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Abstract: Forests around the world, vital for ecological, economic, and social functions, are facing
increasing threats such as deforestation and habitat fragmentation. This study introduces “succo-
larity” to analyse forest connectivity and fragmentation directionally in the Romanian Carpathians
from 2000 to 2021. Besides traditional indices such as the fractal fragmentation index (FFI), the
fractal fragmentation and disorder index (FFDI), the local connected fractal dimension (LCFD), and
succolarity, two novel indices are proposed: potential succolarity and delta (∆) succolarity, which
provide nuanced insights into environmental changes and human interventions in forests worldwide.
The succolarity tests showed invariance at the image scale and sensitivity to the obstacles in different
image scenarios. The combined analysis of succolarity and fractal indices reveals dynamic patterns of
connectivity, fragmentation, and spatial disturbance. The directional insights of succolarity highlight
and enhance understanding of deforestation patterns. The FFI and FFDI show different levels of
fragmentation across mountain groups, while the LCFD details local connectivity. The adaptability of
the method makes it globally applicable, supporting biodiversity conservation and landscape man-
agement. In conclusion, the integration of succolarity and traditional fractal indices provides a robust
methodology for the comprehensive analysis of forest fragmentation. This advancement not only
supports the sustainable management of the Romanian Carpathians but also represents a versatile
approach applicable to ecosystems worldwide, ensuring the long-term resilience of forested regions.

Keywords: succolarity; potential succolarity; delta succolarity; percolation; permeability; fragmentation;
connectivity; fractal analysis; forests; deforestation; habitat; ecosystem

1. Introduction

Forests are widely recognised as crucial reservoirs of ecological, economic, and social
benefits [1]. However, they are currently facing a growing number of threats, particularly
habitat fragmentation and loss [2–4]. Reports by the Food and Agriculture Organization [5]
indicate that an average of approximately 10 million hectares are lost annually between
2015 and 2020. Although forests play a vital role in mitigating climate change by absorbing
an impressive 2 billion tons of carbon dioxide each year [6], deforestation rates have surged
to alarming levels globally. This hinders the overall effectiveness of forests in acting as
carbon sinks, thereby reducing their impact on climate change [7].

For instance, deforestation and habitat fragmentation over large areas are two inter-
related processes that have significant impacts on forests, forest ecosystems, and biodi-
versity [8–11]. The natural space for numerous species of plants and animals that rely
on extensive forest areas becomes smaller and isolated with habitat fragmentation [12],
which complicates the movement and migration of these species, reducing their chances of
reproduction and survival [13–15]. The fragmentation of habitats has negative effects on
the connectivity between different fragments; thus, loss of genetic diversity can impede
seeding and pollination, negatively affecting natural forest regeneration [16]. Addition-
ally, fragmentation can impact the natural resources of the forest, such as water and soil
resources [17,18].
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To address these complex challenges effectively, a thorough and detailed analysis of
habitat fragmentation is necessary not only for developing effective conservation strate-
gies [19,20] but also for informing ecological restoration initiatives and promoting sustain-
able urban development planning [21–23]. Various methods are available for testing [24–31]
or assessing forest fragmentation, including the weighted mean patch size [32], the isolation
index [33], path density [34], the shape index [35], the connectivity metrics [36,37] or the
patch fragmentation index [38].

Among these methods, fractal analysis is also included. Fractal indices are a method
used to measure the fragmentation and complexity of a landscape or ecosystem, including
forests [39]. They have the advantage of being easy to compute and scale invariant [40].
The analysis of fractal indices can assess the impact of environmental changes and human
interventions on the fragmentation and connectivity of forest habitats [41]. These indices
are based on concepts from mathematics, specifically nonlinear dynamics and fractal
geometry, and can provide a different perspective on how a landscape or forest is frag-
mented. Various measures have been proposed to quantify the degree of fragmentation in
a landscape, including the box-counting dimension [42–44], the pyramid dimension [45,46],
lacunarity [47–49], the Minkowski dimension [50], the Higuchi dimension [51,52], the local
connected fractal dimension [53], the fractal fragmentation indices [39,54], the generalized
dimension [55], or generalised entropies [56].

From a fractal perspective, existing indices such as the fractal fragmentation index
(FFI) [54], the fractal fragmentation and disorder index (FFDI) [39], and the local connected
fractal dimension (LCFD) [53] quantify only one characteristic of forest structure—either
fragmentation, disturbance, or connectivity—globally, without considering directionality.
Although these indicators provide valuable results [39,54,57–62], they do not establish
a direct link between fragmentation and connectivity. Succolarity may prove useful in
overcoming this limitation. It has the advantage of directionality and only quantifies
dynamically connected forest patches.

However, these measures may not provide detailed information on the directionality
and specific obstacles that affect connectivity between fragmented patches.

This study aims to fill the gap by using an innovative approach that leverages the
concept of succolarity. This study adapts and enhances the fractal measure of succolarity
to evaluate how fragmentation affects connectivity in forest areas, considering directional
barriers. Succolarity was originally designed to measure the permeability of fragmented im-
ages, specifically the degree to which “virtual water” can permeate a binary image [63–65].
In this context, white pixels represent obstacles, while black pixels represent pathways or
connectivity for said virtual water. To analyse forests using succolarity, a fractal concept
for quantifying percolation, i.e., tree cover, is defined as those areas where virtual water
can percolate, similar to a lake (represented by black pixels). Areas without forests are
considered obstacles that force the virtual water to bypass or be blocked (represented by
white pixels), such as the space between some lakes. This study presents a novel method
for evaluating the impact of fragmentation on connectivity in forested regions, taking into
account directional barriers.

The results of our succolarity analysis [65] are compared with three existing frac-
tal models: the fractal fragmentation index [54], the fractal fragmentation and disorder
index [39], and the local connected fractal dimension [53].

In Sections 2.1–2.7, the different scenarios introduced for the fractal indices are de-
scribed and provided essential support for ensuring the efficacy of the two new concepts
proposed in this study—potential succolarity and ∆ succolarity—in better understanding
percolation expansion and forest landscape dynamics for the tree cover database employed.
The advantages and limitations are discussed in Section 4 in some detail.

This research analyses images of forest areas in the central regions of 10 mountain
groups in the Romanian Carpathians between 2000 and 2021 that are undergoing an
intensive process of deforestation, both legal and illegal, for economic purposes such as
timber production for export, the expansion of residential areas, or the establishment of
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new tourist facilities [57,61,62,66]. The choice of this case study is driven by the significant
reduction in bear habitats in the Carpathians, forcing bears to enter human settlements in
search of food. Thus, quantifying the degree of fragmentation and connectivity, correlated
with potential connectivity, could identify potential areas for habitat restoration [67] that
would significantly reduce bear–human interactions, especially considering the protected
status of bears [68–73].

This research presents a noteworthy methodological improvement in quantifying the
effects of deforestation and forest loss in the Romanian Carpathians. A better comprehen-
sion of the dynamics of forested regions provides significant opportunities for preserving
biodiversity and ensuring the long-term sustainability of these mountain ecosystems.

The use of succolarity can offer valuable insights into the effects of fragmentation on
connectivity. This can aid stakeholders in making informed decisions for sustainable forest
planning and management as well as assist them in ecological reconstruction efforts. This
approach aims to reconnect forested areas to ensure optimal the continuity of habitats for
endangered species.

2. Materials and Methods

This study examines the impact of deforestation on the compactness and connec-
tivity of tree cover in the Carpathian Mountains. This analysis was conducted using
succolarity, fractal fragmentation indices, and the local connected fractal dimension to
analyse sets of generated and edited images within a case study framework. The im-
ages used were obtained from the Global Land Analysis and Discovery database [74]
(https://glad.earthengine.app/view/global-forest-change; accessed on 19 April 2022). The
following sections will describe each analytical method and type of image used. The goal
is to provide a comprehensive understanding of the research approach.

2.1. Succolarity

This study investigates the use of succolarity, a metric which measures the degree of
percolation of an image under analysis.

