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Abstract: Mapping cultural ecosystem services (CES) in river basins is crucial for spatially identi-
fying areas that merit conservation due to their significant CES contributions. However, precise
quantification of the appropriate area of mapping units, which is the basis for CES assessment, is
rare in existing studies. In this study, the optimal area threshold of mapping units (OATMU) identi-
fication, consisting of a multi-dimensional indicator framework and a methodology for validation,
was established to clarify the boundary and the appropriate area of the mapping units for CES. The
multi-dimensional indicator framework included geo-hydrological indicator (GI), economic indicator
(EI) and social management indicator (SMI). The OATMU for each indicator was determined by
seeking the inflection point in the second-order derivative of the power function. The minimum
value of the OATMU for each indicator was obtained as the OATMU for CES. Finally, the OATMU
for CES was validated by comparing it with the area of administrative villages in the river basin. The
results showed the OATMU for CES was 3.60 km2. This study adopted OATMU identification, with
easy access to basic data and simplified calculation methods, to provide clear and generic technical
support for optimizing CES mapping.

Keywords: watershed landscapes; mapping units; CES assessment; minimal unit; multi-dimensional
indicators

1. Introduction

The benefits provided by ecosystems and appropriated by humans are called Ecosys-
tem Services (ES) [1]. According to the Millennium Ecosystem Assessment, ESs are classi-
fied into four categories: provisioning, regulating, supporting, and cultural services, each
contributing uniquely to various aspects of human well-being [2]. Cultural ecosystem
services (CES) are the non-material benefits obtained from ecosystems and are classified
into 10 main subcategories: recreation and tourism, aesthetics, spiritual values, education,
inspirational values, cultural diversity, knowledge systems, sense of place and identity, so-
cial relations, and cultural heritage values [2]. CES are fundamentally shaped and sustained
by ecological, economic, and social factors [2–4]. However, the rapid pace of urbanization
poses significant challenges, leading to ecosystem fragmentation and functional degrada-
tion, which in turn diminishes the CES supply capacity [5]. As a key to society, CES must
be more thoroughly acknowledged as crucial for enhancing human health and demand
increased attention from policymakers [6].

Through a long history of human interaction with nature, river basins have become
densely populated human settlements and indispensable birthplaces of civilization [7]. The
role of river basins in providing CES—such as cultural heritage, recreation and ecotourism,
and aesthetic appreciation—is widely recognized [8]. These areas are considered the
foundational units for ecosystem conservation planning and are deemed appropriate scales
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for the management of CES [9]. CES mapping in river basins is primarily used to concretely
visualize the value of an area, allowing for an intuitive analysis of whether the supply and
demand of CES are balanced [9]. Areas with a high CES supply, often characterized by
abundant recreational activities or cultural values, contribute significantly to human health
and are therefore critical to identify and prioritize for enhanced conservation efforts [6].
Given the relatively high value of CES attributed to aquatic areas [10], it is of paramount
importance to conduct CES mapping studies in river basins.

However, without a clear understanding of the mapping units, the protection and
development of CES will be hampered [11]. To divide these units, Campos-Campos
et al. [12] analyzed variations in landscape units through the Supervised Classification
method, while Alvioli et al. [13] introduced an automated approach utilizing the r.slopeunits
v1.0 software for delineation. Currently, the mapping units for CES in river basins mainly
consist of existing grid cells [14], land-use units [15], homogeneous landscape units [16],
and administrative units [17]. In addition, different scales of catchments are applied
to measure CES supply and demand in river basins [18,19]. Recognized as units that
encapsulate ecological, social, economic, and cultural dimensions [11], catchments are
extensively applied as mapping units in the fields of Hydrology and Geography [13,20,21].
There is a well-established and systematic method for delineating catchment boundaries
using the ArcGIS 10.8 software hydrological analysis tool [21,22]. With clear boundaries
that match the natural geographic extent of river basins, catchments avoid the problem of
incompatibility between the boundaries of the mapping units and the study area.

