, among others [19]. Social media data have also shown
great novelty for investigating the human perception of the acoustic environment [20–22].
Chesnokova and Purves (2018) extracted texts related to sound descriptions conducted
using tags attached to geo-referenced images on social media [20]. They applied sentiment
classification techniques to show how the perception of sound in specific places affects
mood. Wartmann et al. (2019) used geo-tagged photos to map the distribution of tranquil
areas based on user-generated content in Scotland [22]. They found that remoteness and
the absence of anthropogenic noise are not requirements for a tranquil experience. On
the contrary, they noted significant numbers of tranquility tags in high-density, highly
accessible, semi-natural areas. Similarly, Chesnokova et al. (2019) found that people can
experience tranquility even near noisy, busy streets [21].

While some visual or contextual elements have been described as important factors for
a tranquil experience, current related studies are usually limited to qualitative discussions
of photo contents. For example, Wartmann et al. (2019) labeled landscape photos manually
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based on visual features, such as “open views”, “dominant sky”, “special atmospheric”, and
the presence (or absence) of water, greenery, or pedestrians [22]. These categorizations yield
insights into how various landscape features might correlate with tranquility. However, the
definitions of certain categories, such as “open view” (or “vegetation”), can be ambiguous,
and there is a need for a more nuanced categorization and analysis.

2.2. Deep Learning and Computer Vision Technologies

In the past few years, computer vision technologies have been widely applied in urban
and environmental studies using deep learning techniques [23]. The fast development of
these applications has dramatically informed urban studies by learning feature presenta-
tions of large datasets such as visual feature recognition and object detection [24]. Semantic
segmentation is a computer vision technique used to parametrize images into semantic
variables. It has been adapted to measure multiple aspects of the human perception in the
built environment, such as feelings towards street views [25] and preference for recreational
activities [26].

Although prolific in some respects, the application of computer vision techniques to
understanding the urban landscape has been limited. For instance, a large number of recent
human-scaled studies have relied mainly on “street view”, even though street-level images
fail to reflect the diversity or depth of a landscape available to people beyond roadways
mapped by Google [25,27].

Since deep-learning-based computer vision models need to be trained on a large
volume of data before testing and application, the quality of the training dataset is a key
issue for determining recognition accuracy. Some landscape-related studies have used
training data that cover only a limited number of landscape elements which, in turn, limits
their utility [28]. Some of these models were developed for autonomous vehicle sensors,
which are pre-trained on datasets focused on road conditions such as Cityscape [29] and
CamVid [30]. These datasets miss important landscape elements (such as off-the-road
waterbodies) that may be less relevant for driving purposes but significant in facilitating a
sense of the tranquil landscape in general.

3. Methodology

In this study, we use geo-tagged photos from the photo-sharing platform Flickr
(flickr.com) to evaluate tranquil landscapes in Sweden. Text descriptors and visual and
spatial features of places are extracted based on the content, time, and location of the
photos. We first conduct text recognition to identify places with tags noted to be tranquil.
We use a list of common phrases in both English and Swedish to sort these images. Photos
without tranquil tags are also sampled as a control group. For both groups of images,
we obtain landscape photos that represent the eye-level environment. Next, we apply
semantic segmentation to produce quantitative representations of the environments where
the photos were taken. A vision transformer (ViT) model pretrained on ADE20K is used
for this task. These segmentation results, together with the time features of the photos, are
used to fit in regression models to examine the correlations between landscape elements
and the presence of tranquility.

3.1. Study Area

Sweden is a European country that follows the UN quiet areas principles. It is gen-
erally known for its connection to sustainable principles, green space access, and natural
landscapes. The nation boasts a broad spectrum of landscape types, including alpine, forest,
mire, lake, coastal, or river landscape [31]. It is also one of a handful of European countries
implementing policies on the preservation and creation of quiet areas. Quiet areas are
included in the planning process for 41% of municipalities, mostly in rural settings [6]. The
European Union’s Environmental Noise Directive (END) directs nations to map environ-
mental noise from human sources including transportation and industrial sources. The
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END also directs nations to develop strategies to prevent and reduce noise and to protect
quiet areas.