Succolarity (σ), along with fractal dimension (FD) and lacunarity (λ), are fractal mea-
sures evaluators. Fractal dimension indicates how much an object occupies its underlying
metric space, while lacunarity examines the distribution of gaps or lacuna [75]. In contrast,
succolarity quantifies the ability of “virtual water” to flow in an image. Succolarity is
defined as an assessment of the degree to which filaments facilitate percolation or flow
through an image [63].

To analyse forest patch fragmentation and connectivity from an ecological perspective,
we have adopted a specific convention for our succolarity analysis. We interpret forest
patches extracted from satellite images as interconnected or isolated lakes/seas, while
non-forested or deforested surfaces are considered analogous to dry land between the
lakes/seas.

The forest patches allow virtual water to infiltrate and flow, while the non-forested
surfaces, including the deforested areas, act as obstacles around which virtual water must
detour or come to a halt. Figure 1a,b depict the interconnection scenario among three
hypothetical forest patches (similar to three lakes/seas). Virtual water can flow from one
patch to another depending on the analysed flow direction. In this example, the analysis
direction is from top to bottom (Figure 1b—green arrow). Figure 1c shows that, if the three
forest patches are interconnected, virtual water from patch 1 reaches both patch 2 and patch
3 through connecting pathways, similar to water from the first lake feeding the second and
then the third lake (with red is depicted percolation and with blue non-percolation after
the obstacle).

https://glad.earthengine.app/view/global-forest-change
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Figure 1. The interconnection scenario among three hypothetical forest patches, which are similar
to three lakes. The figure demonstrates how succolarity quantifies the degree of fragmentation and
connectivity of forest patches, the effects of the disappearance of connectivity, and the effects of creating
corridors that connect forest patches (similar to the creation of channels connecting lakes): (a). Original
image: (b). Identify the three connected forest patches (1, 2, and 3) and establish the analysis direction
as top-to-bottom using the green arrow. (c). Highlight connectivity through percolation (indicated by
the red colour) in all three patches as they are connected. (d). The effect of the disruption of connectivity
between forest patches 1 and 2 means that percolation is allowed only in patch 1 (red colour) and is
blocked in patches 2 and 3 (blue colour). (e). The effect of the disruption of connectivity between
forest patches 2 and 3 leads to percolation being allowed only in patches 1 and 2 (red colour) and being
blocked in patch 3 (blue colour). (f). The impact of disrupted connectivity between forest patches 1
and 2 and between patches 2 and 3 is demonstrated by percolation only being allowed in patch 1 (red
colour) and blocked in patches 2 and 3 (blue colour). (g). To address this, connectivity corridors are
created between unconnected patches, specifically between patch 1 and 2 and between patch 2 and 3.
(h). As a result, connectivity highlighted by percolation is once again present in all three patches, as
shown in (c), due to the establishment of connecting corridors.

If the interconnection between patches, similar to channels through which lakes com-
municate with each other, is disrupted (as shown in Figure 1d), only two out of the initially
interconnected three patches remain connected but without percolation. This is because an
obstacle has emerged, preventing the flow of virtual water. As a result, virtual water only
flows within the first patch, leaving the second and third patches isolated. This prevents
animals from moving between patches 2 and 3 to patch 1. If the connection between patch 2
and patch 3 is disrupted due to deforestation, patch 1 and 2 will still be connected, allowing
for virtual percolation, while patch 3 will be isolated (refer to Figure 1e).

If deforestation eliminates both connections, all three patches become isolated, and
percolation only occurs in the first patch when analysed from top to bottom (see Figure 1f).
However, if new forest corridors are created through reforestation (see Figure 1g, ma-
genta colour), the three patches become interconnected, restoring mobility between them
(Figure 1h) (similar to the construction of channels which interconnect three isolated lakes).

Succolarity quantifies the degree of percolation in an image, representing the volume
of liquid that can pass through. It measures how much of a given liquid can penetrate
an image through black pixels, considering white pixels as obstacles when analysing
2D images.

The succolarity algorithm assesses the ability of virtual water to percolate in a given
direction, providing insight into the spatial compaction and connectivity characteristics of
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objects (such as tree cover). Each pixel is categorised as either empty (black pixels, symbol-
izing fluid access paths in the case study, i.e., tree cover) or filled with an impenetrable mass
(white pixels, symbolizing obstacles in the case study, i.e., areas without forest, including
deforestation effects) to assess this percolation capability.

De Melo and Conci (2013) describe the principles of calculating percolation ability
using a box-counting approach for 2D images [65]. Thus, the virtual water pressure values
applied to the images depend on the number of pixels and the scale of box-counting in
each direction.

Fluid flow is simulated through all the connected tree cover pixels (black pixels) in
each direction, while fluid is restricted from flowing through the obstacle pixels (white
pixels). The area of fluid flow being targeted is divided into equal-sized boxes in the
images, which are referred to as “BS(k)”. Here, “k” represents the number of possible
box-counting partitions in an image. The occupancy percentage for each image box size is
directly measured on the images and noted as “OP(BS(k))”. The pressure value for each
box size k is calculated using Equation (1).

∑n
k=1 OP(BS(k))xPR(BS(k), pc) (1)

where “n” represents the number of possible divisions, and “PR(BS(k),pc” represents the
pressure at the centroid of box “k” in the scale of consideration.

To ensure that the succolarity value is dimensionless, this value is obtained by divid-
ing the pressure occupancy value by the maximum possible pressure occupancy value
(Equation (2)).

σ(BS(k), dir) =
∑n

k=1 OP(BS(k))xPR(BS(k), pc)
∑n

k=1 OP(BS(k))xmaxPR(BS(k), pc)
(2)

The variable “dir” represents the direction, such as left-to-right (l2r) or right-to-left (r2l)
and top-to-down (t2d) or down-to-top (d2t). The variable “max” represents the maximum
pressure assignment.

The succolarity value, which ranges from 0 to 1, reflects the permeability of the image.
If an image contains both white obstacle pixels and black percolation pixels, the succolarity
values will fall between 0 and 1. A succolarity of 0 occurs when the entire image is white
(waterproof image) or when the border (edge) in the flow direction is completely white,
preventing water penetration. A value of 1 indicates unrestricted fluid flow, where the
inner image is black. In this case study, succolarity is observed to increase with a higher
permeability, which is characterized by larger interconnected black patches (tree cover)
amid the white background (not forested or deforested areas). On the other hand, a lower
permeability, which leads to fewer or smaller black connected patches, results in lower
succolarity values.

To capture variations in the percolation direction, there can be calculated five succolar-
ity values based on the direction of the virtual water flow: top-to-down (t2d), down-to-top
(d2t), left-to-right (l2r), right-to-left (r2l), and the mean succolarity for all four directions.
The mean succolarity provides a comprehensive overview of the percolation characteristics
across different flow directions.

2.2. Potential Succolarity

Potential succolarity is a new concept that is proposed in this paper to indicate the
extent to which the degree of percolation could be extended if obstacles isolating part of
the patches could be penetrated.

The potential succolarity is calculated using Equation (3):

Potential succolarity =
black pixels
total pixels

(3)
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Potential succolarity does not distinguish between the four directions but rather
provides a global overview.

2.3. Delta (∆) Succolarity

∆ succolarity is also proposed as a new concept, representing the difference between
potential succolarity and succolarity (Equation (4)):

∆ succolarity = Potential succolarity − succolarity (4)

∆ succolarity provides information on how much percolation could be further ex-
tended, considering the four flow directions, if obstacles isolating part of the patches could
be penetrated.

Succolarity, potential succolarity, and ∆ succolarity were calculated using the succo-
larity plugin from the ComsystanJ (Complex Systems Analysis for ImageJ) [76] collection
plugins version 1.1.2 of Fiji/ImageJ2 2.14.0/1.54h java 1.8.0_322 64-bit [77]. Succolarity
is a binary algorithm that operates on a [0, >0] scale by flooding the black pixels of a
binary image. Therefore, the input images must be in an 8-bit binary format. The number
of boxes for the regression parameters was set to 7, 8, 9, 10, and 11 for image scales of
64 × 64, 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024, respectively. For the Romanian
Carpathian forest area images, which had an image scale of 1000 × 1000 pixels, the number
of boxes for the regression parameters was set to 10. The scanning type selected was the
raster box.