The selection of mapping units profoundly affects the conclusions drawn from the
CES assessment because the area of these units determines the credibility of the spatial
images [11]. However, the determination of the appropriate area of mapping units has
been largely neglected [23], leading to inadequate representation of the study area’s char-
acteristics and compromised mapping accuracy [24]. Particularly when the precision of
mapping units falls below that of the socio-practical system, there is a notable deficiency
in motivation or comprehensive guidelines for their application [11]. Therefore, with
the establishment of appropriate units, CES can be accurately quantified [25]. Several
studies in environmental hydraulics have used multiple catchment area thresholds for se-
lecting the optimal area thresholds to obtain relatively homogeneous and refined mapping
units [20,22,26]. To enhance mapping precision alongside computational efficiency, this
study introduced the concept of area threshold, offering both a theoretical framework and
a practical approach for accurately determining the appropriate area of mapping units.
The area threshold of mapping units (ATMU) is defined as the minimum area of mapping
units. The optimal area threshold of mapping units (OATMU) is defined as the ATMU that
most effectively fulfills the objectives of the study, thereby enhancing the precision of the
outcomes and accurately reflecting the characteristics of the study area [22]. The value of
OATMU, which determines the most appropriate area of mapping units, varies according
to the research objectives and is highly related to the indicator selection. For instance, in the
pursuit of accurately delineating actual river networks and catchment boundaries, drainage
density serves as a key indicator for determining the OATMU [22].

This study mainly focused on (1) clarifying the boundary and the most appropriate
area of the mapping units for CES; (2) determining the indicators affecting the area of the
mapping units and methods of their calculation; and (3) testing the applicability of OATMU
identification methods for CES in river basins. As a cornerstone in the research on CES
spatial mapping, this study has constructed a novel, streamlined, and transferable method
that leverages available spatial data to identify the optimal area for mapping units with high
precision. By tackling the earlier challenges of subjective selection of mapping unit types
and the absence of quantitative assessments of their areas, this study significantly advanced
the precise application of CES quantification and supply demand research outcomes in
real-world spaces.
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2. Materials and Methods
2.1. Study Area

The Qiantang River Basin is located in southeastern China, covering an area of
42,770.05 km2 (116◦52′ to 120◦56′ E, 27◦56′ to 30◦59′ N) (Figure 1). The whole river, with
a length of 668.10 km, is the longest river in Zhejiang Province. As of the end of 2020,
the basin boasted a population of 12,667,200 and a GDP of approximately 1.65 trillion
dollars [27]. As one of the top ten practices of Nature-Based Solutions jointly published
by the Chinese Ministry of Natural Resources and the World Conservation Union (IUCN),
the Qiantang River Basin serves as a pilot location for developing and demonstrating a
replicable and scalable model of key ecological functional zones across the nation [27].
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Figure 1. The location and elevation of study area.

There are 3 reasons for choosing the Qiantang River Basin as the study area: (1) Diverse
Geomorphology for CES Spatial Analysis. The Qiantang River Basin is a representative
region featuring a wide range of catchment geomorphic types, including mountains, basins,
and plains [28]. This diversity in topographic features across different catchments yields
a variety of CES [8]. (2) Rich and Emblematic Cultural Heritage. Serving as a cradle of
ancient Chinese civilization, the basin is closely linked with four World Heritage sites:
Huangshan Mountain, West Lake, the Grand Canal, and ancient villages in southern Anhui
province, such as Xidi and Hongcun. It is also home to the renowned Liangzhu Culture
(5300–4200 cal. a BP) and Hui Culture (1121–1911), making it a region of significant cultural
value [28]. (3) Challenges Posed by Rapid Urbanization. As one of the most densely
populated and economically advanced areas in China, the Qiantang River Basin faces
threats from fast-paced urbanization, which leads to the encroachment and fragmentation
of CES areas. Notably, the construction of hydroelectric power plants has contributed to
the loss of numerous historical sites. This underscores the critical need for a systematic and
accurate approach to CES space optimization within the basin.

2.2. Research Framework

As a foundational study of CES mapping, the OATMU identification method was
constructed to identify the boundary and the most appropriate area of the mapping units.
Distinct from other ESs, the assessment of CES leans heavily on human perceptions, cultural
values, and demands [29]. Consequently, incorporating indicators that reflect economic
and social dimensions is crucial. Based on ecological, economic and social aspects, a
multi-dimensional indicator framework with specific indicator calculation methods and
the validation of the final results were established in this study (Figure 2).
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Figure 2. Research framework.