Before the passage of the Environmental Noise Directive, planners and transportation
agencies in Sweden were paying attention to road noise. In 1998, the Swedish Road
Administration began mapping quietness [6]. This research was followed by more mapping
and research projects, including “Soundscapes for better health”, that explored the impact
of environmental noise. However, policies to protect residential areas from traffic noise
have been relaxed since 2015. Nonetheless, for the nation as a whole, Sweden has a larger
extent of quiet areas than most nations in the EU: quiet areas in Sweden cover more than
70% of the territory [7].

3.2. Data Collection and Pre-Processing

Flickr is an image- and video-hosting community where a wide demographic of active
users shares photographs with tags, descriptions, and locations. A total of 60 million
active users participate per month, uploading more than 25 million photos on a daily
basis [32]. Because of its wide coverage and easy access, the Flickr dataset has been widely
applied in environmentally based studies on topics ranging from aesthetic preferences [33]
to perceptual characters [34], tourism [35], and conservation sciences [36].

We use the Flickr Application Planning Interface (API) to crawl images in Sweden
from January 2010 to April 2022. The crawling process is performed in R 4.3.1 software
with the package “photosearcher”. This package allows batch work for searching and
downloading Flickr photos based on keywords and geographic references [37]. We crawl
the photos and their metadata of location (coordinate, city, country, etc.), time (when the
photo was taken, uploaded, and edited on the Flickr website), semantics (title, tags, and
descriptions), owner ID, and review counts. We retain the set of pictures for each user
taken on a unique day as photo-user-day (PUD) to measure photographic activities. This
measurement makes unique combinations of users and date information and it is frequently
applied in assessing visitations because it removes the bias toward active users [38]. We
collected 159,250 Flickr photos and 77,475 PUD posted in Sweden over the study period.

We categorize photographs into two groups based on tranquility in tags. One group
contains a tagged tranquil scene (tagged) while the other works as a control group (non-
tagged). To filter the tranquilly tagged photos, we use a list of tranquility oriented terms
found in the previous literature [22]. The final list contains 15 tagged terms (in both
English and Swedish)—quiet, quietness, peace, peaceful, serene, tranquil, tranquility,
silence, silent, lugn (calm), lugnness, fred (peace), fredlig (peaceful), tystnad (silence), and
tyst (quiet). Although not an exhaustive list of terms, it provided 1051 unique “tranquil”
photographs. The photo search is based exclusively on tags (titles or descriptions are
not included), because we have found them to be more concise and less prone to include
complex language structures, such as negations or double negatives (e.g., “not noisy at
all”). We assume that when users upload a photograph and tag it with terms related to
tranquility, they are indicating an association between the depicted landscape and their
personal tranquil experience at that moment. It is important to note that the definition
of a “tranquil scene” may vary from person to person and case to case, since tranquility
is a complex state that involves a range of experiential and emotional factors in addition
to sensory responses to the physical environment [9]. Therefore, while one visitor may
recognize a place as “tranquil”, another may not. Although the absence of a tranquil tag
does not promise an absence of tranquility, we believe the tranquility was less noteworthy
compared to the tranquility-tagged photo group.

We select photos (from both tagged and non-tagged groups) that represent identifiable
landscape elements based on the following principles:

• The photo should be taken in an outdoor environment.
• The photo should be close to “eye level”. Close-up photography of a miniature object

is filtered out.
• Photos that are made with exaggerated filters or noticeable photoshop edits are excluded.
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• Drawings and images created by combining several photos are also dropped.