2.4. Fractal Fragmentation Index (FFI)

The fractal fragmentation index (FFI) is a fractal index that uses multiscale fractal
techniques to measure the degree of fragmentation or compression exhibited by objects
occupying a space [54]. The FFI can also assess the deviation of the shape of each object
from a geometric Euclidean shape. The calculation of the FFI is determined using the
following Equation (5):

FFI = DA − DP = lim
ε→0

(
log N(ε)

log 1
ε

)
− lim

ε→0

(
log N′(ε)

log 1
ε

)
(5)

where FFI is the fractal fragmentation index; DA is the fractal size of the summed areas,
representing the size of the box required to cover the object area; DP is the fractal size of
the accumulated perimeters, representing the size of the box required to cover only the
object perimeter; ε represents the size of the box used in the analysis; logN(ε) represents the
number of contiguous and non-overlapping boxes required to cover the object area; and
logN’(ε) represents the number of contiguous and non-overlapping boxes required to cover
only the object perimeter.

There are three situations, as follows:

• FFI = 0: This situation occurs when forest areas are very small, typically 1–4 pixels for
an object. In such cases, the perimeter image using the outline function appears to be
similar to the area image, with DA = DP. In practice, when analysing very small fractal
objects or entities, it is important to recognise the limitations associated with the accurate
extraction of their contours. The accuracy of contour extraction can be compromised
when dealing with diminutive fractal entities, potentially affecting the reliability and
interpretability of the fractal fragmentation index (FFI) calculations for these specific
entities. Careful consideration of these limitations is essential to ensure the meaningful
interpretation of FFI results, particularly in cases involving small fractal structures.

• 0 < FFI < 1: In scenarios where the areas occupied by objects are large and compact,
the FFI value is high and close to 1, indicating that the objects are densely packed.
Conversely, if the objects are more scattered, smaller, or fewer in number, or if they have
a tentacular, irregular, and sprawling pattern, the FFI value decreases and approaches 0.
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• FFI = 1: This situation is recorded when the area is geometrically perfect and 100%
compact, without any discontinuity (DA = 2 and DP = 1) [54].

2.5. Fractal Fragmentation and Disorder Index (FFDI)

The fractal fragmentation and disorder index (FFDI) uses multiscale fractal techniques
to quantify the degree of fragmentation, compaction, and spatial disorder exhibited by the
objects filling a space [39]. This index is an extension of the FFI and incorporates aspects of
the information dimension (D1) [78]. Similar to the FFI, the FFDI distinguishes patterns of
spatial organisation in processed images.

The calculation of the FFDI is determined using the following Equation (6):

FFDI = D1(1 − FFI) =
(

lim
ε→0

∑N(ε)

i=1
mi(ε) log(mi(ε))

log(ε)

)(
1 −

(
lim
ε→0

(
log N(ε)

log 1
ε

)
− lim

ε→0

(
log N′(ε)

log 1
ε

)))
(6)

where mi = Mi/M, Mi is the number of points in the ith box; M is the total number of points
of the objects; ε represents the size of the box used in the analysis; logN(ε) represents the
number of contiguous and non-overlapping boxes required to cover the object area; and
logN’(ε) represents the number of contiguous and non-overlapping boxes required to cover
only the object perimeter.

In this Equation (6), 1 − FFI is used because FFI = 0 indicates fragmentation, and
FFI = 1 indicates a lack of fragmentation. The FFDI ranges from 0 to 2. The maximum value
of the FFDI approaches 2 when the objects are highly disordered and fragmented, indicating
a highly disordered spatial arrangement. Conversely, the lowest value approaches 0 when
the objects are weakly disordered and compact, indicating a more ordered and compact
spatial organisation.

The FFI and FFDI were calculated using the fractal fragmentation indices plugin
available in the ComsystanJ collection plugins [76] for Fiji/ImageJ2 2.14.0/1.54h [77].
These plugins provide binary algorithms that operate on a [0, >0] scale by analysing
the white pixels of a binary image. Therefore, it is imperative that the input images
are in an 8-bit binary format, inversely configured compared to the images used for the
succolarity analysis.

To be consistent with the succolarity analysis, the number of boxes for the regression
parameters was set to 7, 8, 9, 10, and 11 for image scales of 64 × 64, 128 × 128, 256 × 256,
512 × 512, and 1024 × 1024, respectively. For the Romanian Carpathian forest area images,
which had an image scale of 1000 × 1000 pixels, the number of boxes for the regression
parameters was set to 10.

Note that succolarity-compatible images require inversion using Fiji/ImageJ2 2.14.0/1.54h
(Edit–Invert). This inversion ensures that white pixels correspond to the tree cover, while
black pixels represent the background areas without forest, including deforestation effects.

2.6. Local Connected Fractal Dimension (LCFD)

The local connected fractal dimension (LCFD) is a fractal index used to quantify local
connectivity. It is expressed according to Equations (7) and (8):

M(ϵ) ∝ FϵLCFD (7)

LCFD =
log[M(ϵ)]

log(ϵ)
(8)

where F is a mass prefactor, and M(ε) is the number of locally connected pixels (an eight-
neighbour connection) in a box ε [53,79].

The LCFD value is 1 if the object is a straight one-dimensional line and 2 if the object is
two-dimensional and completely covered. The determination of connectivity is based on
considering pixels within the 8 × 8 environment of the starter pixel as connected, following
the basic rule for identifying connected sets within a given arbitrary distance around the
base pixel.
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LCFD estimation was performed using the FracLac plugin [80] for the Fiji/ImageJ2
2.14.0/1.54h [77]. In this analysis, binary images were imported into FracLac as a bi-
nary stack. The local connected fractal dimension option was selected with black as the
background for the fractal connectivity analysis. The result included an average of all
connectivity values per image.

2.7. Image Generation for Testing and Validating Succolarity

The aim of generating images was to evaluate and validate succolarity’s ability to
quantify the degree of fragmentation, compaction, and interconnection. This evaluation
aimed to assess succolarity’s performance in relation to directionality.

Firstly, five sets, each containing six images, were generated using the Fiji/ImageJ2
2.14.0/1.54h software [77]. The sets consisted of three isotropic images (black square,
cross, and white square) as well as three anisotropic images (three-quarter square, half
square, and quarter square). The images were generated at scales of 64 × 64, 128 × 128,
256 × 256, 512 × 512, and 1024 × 1024 pixels (Figure 2). This process aimed to assess the
sensitivity of succolarity to variations in image scale, mirroring the approach taken in our
fractal analysis. To prevent potential biases introduced by automatic resizing and other
error sources, it was essential to ensure uniformity in scale (pixel size) and extent when
comparing images for the fractal analysis. As highlighted by Loke and Chisholm (2022),
this standardization applies to both algorithmically generated images and those derived
from empirical data [81].
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Figure 2. Images generated for succolarity testing and validation: (a). black square; (b). three-quarter
square; (c). half square; (d). cross; (e). quarter square; and (f). white square. The images were
generated at scales of 64 × 64, 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024 pixels.

Secondly, the Image generator—Fractal HRM from ComsystanJ collection plugin [76]
was used within the Fiji/ImageJ2 2.14.0/1.54h software to generate a hierarchically struc-
tured random map (HRM) image. The HRM image was created using a recursive al-
gorithm inspired by the curdling and random trema generation method introduced by
Plotnick [27,63]. HRMs are maps of pixels randomly assigned values of 0 or 1, with vary-
ing probability distributions in different regions. These maps can simulate landscapes
with varying levels of clustering, fragmentation, and connectivity, achieved through the
processes of curdling and random trema. It is important to note that two surfaces may
share the same overall fill space and yet diverge in their degree of curdling, which denotes
the clustering or nucleation of the filled space. The unfilled space is created through a
random process called trema, which involves placing holes with a defined shape on the
mathematical surface [25,26,63].