2.3. Data Sources and Preprocessing

Five data sets were used to calculate the OATMU: the digital elevation model (DEM),
China population spatial distribution data, China GDP spatial distribution data, China
administrative boundary data and the point of interest (POI) (Table 1).

Table 1. Data sources.

Data Time Scale/Format/Resolution Source

Digital elevation Model
(DEM) 2022 The Qiantang River Basin,

grid, 30 m
Geospatial Data Cloud (https://www.gscloud.cn/,

accessed on 26 May 2023)

China population spatial
distribution data 2019 China, gird, 1 km

Resource and Environmental Science and Data Center
of the Chinese Academy of Sciences

(https://www.resdc.cn/, accessed on 29 May 2023)

China GDP spatial
distribution data 2019 China, gird, 1 km

Resource and Environmental Science and Data Center
of the Chinese Academy of Sciences

(https://www.resdc.cn/, accessed on 29 May 2023)

China administrative
boundary data 2021 The Qiantang River Basin,

shape, shape

Resource and Environmental Science and Data Center
of the Chinese Academy of Sciences

(https://www.resdc.cn/, accessed on 5 May 2023)

Point of interest (POI) 2022 The Qiantang River Basin,
point, point

Amap Company (https://www.amap.com/, accessed
on 26 May 2023)

Among these, the China population spatial distribution data and China GDP spatial
distribution data have not been updated in recent years; thus, the most recent data from
2019 were used. At Amap Company, one of China’s most popular mapping services, POI
data were categorized into 23 types using classification codes. For this study, POI data
for government organizations and social groups within the study area were collected,
amounting to 57,644 records.

The projection coordinate system for the aforementioned data was converted to WGS
1984 UTM Zone 50N. Spatial data processing was conducted using ArcGIS 10.8.

https://www.gscloud.cn/
https://www.resdc.cn/
https://www.resdc.cn/
https://www.resdc.cn/
https://www.amap.com/
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2.4. Alternatives for ATMUs

The ATMUs are typically determined by the number of grids with different DEM
accuracies [22] or by the limitations of available computing memory [30]. This study
established the ATMUs based on the following criteria: (1) Integration of ecological and
social research findings. For social ecosystems, the average area of mapping units is
3.50 km2 [23]. Consistent with studies of river basins of comparable size, the OATMUs
range from 1.41 to 7.20 km2 at the ecological and social levels. (2) Accuracy Assurance.
Available studies offer a range of 6 to 15 alternatives (Table 2). Finer ATMUs and a greater
number of alternatives lead to more accurate results [22,31]. To ensure precision, this study
adopts the maximum number of alternatives for calculations. (3) Maximizing the OATMU
range of values. The upper limit was increased to the maximum reported value of 40.5 km2

in existing studies (Table 2). (4) Grid Multiplicity [22]. The ATMU is an integer multiple of
the number of grids. In this study, with a DEM data accuracy of 30 m and each grid area
being 30 m × 30 m, the ATMU is an integer multiple of 0.0009 km2.

Table 2. Research results on the optimal catchment area threshold.

Study Area (km2)
Range of Alternative

(km2)
Number of

Alternatives
Optimal Catchment

Area Threshold (km2) Identification Method

1350 0.45~40.5 15 7.2 Drainage density method [32]

772.6 0.0081~6.4800 10 4.05 Box dimension method [22]

Multi-basins 0.5~10 6 5 Coefficient of line
correspondence [33]

1700.61 0.9~18 7 7.2 Drainage density method [34]

95,400 0.078~3.125 7 1.5625 Box-Counting Method [26]

95,400 0.1562~3.90625 13 1.40625 Multifractal Method [26]

In summary, following the research of Zhang [32], this study selected 15 alternatives
with 500, 1000, 1500, 2000, 4000, 6000, 8000, 10,000, 15,000, 20,000, 25,000, 30,000, 35,000,
40,000, and 45,000 grids. The calculation formula for each alternative is as follows:

ATMU j = Agrid × Qj(1 ≤ j ≤ 15) (1)

where ATMU j is the ATMU of jth alternative, Agrid is the area of grid, Qj is the number of
grids of jth alternatives.