Photos are manually classified by 2 landscape architecture students and examined
using Cohen’s Kappa to measure the level of agreement between the 2 classifiers. The
Cohen’s Kappa coefficient is 0.632, which indicates a substantial agreement. After final
sorting, there were 449 PUDs for tranquil landscape photos and 2451 image samples for
non-tranquil landscapes. Figure 1 shows the distribution of photo-user-day (PUD) of all
photographic uploads from 2010 to 2022. Tranquil landscape photos only account for a
minor percentage (less than 1%) of the total.
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Figure 1. Distribution for photo-user-day of all the Flickr uploads from 2010 to 2022. The blue line
indicates the photo-user-day (PUD) of tranquil landscape photos, while the red line indicates the
PUD of all photographic uploads on Flickr. Due to the huge differences between the PUDs of the two
photo groups, we employ a dual-axis setup to depict the line graph comparing the trends: the left
y-axis represents the scale for tranquil landscape photos, while the right y-axis represents the scale
for all photo uploads.

To understand if there is a temporal pattern for taking tranquil photos, we compare the
cumulative PUDs between tranquil photos and other landscape photo samples (Figure 2).
Peak landscape photographic periods are in the summer months for both tagged and non-
tagged PUDs. The seasonal changes of the two groups are similar from eye level (Figure 2a),
indicating no preference for a specific season for facilitating a state of tranquility. In contrast,
there seems to be a notable percentage of tranquil landscape photos taken during dawn and
dusk in our hourly examination (Figure 2b). While it is expected that a larger number of
PUDs are recorded during the daytime for both sets of landscape photos, the rate of increase
in tranquil photos during these hours is comparatively slower than that of non-tranquil
landscape photos. This suggests that landscape photographs captured at dawn or dusk are
more likely to be tagged as tranquil compared to those taken during the daytime. Thus,
in addition to visual factors, the temporal pattern may serve as a potential contributing
factor in creating a tranquil atmosphere. Given that the presence of daylight (or twilight)
can influence the appearance of landscape elements, we have elected to incorporate time as
an interacting variable for the regression analysis detailed in Section 3.4.
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3.3. Quantifying the Human-Scale Environment with Semantic Segmentation

Image parameterization is conducted within a comprehensive landscape classification
framework similar to the Street Scene Ontology described by Zhang et al. (2018). A seman-
tic segmentation modeling approach is used to identify and segment various landscape
elements into the above classifications. Semantic segmentation is a computer vision process
that makes a pixel-scaled image assessment. In this model, each pixel in the image is
assigned to a specific landscape category (i.e., sky, tree, or water, for example, as shown
in Figure 3). Previous environmental studies have frequently employed CNN-based algo-
rithms like PSPNet to perform this task [27]. In this paper, we adopt a vision transformer
(ViT) model [39] because the ViT algorithms typically have a much higher accuracy in the
segmentation task. We use a pre-trained model released by MMDetection Toolbox [40] to
perform the segmentation task. This model is pre-trained on the dataset ADE20K [41] and
reached an 88.55% pixel-wise accuracy when classifying 150 object categories. This level
of precision enables the accurate identification of landscape elements in our photo sets
(Figure 3). The approach adeptly identifies objects under snow cover and distinguishes
waterbody shadows from actual objects.

From the results of the segmentation, we develop a visual descriptor P to quantify
the field of view for each landscape photo. For object i in image j, a descriptor P can be
calculated based on expression (1):

Pi =
pi
Nj

(1)

where pi represents the number of pixels for object i in image j, while Nj represents the
total pixel number of image j. We calculate the P value for all the 2900 landscape photos in
Sweden based on the 150 object categories listed in ADE20K. Then, we select the landscape
elements and merge similar categories according to a semantic taxonomic framework, as
shown in Table 1. This step reduces the number of variables for the following model-
fitting step.
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Table 1. Semantic taxonomic framework.

Category Landscape Element Basic Categories in ADE20K

Natural

Waterbody Water, sea, river, waterfall, lake

Sky Sky

Tree Tree

Grass Grass

Flower Flower

Other bioretention
Other plants like shrubs and dense
vegetations that cannot be classified into
the above categories