The HRM image for this experiment was generated at a scale of 512 × 512 pixels, cor-
responding to 262,144 pixels, with a fixed number of 512 rows and columns (M) (Figure 3a).
The image falls under category s1, which is denoted as “high” (refer to [39] for compre-
hensive details). Specific probability values were assigned: p1 = 0.5 and p2 = p3 = 1. The
variables p1, p2, and p3 represent the percentage of space occupied by HRM objects at
different grain sizes, expressed as a fraction (e.g., 0.5 corresponds to 50%). Specifically, p1
corresponds to a grain size of 50 × 50 pixels, p2 to 5 × 5 pixels, and p3 corresponds to
1 × 1 pixel. These variations in grain size enable the examination of HRM objects at differ-
ent scales within the fixed scale of the 512 × 512-pixel HRM image. The image produced is
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anisotropic, making it appropriate for a succolarity analysis in all four directions: t2d, d2t,
l2r, and r2l (Figure 3b–e).
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Figure 3. Hierarchically structured random map (HRM) images generated and edited for succolarity
testing and validation: (a–e). original image; (a). the HRM image is generated using ComsystanJ,
with assigned probability values of p1 = 0.5 and p2 = p3 = 1; (b–e). visualisation of percolation in the
four directions of analysis ((b). top-to-down; (c). down-to-top; (d). left-to-right; and (e). right-to-left);
(f). encircled by an unbroken barrier (yellow border); (g). a barrier line has been added (yellow);
(h–k). visualisation of percolation in the four directions of analysis for an HRM image with a barrier
line added ((h). top-to-down; (i). down-to-top; (j). left-to-right; and (k). right-to-left); (l). visualisation
of percolation for HRM image encircled by an unbroken barrier; (m). HRM image with two pixels
removed in a connection area (the red line indicates the area of the removed connectivity); (n). HRM
image with two pixels removed in a connection area; and (o–r). visualisation of percolation on
the four directions of analysis for an HRM image with two pixels removed in a connection area
((o). top-to-down; (p). down-to-top; (q). left-to-right; and (r). right-to-left). The images display
black pixels that enable percolation, allowing virtual water to flow. White pixels represent obstacles,
while grey pixels are located beyond the obstacles and are unreachable by virtual water (they are
not included in the quantification of succolarity but indicate the potential for percolation if water
penetrated the obstacle).

Thirdly, the HRM image was edited to enable more detailed tests of succolarity.

- The first edit included adding a horizontal white line, four pixels thick, in the initial
optimum of the image (Figure 3g; for better visualisation, the line is shown in yellow
in the figure). When a barrier is completely impenetrable, fluid flow stops, and the
black pixels beyond the barrier are not measured. This is because the barrier acts as
an impermeable layer, blocking the virtual liquid above. A new concept, ∆ succolarity,
was introduced to quantify these black pixels located beyond the barrier. Together
with the quantifiable pixels located in front of the barrier, they formed the potential
succolarity, another proposed concept. The aim of this approach was to measure the
effect of a continuous obstacle on the flow of virtual water. The evaluation focused on
the four directions of analysis (t2d, d2t, l2r, and r2l) (Figure 3h–k), with a particular
emphasis on t2d and d2t (Figure 3h,i). Figure 3h–k depict the four percolations limited
by the presence of the barrier, corresponding to the four analysed directions. To aid
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visualization, the black pixels located beyond the barrier and thus not quantified are
represented in grey.

- In the second edit, the HRM image was framed by a white border that was 12 pixels
wide (Figure 3f). The purpose of this edit was to measure succolarity when the
image was completely impermeable to water (Figure 3l). In the presence of a white
border, which acts as a continuous external obstacle in all four directions, all black
pixels that could potentially allow percolation are considered “inactive”. This is
because the border prevents virtual liquid from penetrating the image. In this scenario,
these “inactive” black pixels represent both the potential and ∆ succolarity, as their
succolarity is equal to 0. These “inactive” black pixels are located beyond the image
border (see Figure 3f) and are displayed in grey for clarity (see Figure 3l).

- In the third edit, two black pixels that connected two patches in the original image
were removed (as shown by the red line in Figure 3m and by the white in Figure 3n).
Figure 3o–r show the four percolations corresponding to the four analysed directions.
Two black pixels were removed, creating a small white barrier between the two
patches. It is evident that breaking a connection between two patches deactivates
some black pixels beyond the rupture of that connection. These pixels no longer
facilitate “flow” and become “inactive” due to the obstacle created. To improve
visualization, grey pixels located beyond the connection rupture and, therefore, not
quantified represent these black pixels. The aim was to identify changes in succolarity
when interconnections became obstacles (Figure 3o–r).

These second and third edits provided essential support for validating the two new
concepts proposed in this study: potential succolarity and ∆ succolarity.

2.8. Tree Cover Images of the Romanian Carpathians Mountains

In the current research, the tree cover database for 2001–2021 from a previous research
study (available as supplementary material [39] was used (https://static-content.springer.
com/esm/art:10.1007/s10980-023-01640-y/MediaObjects/10980_2023_1640_MOESM4_ESM.
zip; accesed on 19 September 2023). The images were processed from the Global Land Analy-
sis and Discovery database [74] (https://glad.earthengine.app/view/global-forest-change;
accessed on 19 April 2022). The methodology for obtaining these images and preprocessing
them to generate the final images is described in [39]. The study area is a significant geograph-
ical region with mountainous terrain forming a circular arc that stretches from the northern
border with Ukraine to the southern border with Serbia (Figure 4).

Ten stacks of twenty-two images each were analysed, one image for each year of the
analysed time interval, from 2000 to 2021. The ten stacks corresponded to the ten mountain
groups of the Romanian Carpathians: the Northern Eastern Carpathians, Central Eastern
Carpathians, Southern Eastern Carpathians, Bucegi, Făgăras, , Parâng, Retezat–Godeanu,
Banat, Poiana Ruscă, and Apuseni mountain groups (Figure 5). The size of all the images
was 1000 × 1000 pixels. Black pixels corresponded to forest cover and white pixels to
non-forest or deforested areas for the succolarity analysis and the opposite for the FFI, FFDI,
and LCFD analyses.

https://static-content.springer.com/esm/art:10.1007/s10980-023-01640-y/MediaObjects/10980_2023_1640_MOESM4_ESM.zip
https://static-content.springer.com/esm/art:10.1007/s10980-023-01640-y/MediaObjects/10980_2023_1640_MOESM4_ESM.zip
https://static-content.springer.com/esm/art:10.1007/s10980-023-01640-y/MediaObjects/10980_2023_1640_MOESM4_ESM.zip
https://glad.earthengine.app/view/global-forest-change
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Figure 4. The geographic location of the Romanian Carpathians mountains: (A) northern group
of Eastern Carpathians; (B) central group of Eastern Carpathians; (C) southern group of Eastern
Carpathians; (D) Bucegi Mountains group; (E) Făgăras, Mountains group; (F) Parâng Mountains
group; (G) Retezat–Godeanu Mountains group; (H) Banat Mountains; (I) Poiana Ruscă Mountains;
and (J) Apuseni Mountains.
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Figure 5. Examples of binary images of tree cover from 2021: (a) northern group of Eastern Carpathi-
ans; (b) central group of Eastern Carpathians; (c) southern group of Eastern Carpathians; (d) Bucegi
Mountains group; (e) Făgăras, Mountains group; (f) Parâng Mountains group; (g) Retezat–Godeanu
Mountains group; (h) Banat Mountains; (i) Poiana Ruscă Mountains; and (j) Apuseni Mountains.
The dimension of all the images is 1000 × 1000 pixels. White pixels correspond to forest cover and
black pixels correspond to non-forest cover. The accompanying images are 1000 × 1000 pixels and
use black pixels to represent forest cover and white pixels to represent non-forest cover.
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3. Results

This section presents the results of the succolarity analysis, focusing on the impact of
the black patches’ sizes and their connectivity on the obtained values. Succolarity values,
which range from 0 to 1, serve as a significant indicator for assessing image permeability.
The importance of the interaction between white and black pixels is highlighted by the
distinction between low and high succolarity. The variability in succolarity is revealed by ex-
ploring the dimensions and connections of black patches, providing a detailed perspective
on how these features impact image permeability.