Consequently, the 15 alternatives of ATMUs were determined to be 0.45 km2, 0.90 km2,
1.35 km2, 1.80 km2, 3.60 km2, 5.40 km2, 7.20 km2, 9.00 km2, 13.50 km2, 18.00 km2, 22.50 km2,
27.00 km2, 31.50 km2, 36.00 km2, 40.50 km2.

Utilizing the four-step process of terrain preprocessing, flow direction identification,
ATMU setting, and catchment extraction in the Hydrological Analysis module of ArcGIS
10.8 software [22], 15 catchment alternatives were generated. Patches smaller than the
ATMU were automatically eliminated to optimize the ATMU alternatives.

2.5. Indicator Framework

The following criteria were utilized to select the OATMU for CES: (1) Covering eco-
logical, economic and social aspects [3,4]; (2) Data availability, accessibility and reliability;
(3) Representativeness of indicators for core characteristics. In summary, 3 indicators were
selected to identify the OATMU for CES: the geo-hydrological indicator (GI), economy
indicator (EI), and the social management indicator (SMI).

2.5.1. Geo-Hydrological Indicator

The drainage density was used as a proxy for the geomorphologic and hydrologic
characteristics of river basins [35]. The drainage density, which shows a strong correlation
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with surface roughness, vegetation index, and water storage changes, is better modeled
and more generalizable [36]. Hence, the drainage density was selected to characterize GI.
Its calculation formula is as follows:

Dd =
∑n

i=1 Li
∑n

i=1 Ai
(2)

where Dd is the drainage density, i is the ith mapping unit, n is the maximum number of
mapping units, Li is the river length in the ith mapping unit, and Ai is the area of the ith

mapping unit.

2.5.2. Economy Indicator

GDP per capita is frequently utilized as a significant measurement of economic stan-
dards [37]. The level of economic development is similar in each mapping unit; therefore,
the economic homogeneity within the mapping unit can be reflected by the degree of
dispersion of GDP per capita.

The standard deviation is often utilized to depict the extent of data dispersion or
aggregation uniformity in space [38]. Hence, the mean value of the standard deviation of
GDP per capita was selected to represent EI. The formula is as follows:

MSD =
∑n

i=1 Si

n
(3)

where MSD is the mean standard deviation of GDP per capita, i is the ith mapping unit, n is
the maximum number of mapping units, Si is the standard deviation of GDP per capita in
the ith mapping unit.

2.5.3. Social Management Indicator

As one of the 3 dimensions of CES, social aspect includes a societal or shared interpre-
tation at stake, as in social process, social scale, social problem, etc. [4]. Social management
is crucial in the social aspect, as it often determines the specific preferences for management
programs and the implementation of management decisions. Government organizations
and social groups are the mainstays of social management. The greater the concentration of
government organizations and social groups, the more likely it is to be a complete spatial
unit with control, management, supervision and service functions [39]. Traditional methods
such as the kernel density method use POI as a single data source [40], which failed to
combine the mapping unit variables to reflect the differences among alternatives. The Index
of Patchiness (Ip) is used in population ecology to measure the intensity of population
aggregation by calculating patches occupied by the number of individuals [41]. Due to the
need to clarify the spatial extent of study individuals and distribution patches, this study
selected Ip of POI for government organizations and social groups to illustrate SMI. The
formula is as follows:

Ip =
Ic

P
(4)

where Ic is the index of mean crowding, P is the average number of POI for government
organizations and social groups within each mapping unit. Where P is as follows:

P =
∑n

i=1 Pi

n
(5)

where i is the ith mapping unit, n is the maximum number of mapping units, Pi is the
number of POI for government organizations and social groups in the ith mapping unit. Ic
is as follows:

Ic = p + (
s2

p
− 1) (6)
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where S2 is the variance of the number of POI for government organizations and social
groups in the mapping units from i to n.