Terrain Mountain, hill

Other natural land Earth, land, sand, rock

Human-made

Road Road, sidewalk, path, runway, dirt, track

Building Wall, building, skyscraper, hovel, house,
tower, column, windowpane

Fence Bannister, fence, railing

Landmark Sculpture, bridge, pier, painting

Leisure amenities Bench, awning, canopy

Dynamic

Person Person

Animal Animal

Boats Ship, boat

Vehicle Bus, truck, airplane, van, car

Bike Minibike, bicycle

3.4. Regression Modeling

The statistical analysis is conducted in two steps. To understand which visual feature
variables explain the PUDs of the tranquil images, we first perform a pre-selection with
simple linear regression. The accumulative portion of pixels (visual descriptor P) for each
landscape element is used as the independent variable, and whether the landscape photo
is tagged with tranquil semantics is used as the dependent variable. Considering the
number crowdsourced images can be massive and vary significantly in terms of lighting,
orientation, and quality, a p-value < 0.1 is used as the significance threshold, and all
insignificant landscape elements are dropped after this step.

Next, we fit a multi-variable logistic regression with the time factors, with all the
significant landscape elements selected as the full model. To test if there is an impact of
the time factor on a tranquil photo record, we label each photo based on the time it was
taken during the day. As the daylight duration in Sweden changes greatly cross the year,
the period classification varies throughout the year based on the sunrise and sunset. For
example, the sun rises at 3 a.m. and sets at 9 p.m. in summer, while the dawn starts at
7 a.m. and the dusk ends before 6 p.m. in winter. The dependent variable is whether
the photo has tranquil tags, and the independent variables are the intersections between
time classification and all the visual descriptors P selected in the previous step. All the
regression models in this paper are performed in R software.

4. Results

Of the 18 explanatory variables describing visual elements, 13 are selected with sta-
tistical significance (p < 0.1) in predicting a tranquil scene (Table 2). Overall, most natural
elements show positive associations with the identification of tranquil tags. Human-made
elements are less likely to elicit tranquility, and dynamic elements suggest strongly negative
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associations with tranquil scenes. Natural waterbodies such as rivers and lakes obtain
the greatest significance in identifying a tranquil-tagged photo. Sky also shows a positive
association but with a significant p-value (p < 0.001). As for the vegetation, it is interesting
that the presence of greenness does not guarantee the facilitating of a state of tranquility:
the estimated coefficient for trees is positive, while the estimates for other plants are nega-
tive. The estimates for human-made constructs such as buildings and fences are negative,
while the impacts from landmarks or leisure amenities are not significant. Most dynamic
elements play a destructive role in a tranquil scene, especially for people and vehicles
(p < 0.001).

Table 2. Logistic regression models based on semantic segmentation results for pre-selection.

Independent Variable Coefficients p-Value

Natural

Waterbody 3.44 <0.001 ***

Sky 1.16 <0.001 ***

Grass −2.20 <0.001 ***

Tree 0.45 0.072 *

Flower −10.59 0.045 *

Other bioretention −1.66 0.017 *

Terrain 0.38 0.467

Other natural land 0.01 0.986

Man-made

Building −2.48 <0.001 ***

Road −2.78 <0.001 ***

Fence −5.10 0.033 *

Landmark 1.01 0.35

Leisure amenities −0.18 0.97

Dynamic

Person −10.05 <0.001 ***

Motor vehicle −26.60 <0.001 ***

Animal −19.71 0.026 *

Bike −9.66 0.082 *

Boats 0.44 0.735
*** denotes the significance level at 0.001, and * denotes the significance level at 0.1.

To examine the interactions between landscape elements and time factors, we perform
the full regression model with 13 selected variables based on the significant features in the
Wald Test (p < 0.1). As shown in Table 3, there are distinguishable impact patterns between
different “landscape elements–time” combinations. Waterbody is the only element that
obtains a significant positive association with a tranquil experience all the time throughout
the day. Sky mainly makes contributions to a tranquil scene at dusk. Most of the other
variables, including man-made constructions, greenness, and dynamic elements, mainly
show significant associations during the daytime. Trees are another important feature
of a tranquil scene except for daybreak. The occurrence of trees relates to more tranquil
states during daytime and dusk, but it shows the opposite effect at night. Other vegetation,
including grasslands, flowers, and other bioretention, also indicate a negative impact on a
tranquil scene. A view with dynamic objects such as people, animals, and vehicles, reduces
the possibility of a tranquil experience, especially during the daytime.
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Table 3. Logistic regression model for interactions between landscape elements and time factors.
Estimates with p values larger than 0.5 are omitted.