The study used test images from Figures 1 and 2 to explore the capability of succolarity
in quantifying the degree of fragmentation/compactness and connectivity of areas with
black pixels that facilitate percolation against a background composed of white obstacle
pixels. Additionally, the test images were analysed for comparison with three fractal indices:
FFI, FFDI, and LCFD. After validation, succolarity was used to investigate the impact of
deforestation on the density and connectivity of forest fragments over a 22-year period in
ten mountainous regions of the Romanian Carpathians.

3.1. Invariance of Succolarity to Image Scale

This section explores the consistent behaviour of succolarity with respect to image
scale. The analysis reveals that succolarity remains invariant across varying image scales,
consistently presenting identical values irrespective of an image’s dimensions, whether
these are 64 × 64, 128 × 128, 256 × 256, 512 × 512, or 1024 × 1024 pixels (refer to Figure 6a).

However, the three analysed fractal dimensions (FFI (Figure 6b), FFDI (Figure 6c), and
LCDF (Figure 6d)) are sensitive to image size. The FFI values increase proportionally with
image scale (ranging from 64 × 64 pixels to 1024 × 1024 pixels), which introduces a bias in
the analysis. For example, the FFI for a half-square image with dimensions of 1024 × 1024
pixels is higher than the FFI for a quarter-square image with dimensions of 256 × 256 pixels.
As a result, larger images, such as those with dimensions of 1024 × 1024 pixels, exhibit
higher compactness values compared to smaller images, such as those with dimensions of
512 × 512 pixels, even if they have identical texture and structure. This difference is due to
the larger number of pixels being analysed.

The FFDI values decrease as image dimensions increase, resulting in larger images
(1024 × 1024) showing higher compactness and order values while maintaining uniform
texture and structure. The LCDF values show a slight increase, from smaller image di-
mensions (64 × 64) to larger ones (1024 × 1024), indicating a slightly higher degree of
connectivity while maintaining consistent texture and structure.

In the case of black images, which consist solely of foreground pixels, they achieve
an FFI value of 1 and an FFDI value of 0, regardless of the image’s size. Conversely, white
images consisting solely of background pixels yield an FFI score of 0 due to the absence of
quantifiable pixels. As a result, there is no connectivity (LCDF = 0), making it impossible to
calculate the informational dimension, resulting in the FFDI consistently being NaN.

It is important to note that, for the analyses of the FFI, the FFDI, and the LCDF, the
images underwent inversion, with white being transformed into black and vice versa. How-
ever, to maintain consistency and comparability with succolarity, the image nomenclature
was retained, even if the black images were converted to white and the white images to
black. ConsystanJ assumes a black background and a white foreground for fractal dimen-
sion analyses. Therefore, an analysis of a black image without inversion would result
in FFI = 0, while, for a white image, FFI = 1, because ComsystanJ for fractal dimension
analyses assumes a black background and a white foreground.
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Figure 6. The influence of image scale on the analysis of succolarity, FFI, FFDI, and LCFD. The images
analysed are those represented in Figure 1 and are analysed at scales of 64 × 64, 128 × 128, 256 × 256,
512 × 512, and 1024 × 1024 pixels. The results indicate that only succolarity is invariant to an image’s
scale (a), allowing for the easy comparison of results obtained from images of different scales. In
contrast to succolarity (a), FFI (b) and LCFD (d) values increase proportionally with image scale,
while FFDI (c) values decrease proportionally with image scale, making them sensitive to changes
in image scale. It is important to note that for a black image, regardless of image scale, FFI has a
maximum value and minimum FFDI (maximum compression), and for a white image, regardless of
image scale, FFI has a maximum value and minimum FFDI (maximum fragmentation).

3.2. Examination of Succolarity and FFI, FFDI, and LCFD Metrics for the Generated Images

This section conducts a comprehensive analysis using succolarity, FFI, FFDI, and LCFD
metrics on both the generated images and those that underwent subsequent modifications.
The objective is to gain valuable insights into the permeability, fractality, and directional
characteristics inherent in each image, providing a deep understanding of their structural
properties. The assessments examine both the baseline features and the impact of specific
alterations, such as removing two pixels, adding a white line, and introducing a white
border. The findings reveal subtle variations in connectivity, permeability, and structural
attributes, providing a nuanced perspective on the intricate behaviour of the images under
different modifications.

Figure 7 shows the results of the succolarity, FFI, FFDI, and LCFD analyses for the
six test images in Figure 2a–f. Figure 7a demonstrates that, for the isotropic images (black
square, cross, and white square), succolarity remains constant in all four directions. The
black square has the maximum succolarity value of 1, indicating the total permeability of
virtual water through all the black pixels. In contrast, the white square has a succolarity
of 0, indicating impermeability due to the absence of black pixels. The cross image has a
succolarity of 0.36, indicating water penetration only in two symmetric spots out of four,
regardless of the direction.
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Figure 7. The results of the fractal analysis of the images in Figure 1. The analysis includes the
following indices: (a). succolarity; (b). potential succolarity (a new index); (c). ∆ succolarity (another
new index); (d). FFI; (e). FFDI; and (f). LCFD. The scale of the images is 1024 × 1024 pixels. The
results indicate that only succolarity can distinguish between isotropic images (black square, cross,
and white square) and anisotropic images (three-quarter square, half square, and quarter square).

For the anisotropic images, such as the three-quarter square, the half square, and the
quarter square, succolarity remains consistent in three directions. However, in the fourth
direction, where an obstacle is encountered (represented by white), succolarity becomes 0.
Therefore, the three-quarter square has a succolarity of 0.75 in three directions, with l2r = 0;
the half square has a succolarity of 0.5 in three directions, with l2r = 0; and the quarter
square has a succolarity of 0.5 in three directions, with r2l = 0. These results highlight
the ability of succolarity to distinguish differences in permeability and structure between
images, which is relevant for percolation and fractality analyses.

Figure 7b displays the ratio of black pixels that allow water percolation to the total
number of pixels. This ratio represents the potential succolarity, as per Equation (3). The
potential succolarity values for the generated images are as follows: black square = 1;
three-quarter square = 0.75; cross = 0.71; half square = 0.5; quarter square = 0.25; and white
square = 0.

Figure 7c shows the ∆ succolarity, which is the difference between succolarity (Figure 7a)
and potential succolarity (Figure 7b), as defined in Equation (4). The isotropic images for the
black square (all the pixels allowing percolation; potential succolarity is equal to succolarity)
and the white square (no black pixel potentially allowing percolation) have a value of 0 in all
directions, as there are no additional obstacles or fragmentations. For the cross, the value is
0.36 if the white barrier can be penetrated without being eliminated. The ∆ succolarity for
the anisotropic images indicates a potential interconnection in the l2r direction, leading to an
increase in succolarity by 0.75 (three-quarter square) and 0.5 (half square). In the r2l, there is a
potential interconnection that could increase succolarity by 0.25 (quarter square).

Figure 7d shows the FFI values for the six images. Unlike succolarity, FFI does not
differentiate based on the analysis direction for both the isotropic and anisotropic images.
FFI quantifies the degree of fragmentation/compactness, including isolated unconnected
patches, unlike succolarity. The five images exhibit perfect geometric objects (square,
rectangle); therefore, the FFI values range between 0.83 (cross) and 1 (black square). The
FFI of the white square is 0, as it does not have any foreground pixels.

The FFDI analysis (Figure 7e) shows a similar situation, but it is inversely proportional
to FFI. The minimum value is observed for the black square (0, indicating no fragmentation
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or disorder), and the maximum is 0.34 for the cross. The analysis of the white square cannot
be conducted due to the absence of foreground pixels.

The analysis of LCFD (Figure 7f) produces similar results between the minimum value
(1.991 for the quarter square) and the maximum value (1.997 for the black square). For the
white square, LCFD is 0 due to a lack of connectivity. Therefore, LCFD has not proven to be
useful in distinguishing the analysed images.