2.6. Identification of the OATMU

The OATMU is typically determined by the inflection points on the relationship curve
that illustrates the correlation between the indicator and ATMUs [42]. This method is not
limited to calculating optimal area thresholds corresponding to drainage density but is also
widely used to calculate optimal area thresholds for slope [43], socio-economic [44], and so
on. Second-order derivative analysis is commonly used as a research method for extracting
inflection points from relationship curves [45], with the advantages of computational
simplicity and ascertainable results. The inflection point in this method is where the
second derivative approaches 0 and no longer changes afterwards [46]. In this study,
the second-order derivative of the fitting function curve was chosen to detect particular
inflection points.

Through the Matlab R2020a software, the relationship between the 3 indicators and
ATMUs was curve-fitted using the power function [47], the second-order derivatives of
the power function were obtained, and the inflection point was identified [46]. The ATMU
corresponding to the inflection point is the OATMU for each indicator.

When there are different OATMUs for each indicator, it is generally believed that the
smallest OATMU is more conducive to fine-scale surface research [30,31]. To prevent the
loss of spatial information during calculation, this study selected the minimum OATMU
value from the 3 indicators as the OATMU for CES in river basins. The formula is as follows:

O = min{OGI , OEI , OSMI} (7)

where OGI , OEI , OSMI is the OATMU corresponding to the inflection points of the GI, EI,
and SMI, O is the OATMU for CES in the basin.

2.7. Validation of the OATMU for CES

As the practical units of a basin ecosystem, catchments do not coincide with the
boundaries of administrative units [18], but often have strong correlations with them [48].
Administrative villages are the smallest administrative units and also have relatively com-
plete social-ecological systems, often appearing as the basic units of cultural landscapes [49].
In this study, the validation of the OATMU for CES was carried out by measuring the simi-
larity of area data between the mapping units and administrative villages. The mapping
unit dataset with the OATMU for CES was defined as the OATMU group; the mapping
unit dataset with the left ATMUs adjacent to the OATMU was defined left-OATMU group;
the mapping unit dataset with the right ATMU adjacent to the OATMU was defined as
the right-OATMU group; and the administrative village dataset within the Qiantang River
Basin was defined as the administrative village group. By comparing the mean area, area
quartile distance, and area maximum interval of the 3 ATMU groups and the administrative
village group [26], the group with the minimum percent error of all three is the OATMU
group for CES, and the corresponding ATMU is the OATMU for CES in the river basin.
Validation was conducted using descriptive statistics and box plots in IBM SPSS Statistics
26 software.

3. Results
3.1. Characteristics of the Indicators

Fifteen alternatives for ATMUs were obtained through extraction and optimization.
The mean area of mapping units for each alternative was concentrated between 1.05 and
92.62 km2 (Figure 3).
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For GI, among the 15 alternatives, the minimum area of mapping units was 0.45 km2,
and the maximum area was 421.52 km2 (Figure 4A). The average river length of
15 alternatives was concentrated at 0.45~3.93 km, with the shortest length of 0.03 km
and the maximum length of 51.39 km (Figure 4B). For EI, GDP per capita varied consider-
ably within each alternative, resulting in more extreme values. The minimum value of the
standard deviation of GDP per capita within each mapping unit was 0, and the maximum
value was 16.00 (Figure 4C). For SMI, the minimum number of POIs for government orga-
nizations and social groups in each mapping unit was 0, with the maximum reaching 3471
(Figure 4D).
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mapping unit of 15 alternatives for ATMUs; (D) Number of POIs for government organizations and
social groups in each mapping unit of 15 alternatives for ATMUs.

3.2. Evaluation of the OATMU for CES

(1) The OATMU for GI
EI was used as the vertical axis, and ATMU was used as the horizontal axis. The

power function used for curve fitting was y = 0.8058x−0.4586, with a goodness-of-fit
R2 = 1 (Figure 5A). The second derivative of power function fitting for RE was
y = 0.539010868968x−2.4586 (Figure 5B). The curve image plotted by Matlab showed
the ATMU corresponding to the inflection point was 3.60 km2. For GI, the OATMU in the
Qiantang River Basin was 3.60 km2.