Independent Variable
Regression Estimate Coefficients

Daytime Daybreak Dusk Night

Waterbody 2.215 *** 5.703 *** 3.669 *** 5.085 ***

Sky 0.379 - 0.874 * 1.022

Tree 0.703 * 1.542 1.303 * −3.823 *

Grass −1.584 * 2.227 - -

Flower −4.761 - −18.621 -

Other bioretention −1.102 - - −32.886

Building −1.404 ** - −0.773 -

Road 0.464 - −2.163 -

Fence −4.883 - - 10.515

Person −10.389 *** - −4.241 * −6.079

Motor Vehicle −18.066 ** - −17.345 −56.867

Animal −15.634 - −83.903 −2896

Bike - - - -
*** p < 0.001; ** p < 0.01; * p < 0.1.

Based on the full model results, we can start to see the sensitivity of landscape elements.
In Figure 4, the x-axis represents the estimate coefficients in the full model, and the color
indicates their significance level. The bars on the right side indicate that the occurrence
of this feature facilitates a state of tranquility, while the left-side bars suggest the feature
decreases the possibility of a tranquil scene. The longer the bar is, the stronger sensitivity
it has; the darker the color is, the more confident we are in its impact. Then, we select
the top six most significant landscape elements and visualize the average tranquil and
non-tranquil views based on the six dimensions, as shown in Figure 5. In each radar chart,
the axis length for each dimension indicates the average accumulative portion of pixels (P)
in the field of view.
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With these two figures, we can describe the visual features of a typical tranquil view
in each period. As shown in Figure 5a, a tranquil scene during the daytime contains more
waterbodies and trees, fewer grasslands or buildings, and almost no motor vehicles or
pedestrians. Although the difference in the average pixels of vehicles and people between
the two photo groups is small, these two elements show strong sensitivity to their negative
impact, as shown in Figure 4a. In other words, a minor increase in motor vehicles or people
significantly decreases the possibility of a tranquil state. Figure 5b suggests that a tranquil
view at daybreak consists of more trees and waterbodies, and fewer buildings or people.
Only waterbodies show significance in these periods, which may be due to insufficient data
(n = 100), as fewer people are taking photographs compared to other periods. People like to
take photos of the sky at dusk, and a tranquil-tagged photo usually contains more pixels of
water and fewer pixels of buildings according to Figure 5c. Similarly, the difference in the
average P of trees, sky, and people is small, but a small change in these landscape features
can result in significant changes (p < 0.1) to the tranquility state based on Figure 4c. As for
the night, a tranquil view is significantly attached to more waterbodies and fewer trees,
while other visual elements are not significant (Figure 4d).
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5. Discussion

Tranquility is experienced as a personal state and can be influenced by a wide range of
factors. Some of them are not controllable, such as time, weather, or real-time sound levels,
while some other environmental factors can be managed by designers. In this study we
focus on the latter with the question, what are the design considerations for producing a
tranquil experience? Based on our results, most landscape elements significantly affect the
presence of a tranquil state, mainly during daylight hours. For dawn and dusk, people may
be focusing exclusively on the sky or the rising/setting sun in order to experience a similar
state. This section discusses the essential visual context for a state of tranquility during the
daytime and provides design considerations for a tranquil place.

5.1. Natural Context

A view with natural components, such as greenness and waterbodies, has been proven
to benefit human health and well-being, such as through stress recovery and attention
restoration [42]. Previous research has associated such restorative natural environments
with places rated by visitors as tranquil, and has found that vegetation is a crucial contribu-
tory factor to a tranquil trip [2]. The perceived tranquility was also rated higher in nature
compared to urban settings according to laboratory experiments [13]. The Tranquility
Rating Prediction Tool (TRAPT) rates the estimated tranquility of a place with man-made
noise and the percentage of natural features in the landscape [9], where the impact of
natural elements is linear and there is no difference among various landscape types, which
is too general to describe the semi-natural environment in the real world. In another study
where tranquil trips are identified with social media photos in Scotland [22], the dataset
indicates a negative correlation between perceived tranquility and overall vegetation, but
they think this is a particular case for Scotland rather than a generalizable artifact.