In Figure 8a, the HRM top image has a good connectivity between the black squares
and exhibits relative isotropy with a succolarity of 0.5 in the r2l direction and 0.48 in
the other three directions. The removal of two pixels (Figure 3h) results in a reduced
connectivity in all four directions, with the most significant decrease observed in the r2l
direction, from 0.5 to 0.11. The only direction that remains unchanged is d2t. Similarly,
the introduction of a horizontal barrier in the first optimum (Figure 3h) leads to similar
reductions in succolarity as the removal of two pixels, with the most significant decrease
observed in the t2d direction, from 0.48 to 0.10. The direction that remains almost unchanged
is l2r. When a white border is added around the image (Figure 3l), succolarity becomes
0 in all four directions, despite there being connectivity and fragmentation/compactness
within the interior. This is because the virtual water cannot penetrate the image, reach the
black pixels, and allow percolation.
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Figure 8. The results of the fractal analysis of the HRM images in Figure 3. The analysis includes the
following indices: (a). succolarity; (b). potential succolarity (a new index); (c). ∆ succolarity (another
new index); (d). FFI; (e). FFDI; and (f). LCFD. The scale of the images is 512 × 512 pixels. The results
show that only succolarity can be used to determine directionality, as the fractal dimensions analysed
have been found to be insensitive to the direction of analysis.

The impact of removing two pixels, adding a white line, or including a white border
on the ratio of black pixels to total pixels is minimal, as shown in Figure 8b. Figure 8c
displays the results of the ∆ succolarity analysis, which reflects the effects of these three
modifications. However, for the image without two pixels and with a white interior
barrier, succolarity is below 0.2 (almost 0.39 for images without two pixels in r2l and with
a white interior barrier in t2d). In the original image, the ∆ succolarity is approximately
0.01. In the case of the image with a white border, the ∆ succolarity is 0.45. If the border
were to be penetrated in one or more directions, the succolarity would increase from 0
to approximately 0.5. This implies a good potential for flow but requires the penetration
of the border. The impact of the three adjustments on the FFI, the FFDI, and the LCFD
for the barrier and border is negligible, with little variation observed when two pixels are
removed (see Figure 8d–f). Figure 9a,c clearly illustrate the differences in directionality for
the succolarity of the two image sets, while Figure 9b,d depict the ∆ succolarity.



Land 2024, 13, 138 16 of 29Land 2024, 13, x FOR PEER REVIEW 17 of 31 
 

 

Figure 9. Analysis of succolarity and Δ succolarity according to the four directions of analysis (top-

to-down, down-to-top, left-to-right, and right-to-left): (a). succolarity for the images in Figure 1; (b). 

Δ succolarity for the images in Figure 1; (c). succolarity for the images in Figure 3; and (d). Δ succo-

larity for the images in Figure 3. 

3.3. A Comprehensive Analysis of Forest Succolarity, Connectivity, and Fractality in the Roma-

nian Carpathians 

This section provides a detailed analysis of the dynamics of succolarity, connectivity, 

and fractality in the Romanian Carpathians. The aim is to examine the structural changes 

in the forested landscape, with a focus on variations in the compactness and connectivity 

of forest patches, particularly in response to deforestation and natural losses. 

Figures 10 and 11 display the local connectivity map for two mountain groups with 

opposing patterns. The northern group of the Eastern Carpathians is characterized by in-

tense deforestation, which has caused both fragmentation and reduced connectivity be-

tween forest patches (Figure 10). In contrast, the Retezat–Godeanu group has experienced 

lower levels of deforestation, resulting in only minor fragmentation and reduced connec-

tivity between forest patches (Figure 11). 

Succolarity is an important metric as it indicates the level of fragmentation. Lower 

values suggest the presence of isolated and unconnected patches resulting from forest 

fragmentation. 

Figure 9. Analysis of succolarity and ∆ succolarity according to the four directions of analysis (top-to-down,
down-to-top, left-to-right, and right-to-left): (a). succolarity for the images in Figure 1; (b). ∆ succolarity
for the images in Figure 1; (c). succolarity for the images in Figure 3; and (d). ∆ succolarity for the images
in Figure 3.

3.3. A Comprehensive Analysis of Forest Succolarity, Connectivity, and Fractality in the Romanian
Carpathians

This section provides a detailed analysis of the dynamics of succolarity, connectivity,
and fractality in the Romanian Carpathians. The aim is to examine the structural changes
in the forested landscape, with a focus on variations in the compactness and connectivity
of forest patches, particularly in response to deforestation and natural losses.

Figures 10 and 11 display the local connectivity map for two mountain groups with op-
posing patterns. The northern group of the Eastern Carpathians is characterized by intense
deforestation, which has caused both fragmentation and reduced connectivity between
forest patches (Figure 10). In contrast, the Retezat–Godeanu group has experienced lower
levels of deforestation, resulting in only minor fragmentation and reduced connectivity
between forest patches (Figure 11).

Succolarity is an important metric as it indicates the level of fragmentation. Lower
values suggest the presence of isolated and unconnected patches resulting from forest
fragmentation.

Figure 12 shows the dynamics of tree cover across the 10 mountain groups, display-
ing the mean succolarity (Figure 12a) and the differences between the years 2000 and
2021 (Figure 12b). Four distinct patterns were identified:

- The Western Carpathians (the Banat, Poiana Ruscă, and Apuseni mountain groups)
exhibited high compactness and connectivity with minimal deforestation, avoiding
significant fragmentation or isolation of forest patches.

- The Parang and northern mountain groups displayed moderate compactness and
connectivity with high dynamicity. Deforestation in Parang resulted in the creation of
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isolated forest patches, while the northern group experienced extensive deforestation,
leading to both continuous fragmentation and reduced connectivity. The Bucegi
and Retezat mountain groups were identified as having moderate compactness and
connectivity, with reduced dynamicity. Despite being the second-most impacted group
by deforestation, the central group had low connectivity and compactness before 2001.

- Low compactness and connectivity (reduced dynamicity) were observed in the Fagaras
and southern mountain groups, with minimal deforestation affecting only a few
connectivity areas.

The differences in succolarity between 2000 and 2021 were most significant in the
Northern Parang and central groups, indicating substantial fragmentation and connectivity
loss (mean succolarity reduced by over 0.09). Moderate differences were observed in the
Bucegi, Poiana Rusca, and Apuseni groups, with mean succolarity reductions ranging
between 0.02 and 0.05. The Banat, southern, and Retezat groups exhibited the smallest
differences, with mean succolarity reductions below 0.02. This suggests that deforestation
has had a lesser impact on connectivity and fragmentation in these regions.
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Figure 10. The local connectivity maps for the northern group of the Eastern Carpathians from 2000
to 2021. The maps depict maximum connectivity in yellow (LCFD = 2), reduced connectivity in
purple (LCFD between 1 and 2), and very low connectivity in blue (LCFD < 1). Areas without forests
or deforested zones are shown in white. The maps highlight the reduction in connectivity due to
deforestation activities over the specified period.
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Figure 11. The local connectivity maps for the Retezat–Godeanu mountain group from 2000 to 2021.
The maps depict maximum connectivity in yellow (LCFD = 2), reduced connectivity in purple (LCFD
between 1 and 2), and very low connectivity in blue (LCFD < 1). Areas without forests or deforested
zones are shown in white. Compared to Figure 10, the smaller-scale deforestation activities resulted
in a slight reduction in compactness and connectivity.
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Figure 12. Patterns of forest loss effects on tree cover in the 10 mountain groups of the Romanian
Carpathians, identified via the analysis of (a). mean succolarity and (b). differences in succolarity
between 2000 and 2021.