(2) The OATMU for EI
EI was used as the vertical axis, and ATMU was used as the horizontal axis. The

power function used for curve fitting was y = 0.07288x0.4725, with a goodness-of-fit
R2 = 0.991 (Figure 5C). The second derivative of power function fitting for SEI was
y = −0.0181648845x−1.5275 (Figure 5D), and the ATMU corresponding to the inflection
point was 9.00 km2. For EI, the OATMU in the Qiantang River Basin was 9.00 km2.

(3) The OATMU for SMI
SMI was used as the vertical axis, and ATMU was used as the horizontal axis.

The power function used for curve fitting was y = 13.56x−0.3133, with a goodness-of-
fit R2 = 0.9888 (Figure 5E). The second derivative of power function fitting for SMI was
y = 5.5793554284x−2.3133 (Figure 5F), and the ATMU corresponding to the inflection point
was 3.60 km2. For SMI, the OATMU in the Qiantang River Basin was 3.60 km2.

(4) The OATMU for CES
According to Equation (7), the OATMU for CES in the Qiantang River Basin was

determined to be 3.60 km2. When the ATMU was 3.60 km2, the GI was 0.4592, the EI was
0.1383 and the SMI was 6.6596. There were 4910 mapping units in the OATMU dataset, of
which the area of mapping units smaller than 6.37 km2 accounted for 46.74% of the total.
The mapping units between 6.38 km2 and 10.11 km2 accounted for 29.04%. The mapping
units between 10.12 km2 and 15.27 km2 accounted for 15.58% (Figure 6).
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3.3. Validation of ATMUs Groups and Administrative Village Group

The OATMU group (3.60 km2), the left-OATMU group (1.80 km2), and the right-
OATMU group (5.40 km2) were selected for validation with the administrative village group.
The mean area of the administrative village group was 6.29 km2, with an interquartile
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range of 4.68 km2. The mean area of the left-OATMU group was 4.19 km2 with an error
of 33.39% from the mean area of the administrative village group and an interquartile
range of 2.64 km2 with an error of 43.59%. The mean area of the OATMU group was
8.23 km2 with an error of 30.84%, and the interquartile range was 5.16 km2 with an error
of 10.26%. The mean area of the right OATMU group was 12.63 km2 with an error of
100.79% and the interquartile range was 8.19 km2 with an error of 75%. Compared to the
left-OATMU and the right-OATMU groups, the boxplots for the administrative village
group and the OATMU group were the most similar, with both sets of boxes clustered in
the 0–10 km2, with the lower edges clustered in the 0–10 km2 and the upper edges clustered
in the 10–20 km2 (Table 3).

Table 3. Validation of the OATMU for CES in the Qiantang River Basin.

Administrative Village
Group Left-OATMU Group OATMU Group Right-OATMU Group

Mean area 6.29 4.19 8.23 12.63

Range 63.42 24.84 53.24 62.72

Minimum 0.34 1.80 3.60 5.40

Maximum 63.75 26.64 56.84 68.12

Lower quartile 2.25 2.42 4.79 7.28

Median 4.13 3.41 6.66 10.14

Upper quartile 6.93 5.06 9.95 15.47

Boxplot
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antang River Basin is not uniform and that there are large differences in economic devel-
opment between different mapping units, which is consistent with the study of Zhou et 
al. and Wang et al. [55,56]. 

The median area of the left-OATMU group was closer to that of the administrative
village group. However, the range of the maximum value was 24.84 km2, which was
significantly smaller than that of the administrative village group (63.42 km2). There is
a risk that a large number of basic cultural landscape units could be divided excessively
resulting in data redundancy. The minimum and mean values of the area for the right-
OATMU group were much larger than the values of the administrative village group. For
the right-OATMU group, the area of the mapping units was too large, resulting in decreased
accuracy of the results. The percentage error of the mean area and quartile distance of
the OATMU group was the smallest. In addition, the range and degree of data dispersion
were most similar to those of the administrative village group, and it avoided the data
redundancy caused by excessive delineation of basic cultural landscape units. Therefore,
the OATMU for CES in the Qiantang River Basin was determined to be 3.60 km2.