Our results indicate that different natural landscapes have distinct effects on shaping
tranquil places: trees significantly facilitate a state of tranquility but have the opposite
effect at night, while other vegetation like grass or flowers may show negative correlations
compared to non-tranquil landscape views. On the one hand, trees perform better at reduc-
ing noise pollution compared to grasslands [43]. Also, a safe environment may facilitate
a peaceful feeling, while tree cover in open areas is associated with increased feelings of
safety [44], and the orderly arrangement of trees contributes to residents’ preferential feel-
ing and sense of safety as well [45]. However, tree shadows at night hinder people’s sense
of safety and, therefore, prevent people from feeling tranquility. The strategic incorporation
of trees within urban landscapes is crucial for creating a tranquil environment during
the daytime. On the other hand, grasslands in urban areas are usually associated with
playgrounds, where people gather and enjoy outdoor activities, and which create plenty
of anthropogenic noise. Meanwhile, flowers are generally visual attractors in urban green
spaces and thus, may disturb the emergence of a tranquil sense. Moreover, as the uploads of
landscape photos are regarded as an indicator of landscape preference in previous studies
related to cultural ecosystem services, landscape photos in the control group may also
obtain a higher portion of vegetation in segmentation results because of the affective quality
of greenery. Designers should carefully consider tree placement, such as creating tree-lined
pathways or orderly arrangements in open areas. However, caution must be exercised to
avoid excessive tree shading that may evoke feelings of insecurity during nighttime hours.
Grasslands and flowers, which possess visual attractiveness, should be carefully balanced
to prevent visual dominance and potential noise disturbances, as they are attractive to
group activities.

Based on our results, natural waterbodies are the only landscape elements that make a
positive contribution to a tranquil scene regardless of time. This finding is supported by
previous studies including case studies and laboratory experiments. A series of laboratory
experiments testing the impacts of natural settings on tranquility found that large water-
scapes are positively correlated with tranquility [13]. According to a survey of 100 people
conducted in Turkey, natural and almost-natural water views, together with a wide water
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surface, create a sense of tranquility [46]. Designers should prioritize the integration of
water elements, such as fountains, ponds, or small streams, as they provide visual and
auditory cues that enhance the tranquil experience irrespective of the time of day.

5.2. Dynamic Factors

In this study, dynamic factors refer to the moving objects in urban landscapes including
people, animals, and vehicles. Most landscape elements in this category show a negative
correlation with tranquil scenes (p < 0.1), and their average of accumulative pixels (P) is
close to 0 (<2%) for the tranquil photos, potentially due to aural considerations, because the
effect was less significant during dawn, dusk, or night hours when noise would generally
be less of a factor. A previous study has pointed out that seeing and hearing the products
of human activities commonly leads to non-tranquility [47]. Another field survey in Hong
Kong pointed out that vehicles and crowds are detrimental to a tranquil environment [48].
A landscape view with plenty of dynamic elements not only contributes to anthropogenic
noise in the acoustic environment, but also hinders the perception process of tranquility
because of the visual context. According to a magnetic resonance imaging experiment
conducted by Hunter (2010), a view with signs of traffic such as roads and vehicles results
in less possibility of a feeling of tranquility. From the perspective of planners and designers,
visual barriers and screening with natural elements are good recommendations to help
control noise in urban areas. Traffic control and pedestrian flow management are also
important. In general, areas with the potential for high noise levels were less likely to be
identified as tranquil.

5.3. Limitations

First, our crowdsourced method cannot account for visual aural activity and noise
levels. Although areas with high noise levels are less likely to be identified as tranquil,
some of our findings might reflect place characteristics associated with aural characteristics.
For example, grass areas in parks are often linked to playgrounds, which could imply
higher noise levels, or views of streets could imply the presence of car noise. Consequently,
there is a risk that our images highlight places that are more likely to be quiet, and do
not reflect tranquility through visual context. We contend, however, that regardless of the
auditory sensation, some connection can be made to the visual components of feelings
of tranquility.