Succolarity analyses were conducted for the four directions of tree cover across the
10 mountain groups. The mean succolarity patterns and differences between 2000 and
2021 were revealed (Figures 13a–d and 14a–d). In the r2l direction (Figure 13d), the central
group has a succolarity value close to 0 because there is a barrier at the right edge of the
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image that lacks forests. Figure 14a–d show that the 10 groups are relatively isotropic,
with differences in succolarity between 2000 and 2011 for the four directions. Notable
variations are only observed in the r2l direction, where the central group has a succolarity
of 0 (Figure 13d), indicating no connectivity loss due to deforestation, resulting in relatively
discontinuous forest patches. Figure 13e,f highlight the spatial isotropy of forests across the
10 mountain groups and their potential and ∆ succolarity. The central group is the only
group that exhibits succolarity anisotropy, with the r2l direction being the differentiator.
The analysis of forest area compactness and connectivity dynamics was complemented by
the evaluation of fractal indices (FFI, FFDI, and LCFD).
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Figure 13. Patterns of forest loss effects on tree cover in the 10 mountain groups of the Romanian
Carpathians, depending on the direction of analysis, identified by means of an analysis of succolarity:
(a). top-to-down; (b). down-to-top; (c). left-to-right; (d). right-to-left; (e). potential succolarity; and
(f). ∆ succolarity.
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Figure 14. Patterns of forest loss effects on tree cover in the 10 mountain groups of the Romanian
Carpathians, depending on the direction of analysis, identified by means of an analysis of differ-
ences in succolarity between 2000 and 2021: (a). top-to-down; (b). down-to-top; (c). left-to-right;
(d). right-to-left; (e). potential succolarity; and (f). ∆ succolarity.

Despite increased fragmentation and disorder (FFI, FFDI) and reduced local connectiv-
ity (LCFD) in the northern and central groups for the years 2020–2021, these groups still fall
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within the category of moderate or average succolarity (Figure 15). The presence of natural
or deforestation-induced obstacles limits connectivity among forest patches, leading to
fragmentation. Succolarity is an effective measure of the impact of connectivity disruption
on fragmentation/compactness, as shown by the varied values between fractal parameters
and succolarity. The Banat group is the most compact and connected, with a succolarity
around 0.09, which is higher than that of the more fragmented Poiana Rusca group. Despite
being less compact, the latter exhibits excellent interconnectivity among forest fragments.
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Figure 15. Patterns of forest loss effects on tree cover in the 10 mountain groups of the Romanian
Carpathians identified via an analysis of the following: (a). succolarity; (b). FFI; (c). FFDI; and (d). LCFD.

In conclusion, the metrics of succolarity, connectivity, and fractality reveal the complex
dynamics of forested areas in the Romanian Carpathians. This highlights the need for
sustainable management practices to preserve the integrity of these invaluable ecosystems.

4. Discussion

The analysis of fragmentation and connectivity is crucial for several key reasons,
as it provides essential information for biodiversity conservation, sustainable ecosystem
management, and understanding the impact of human activities on the environment.

4.1. Succolarity and Fractal Indices

This section provides a detailed explanation of the results of our succolarity analysis,
highlighting how the size and connectivity of the black patches have a significant impact
on the values obtained.

This study uses test images from Figures 1 and 2 to explore the potential of succolarity
in quantifying fragmentation/compactness and connectivity. Furthermore, the results
are juxtaposed with three fractal indices—FFI, FFDI, and LCFD—for a comprehensive
understanding. These results are used as a basis for investigating the impact of deforestation
on forest fragment density and connectivity over a 22-year period in ten mountain regions
of the Romanian Carpathians.
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Succolarity is a versatile tool for percolation analyses, especially in scenarios where
the focus is on understanding how substances can traverse diverse pixel configurations.
Succolarity, as a measure of percolation, quantifies only the capacity of a virtual liquid to flow
through an image (black pixels), circumventing or being blocked by obstacles (white pixels).

The measurement of succolarity provides a concise assessment of permeability and
connectivity, capturing variations in the virtual water flow across images and yielding
valuable insights into structural properties. This metric is advantageous because it can
distinguish between isotropic and anisotropic patterns [82,83] and functions as a robust
tool for delineating the effects of wettability on flow capacity [84]. In the complex study
of pore systems, succolarity emerges as a key method, traditionally used to characterise
structural information [83,85].

The utility of succolarity transcends disciplines, with Ayad and Bakkali’s (2019) study
demonstrating its effectiveness in identifying disturbances in the geoelectric images of a
given area [86]. This correlation between disturbance rates and fractal values is particu-
larly valuable in delineating phosphate deposits with different levels of risk. Similarly,
Ref. [87] found a robust correlation between succolarity and permeability in natural gas
hydrate samples.

Biological and medical applications of succolarity are exemplified by studies such
as [88–90], which provide accurate descriptions of porosity, trabecular structural patterns,
and vascular variations. Talu et al., (2020) investigated nanoscale topography using succo-
larity, highlighting its consistency in indicating high percolation [91].

Mah et al.’s, (2022) investigation of myenteric plexus interstitial cells of Cajal networks
highlights the directional and regional variations captured by means of a succolarity
analysis across mouse antrum regions [92].

Analyses conducted on test images (Figures 1 and 2) have shown that it is possible
to quantify those areas beyond obstacles that can be percolated if the obstacles can be
penetrated, by introducing two new indices: potential succolarity (indicating how much
the succolarity could increase if virtual percolating water managed to penetrate obstacles)
and ∆ succolarity (quantifying those pixels beyond obstacles that can still be included in
percolation). The results obtained using potential succolarity and ∆ succolarity provide a
unique perspective on percolation and permeability. In situations where the succolarity is
zero, these new concepts are relevant for distinguishing between a completely white image
and an image with white margins that prevent virtual water from penetrating in certain
directions. Potential succolarity and ∆ succolarity emphasize the significance of “inactive”
black pixels in the context of a white barrier or ruptured connections. This enhances our
understanding of influences on the permeability of the analysed images. The concepts
contribute to exploring the relationship between succolarity and permeability, improving
comprehension of the results.

However, succolarity does not replace FFI or FFDI because it quantifies percolation
through fragmentation/compaction in accordance with the presence or absence of connec-
tivity, without quantifying the shape of objects (FFI) or spatial disorder (FFDI). Thus, if it
is necessary to determine fragmentation or compaction in accordance with the shape of
objects in images, FFI remains the fractal solution, and, if spatial disorder is also desired,
FFDI remains a fractal solution.

The study of connectivity in fields as diverse as medical imaging, ecology, and urban
planning has been greatly enhanced by the use of the LCFD. This index, derived from fractal
analysis, serves as a valuable tool for quantifying the local connectivity of structures or
networks, providing insights into the intricate complexities and interconnectivities within
the systems being analysed. Originating from the work of Voss and Wyatt (1993) [53], who
suggested its efficacy in aligning with human visual perception, LCFD has since found
applications in diverse domains, providing a nuanced understanding of local connectivity
within a broader framework. LCFD has been used in various domains. It has been applied
to analyse digitised angiograms, revealing distinctions between normal and pathological
retinas [79]. Furthermore, it has quantified local complexity at the epithelial–connective
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tissue interface, highlighting irregular regions in histological specimens [93]. In medical
contexts, LCFD has identified circular configurations and increased density in blood vessels
associated with female genital schistosomiasis [94]. Its effectiveness has been demonstrated
in characterising the complexity of angiogenesis, with higher LCFD values corresponding
to intricate processes of sprouting and fission in collateral vessels [95]. LCFD has explored
changes in fractality in mouse embryonic lenses, correlating them with spatial protein ex-
pression patterns [96]. In urban planning, LCFD has effectively mapped urban connectivity,
isolating areas with different connectivity dimensions [97]. The first study in which the
local connected fractal dimension was applied in forestry was the analysis of the forests of
the Apuseni Mountains [57]. The LCFD method has also been used to analyse deforestation
processes in the Amazon. In the latter, it revealed differences between isolated patches and
more complex connected regions [98].

Thus, the LCFD is a powerful analytical tool that crosses disciplinary boundaries. From
detecting retinal pathology to dissecting urban connectivity and unravelling the complexity
of forest ecosystems, the LCFD has proven its worth. Its ability to capture nuanced local
interrelationships makes it an invaluable asset in diverse scientific endeavours and promises
to continue to contribute to our understanding of complex systems and patterns.

Fractal fragmentation indices serve as valuable tools for assessing the impacts of
deforestation at the regional and other spatial scales, providing insights into the complex
dynamics of forest fragmentation. The FFI has been widely used to analyse the impact of
deforestation at various scales. However, the FFDI is an improved index that incorporates
the Rényi information dimension to provide a more comprehensive assessment of both
fragmentation and spatial disorder within images. Despite their utility, these indices, which
rely on a box-counting analysis, have a significant limitation—their sensitivity to an image’s
scale [81]. The sensitivity of the FFI and the FFDI to image size presents a challenge, making
results incomparable when analysing images of different scales.