4. Discussion
4.1. Applicability of the Multi-Dimensional Indicators and Calculation Methods

This study systematically identified the OATMU for CES by constructing a multi-
dimensional indicator framework that includes GI, EI, and SMI. They were derived from
Zhou et al., MEA, Scholte et al., Barnes and Hamylton, and Heasley et al. [2,3,36,41,50].
In contrast to previous studies that constructed a GI framework for river basin manage-
ment [51], this study integrated EI and social SMI, adding two measurement dimensions
(Figure 4) that yielded more systematic results.
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For calculating GI, the drainage density method proves to be more effective for simu-
lating areas with large topographic relief compared to the fitness index and fractal theory
methods [52]. The difference in elevation in the Qiantang River basin is 1770 m (Figure 2).
Combined with the actual situation of the study area, it is more reasonable to choose the
drainage density method. Through the drainage density method, Zheng et al. [53] found
that many parallel river networks were formed in areas with little change in elevation.
This aligns with the results of the four alternatives for ATMUs, which take values between
0.45 km2 and 3.60 km2 (Figure 3). Additionally, as the ATMU becomes larger, the slope
network chain is gradually eliminated, revealing the main rivers [53]. This is similar to
the findings of this study (Figure 4B). The study areas have different locations and cover a
wide range of scales (Table 2), which demonstrates the universality of the drainage density
method for calculating GI.

For EI, the variability of GDP per capita between mapping units can be calculated by
absolute differences, including standard deviations [50]. In this study, the mean value of
the standard deviation of GDP per capita was used to reflect the differences for the EI of the
mapping units, which facilitates cross-sectional comparisons of alternatives when there is
only one value for each ATMU. In the absence of finer data sources, the standard deviation
of GDP per capita within many mapping units is 0 for ATMUs smaller than or equal to 9
km2 (Figure 4C), which is consistent with the study of Liang et al. [54]. The large degree
of data dispersion (Figure 4C) indicated that the economic distribution of the Qiantang
River Basin is not uniform and that there are large differences in economic development
between different mapping units, which is consistent with the study of Zhou et al. and
Wang et al. [55,56].

For SMI, Ip was introduced to explore the possibility that the clustering pattern of POIs
varies with the spatial scale of the mapping unit. The distribution of POI for government
organizations and social groups, whose primary function is management and accessibility,
is geospatially relevant. The 15 ATMUs from 0.45–40.5 km2 all have a number of POIs
within a single mapping unit of 0 (Figure 4D), due to the fact that those mapping units
are located in large bodies of water or in mountainous areas that are not easily accessible
(Figure 2). The presence of large ecological reserves with geomorphological diversity limits
the spatial distribution of POIs, which is consistent with Zhen et al. [57]. The maximum
value of the number of POIs within a single mapping unit reaches 3471, and the minimum
value is 0 (Figure 4D). Such a huge difference in the extreme value of the number for POI
reflects the imbalance of the social management situation in the Qiantang River Basin,
which is in line with the study of Li [58].

4.2. Identification and Comparison of the OATMUs for Each Indicator

Based on the conclusion from the existing literature, this study applied the method
that accurately identified the OATMU by fitting the second-order derivative of the power
function [46]. Some studies exacted the OATMU by calculating the rate of reduction for the
first-order derivative of the power function relationship [53] or the rate of change for the
relation curve [26]. However, in the fitted curves for the three indicators of GI, EI, and SMI
(Figure 5A,C,E), the rate of change for the relationship curves has been decreasing with the
increase in ATMUs, and it becomes challenging to determine the corresponding OATMUs
from the appropriate rate of change. Tang et al. used Matlab to calculate the OATMU by
interpolating the data with a one-in-ten-thousand threshold [59]. However, since the area
ratio of the study area to the mapping unit in this study is sufficiently large, refining the
accuracy to 0.0009 km2 would result in a large amount of redundant computational data.
Considering precision and ease of operation, this method, which was identified by fitting
the second-order derivative of the power function, was used in this study for calculation.