In addition, the representativeness of this study is limited by biases in social media
data sourcing. In Sweden, younger people use social media more than older people; at
least 92% of internet users born between 1980 and 2009 use social media daily, while just
over 40% of users born between 1920 and 1939 use social media daily [49]. In total, 80% of
Flickr users tend to be younger (between 18 and 55 years old), and more than 95% of Flickr
photos are taken with iPhones or single-lens reflex cameras [32]. Therefore, our results may
be limited to the perceptions of younger middle- or high-income adults. Also, social media
data can be performative, and what is deemed shareworthy on social media platforms
may not fully represent the broader spectrum of tranquil experiences. The variability in
the orientation and quality of our images also necessitated the adoption of a significance
level of 0.01, which is less stringent than the standard 0.05 level, reducing our confidence
in the significance of some outcomes. The dataset might also be skewed towards daytime
images—that is when people use cameras, resulting in limited representativeness for other
times of the day. In general, however, we believe the use of crowdsourced data can provide
valuable insights into the nature of human/landscape interactions.

6. Conclusions

This study explores the roles of physical settings in perceived tranquility from a
landscape design perspective. We investigated the landscape design characteristics of
tranquil spaces with a case study based on the spatial distribution, temporal pattern, and
visual contexts of self-identified tranquil scenes using crowdsourced social media data. We
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quantified self-reported views of tranquil places through a semantic segmentation analysis,
examining the contributions of visual landscape features. Our results show that visual
landscape elements have diverse effects, and time is an influential factor in their extent.
We found a significant time preference for dusk and night with a majority view of the sky,
which indicates little about the site itself apart from openness. A waterbody appears to be
an important landscape feature for a tranquil place. In our study, it was the only landscape
element that contributed to all time periods. We found some tranquility-related impacts
from most vegetation, human-made constructions, and dynamic objects in the daytime.
Trees significantly facilitated a state of tranquility, while other plants like grasslands and
flowers were less likely to have tranquility-oriented tags. All the moving objects including
people and vehicles impeded the self-reported tranquil experience in our study.

Our study highlights the role of crowdsourced data in understanding the perceived
qualities of the built environment. Because of the limitations of traditional data collection
methods, subjective assessments including the tranquility of the built environment are
usually confined to the site scale. We provide an example of an approach for extracting
information from crowdsourced images and text to understand tranquility and its relation
to visual landscape elements on a national scale. Our research identifies distinct roles
played by various natural elements in fostering tranquility, offering valuable insights for
future empirical studies conducted in controlled laboratory settings.

It is crucial to recognize that our conclusions are derived from the visual context of big
data, a methodology distinct from controlled laboratory experiments that might include
variables such as sound levels. As such, our findings are intended to inspire subsequent
research in controlled settings to investigate how different landscape elements contribute
more precisely to a sense of tranquility. For example, recording both sound levels and
videos during tranquil sound walks could be instrumental in quantifying the visual and
acoustic environments across different times. Employing environmental sound sensors at
strategic locations to gauge sound levels could also offer acoustic data that complement
the tranquil experiences depicted in geo-tagged crowdsourced contributions. Additionally,
it is important to adapt the design recommendations we propose to the specific cultural,
social, and environmental context. Future research aims at validation and an improved
understanding of the variations in perceptions of tranquility across cultures, as well as
assessing the efficacy of various design approaches in diverse urban settings. Discussions
about the impact of seasonal variations, the prolonged dusks and extended twilight periods
in Sweden, wind effects, and surrounding bio-physical environments in addition to the
photo views are also worthwhile. Considering the complexity of perceived tranquility,
using qualitative and phenomenological research methods in conjunction with one another
is favorable for future exploration.

Given the interdisciplinary nature of tranquility, these findings can deepen our under-
standing of tranquil spaces within urban contexts. They also hold the potential to inform
and enhance future landscape design practices aimed at creating tranquil environments
and promoting overall well-being.
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