In summary, succolarity has allowed the identification of directional differentiation
and the role of barriers in the connectivity of natural or deforestation-induced forest
fragments. Unlike succolarity, the FFI, the FFDI, and the LCFD are non-directional analyses
and give identical results regardless of an image’s rotation (see Figure 7d–f). The LCFD has
been shown to be insensitive to the presence of obstructions that disrupt connectivity.

The FFI only identifies the degree of fragmentation and compaction, whereas forest
patches may or may not be connected, allowing or hindering connectivity. Similarly,
the FFDI has the same limitation as the FFI in that it only indicates the general spatial
arrangement of forest patches without taking into account barriers or connectivity.

The use of succolarity in this context overcomes the shortcomings or limitations of
the three indicators analysed by providing information on fragmentation/compaction and
connectivity, taking into account both direction and barriers. This approach provides a
more comprehensive understanding of the complex dynamics of forest structures and their
connectivity, taking into account directional variations and barriers in a way that the other
indices do not.

4.2. The Limits of Succolarity

However, succolarity has certain limitations. The first limitation lies in the fact that its
analysis is restricted to binary raster forest images, making it impossible to analyse vectorial,
RGB, or grey-scale images. As a result, satellite image pre-processing is required, which
includes forest extraction and its subsequent binarization. A second limitation arises from
the binarization process, which can introduce artefacts. Ensuring an accurate binarization
is crucial for reliable results. A third limitation relates to the way in which succolarity
quantifies the degree of fragmentation and connectivity. The analysed image should not
have forest-free edges (a white border), as shown in Figure 3f,l, because succolarity will
automatically register a value of 0, even if there are fragmentation and connectivity beyond
this border which could be quantified. To overcome this limitation, it is necessary to remove
the white border using the crop function. As shown in Figure 6a, succolarity is not sensitive
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to image size, so the loss of an image’s edges will not affect the final analysis results, unlike
other fractal analyses.

4.3. Analysis of Succolarity and Fractal Index in a Forest Analysis

Until now, the FFI was used to examine the fractal fragmentation of forests in var-
ious contexts. The results of this index showed a consistent trend of increased fractal
fragmentation following deforestation [54,57–62,99–101].

This study presents, for the first time, the use of succolarity analysis to investigate
and measure the impact of forest loss on the fragmentation, compaction, and connectivity
of forested areas. Succolarity is a well-known method for analysing pore systems, char-
acterizing permeability, and quantifying infiltration rates. However, it has the potential
to provide valuable insights into the complex relationship between forest structure and
connectivity. Furthermore, this study illustrates the fact that succolarity can be utilised
beyond traditional boundaries, broadening the scope of its usefulness and providing a
detailed comprehension of the diverse impacts of deforestation on forested areas.

More than that, this study provides compelling evidence for the viability of succolarity
analysis and offers improved solutions for quantifying forest fragmentation, compaction,
and connectivity in different directions. In this innovative approach, barriers are defined as
either forested or deforested areas, while areas which allow infiltration are treated as being
forested. The nuanced patterns revealed following deforestation highlight the importance
of succolarity in capturing complex variations in forest structure.

This study demonstrates that fractal dimensions such as the FFI, the FFDI, and the
LCDF are sensitive to image size, which can introduce biases in compactness analyses. To
ensure comparability, any image analysis conducted on different images must be performed
at the same scale.

In contrast, succolarity provides consistent values across different image scales. Succo-
larity maintains identical values from 64 × 64 to 1024 × 1024 pixels, indicating its invariance
and robustness as a metric. This study offers insights into the reliability of succolarity as a
metric for assessing permeability and connectivity in images of varying scales. This metric
is advantageous because it can distinguish between isotropic and anisotropic patterns [82]
and assess the potential for percolation. It captures variations in the virtual water flow
across images, providing valuable insight into structural properties. In the case of the
analysis of forest images, it provides information about the spatial effects generated by
deforestation and the latter’s impact on the continuity of habitats.

Three distinct patterns were revealed in the decrease in succolarity following de-
forestation and natural forest loss, as shown in Figures 8b and 13a–d. However, these
patterns were not uniform across all areas. This study showed that extensive clear-cutting
of forests in the northern group [61,62], in the central group [59], and even in the Parang
group [66] mainly resulted in the fragmentation of compact forest areas and the disruption
of connectivity. This led to a decrease of approximately 0.12 in succolarity over a 22-year
study period. Deforestation has significantly reduced and fragmented the forests in the
Carpathian Mountains [39]. As a result, many regions have become too small to support
viable populations of species such as bears [102–104], wolves [105], or capercaillie [106]
due to the increasing isolation of larger forested areas with suitable habitats. Therefore,
the measurement of succolarity, as well as potential succolarity and ∆ succolarity, can be a
valuable tool in identifying areas where connectivity can be restored. This, in turn, allows
for habitat recreation through reforestation.

Succolarity is a metric that measures the loss of connectivity between forest patches
due to fragmentation. It improves upon existing indices by using metrics that account
for directionality when quantifying fragmentation and connectivity. Analysing both frag-
mentation and connectivity is crucial for assessing the evolution of forest ecosystems. The
obtained results are valuable for biodiversity conservation and ecological restoration.

A fragmentation and connectivity index, such as succolarity, can make a significant
contribution to biodiversity conservation and ecological restoration by providing essential
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information and guidance for the sustainable management of forest ecosystems. Succolarity
identifies critical areas where fragmentation is high and connectivity is low, providing
guidance for focusing conservation efforts on those areas with the greatest impact. These
data can also be used to prioritize conservation actions. In addition, the planning of
ecological corridors to restore connectivity between fragmented forest patches can be
guided by potential and delta succolarity measures.

Succolarity can also be used to assess changes in fragmentation and connectivity over
different time periods, facilitating species movement and maintaining healthy genetic
flow to strengthen biodiversity. This text provides a basis for monitoring the success of
conservation and ecological restoration efforts and for adjusting strategies in real time.
Succolarity can offer a comprehensive view of the condition of forest ecosystems, aiding in
sustainable management, conservation of biodiversity, and restoration of ecology efforts.

4.4. Future Work

Future work should primarily focus on extending anisotropy analyses based on suc-
colarity [82]. This includes identifying areas where the connectivity and consolidation of
forest areas can be increased through networking, particularly afforestation efforts. This
approach can facilitate both biodiversity conservation and ecological restoration. In addi-
tion, there is a need for studies that apply the current methodology to other forest areas
affected by deforestation in different climatic zones (tropical forests, taiga) to ensure the
adaptability and effectiveness of this approach in different ecosystems.

5. Conclusions

Succolarity is a versatile tool for percolation analyses, especially in scenarios where
the focus is on understanding how substances can traverse diverse pixel configurations.

Succolarity emerges as an outstanding analytical tool in the study of Carpathian
forests, offering advantages in the quantification of fragmentation, connectivity, and per-
meability. Its ability to discriminate between isotropic and anisotropic patterns, coupled
with directional precision and invariance to image scale, makes it effective. This study
highlights the robustness of succolarity in contrast to the sensitivity of the FFI and the
FFDI to image scale, reinforcing succolarity as a fundamental measure for forest analysis.
The integration of succolarity with traditional indices improves the overall understanding
of complex forest dynamics. The application of succolarity in the Carpathians not only
reveals new insights into structural evolution but also highlights its adaptability to differ-
ent changes. This study demonstrates the reliability of succolarity in capturing intricate
details of deforestation-induced connectivity disruption, providing valuable guidance for
sustainable forest management.

In conclusion, our extensive research on succolarity, the local connected fractal di-
mension (LCFD), the fractal fragmentation index (FFI), and the fractal fragmentation and
disorder index (FFDI) has not only deepened our understanding of structural complexity,
permeability analysis, and forest fragmentation but has also introduced novel indices
(potential and ∆ succolarity) that promise increased precision in assessing environmental
phenomena. As a method with proven efficacy in geological, biological, and medical fields,
succolarity is a versatile analytical tool with the potential to identify intricate relationships
within diverse systems.
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