In the Qiantang River Basin, the OATMU for GI was 3.60 km2, which was similar to
the studies of Wu et al. [22] and Olsen et al. [33]. Wu et al. calculated very close results
using three DEM datasets to evaluate the reasonableness of OATMU [22]. An ATMU of
3.60 km2 represents the first interval change from 0.45 km2 to 0.90 km2. The rule by which
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the OATMU is more likely to be identified falls between the first interval change of ATMU,
consistent with the results of Zhang et al. [46]. Wu et al. [22] found three phases of the
relationship curve with a rapid decline, a flat fluctuation and a convergence to a fixed
value, which is consistent with the findings of this study (Figure 5A). The OATMU of
GI and SMI were consistent, suggesting that the catchments naturally generated by the
geographic environment are highly similar to the mapping units with social management
functions, which was consistent with the study of Martín-López et al. [48]. The OATMU
for EI was 9.00 km2, which was larger than the value of the other indicators. This is due to
the fact that EI is usually plotted for larger mapping units, such as town administrative
units [54]. Furthermore, as the last ATMU before the interval became larger, 10,000 grids
corresponding to 9.00 km2 were more likely to be an OATMU. This pattern is also consistent
with the results of Zhang et al. [26].

4.3. Limitations

Despite the important contributions of this study, it also has limitations and uncer-
tainties. First, due to the lack of finer data sources for the GDP data in the Qiantang River
Basin, the OATMU for EI in the Qiantang River Basin did not have much influence on
the final OATMU for CES. However, if the scale of the study area is larger or if there is a
finer GDP per capita data source, the EI will affect the calculation process and the value
of the final results. Second, differences in factors, such as the ratio of the relationship
curves to the axes, may lead to errors in the inflection points of the curve images plotted by
Matlab. To address this issue, this study selected the two neighboring ATMUs to validate
the OATMU for CES. CES is comprehensively influenced by multiple factors [21], and
there are trade-off or synergy relationships between the indicators [60]. Therefore, the
small number of corresponding indicators may also affect the accuracy of the final OATMU
identification, despite the fact that the study added two key indicators in both dimensions.

In addition, the alternatives for ATMUs were set based on the literature, which may
affect their accuracy. In the relevant literature, the area ratio of the study area to the
mapping unit ranges from 102:1 to 103:1 [22,26]. In this study, the ratio was raised to 104:1,
which split the mapping units sufficiently to ensure accuracy. Even if there were more
appropriate area thresholds within each alternative, the errors would likely have minimal
impact on the results. Due to the need for more precise segmentation and the large amount
of data involved in the subdivision of catchments, Python and Matlab can be utilized to
assist with computation in the future.

5. Conclusions

Based on the OATMU identification method, this study identified the OATMU for CES
in the Qiantang River Basin from a multi-dimensional perspective. The method included
four main steps: finalizing alternatives for ATMUs, establishing a multi-dimensional
indicator framework for identifying the OATMU for CES, calculating the OATMU for each
indicator, and calculating and validating the OATMU for CES.

Mapping units were appropriately divided according to the CES characteristics of
the study area, avoiding division of the basic cultural landscape units or computational
redundancy. Fifteen alternatives of ATMUs were established to control the calculation
and selection of the OATMU, which improved the accuracy of the quantitative study for
mapping units. The results showed that for the Qiantang River Basin, the OATMU for GI
was 3.60 km2, the OATMU for EI was 9.00 km2, the OATMU for SMI was 3.60 km2, and the
OATMU for CES was 3.60 km2.

The indicators and calculation methods proposed here can be spatially replicated and
can be applied to various river basins, providing CES. Despite the limitations in terms
of data accuracy and alternative settings, the research method of this study helped to
clarify the optimal mapping units to demonstrate the spatial distribution of CES more
scientifically and accurately when calculating supply and demand. For future urban
planning in the Qiantang River Basin, it is recommended that the mapping units delineated
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by the OATMU of 3.60 km2 be considered as homogenized units with closely similar CES
characteristics, which can be utilized in planning practice to facilitate CES conservation and
development. The study’s reasonably evaluated units, which reflect the spatial variation of
CES most realistically, can provide a basis for ecosystem service valuation and ecological
compensation transfer payments.
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