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Abstract: Climate change can exacerbate the occurrence of extreme precipitation events, thereby
affecting both the frequency and intensity of rainfall-induced landslides. It is important to study the
threat of rainfall-induced landslides under future climate conditions for the formulation of disaster
prevention and mitigation policies. Due to the complexity of the climate system, there is great
uncertainty in the climate variables simulated by a global climate model (GCM), which will be further
propagated in landslide prediction. In this study, we investigate the spatial and temporal trends of
future landslide hazards in China under climate change, using data from a multi-model ensemble of
GCMs based on two scenarios, RCP4.5 and RCP8.5. The uncertainty characteristics are then estimated
based on signal-to-noise ratios (SNRs) and the ratio of agreement in sign (RAS). The results show
that the uncertainty of landslide prediction is mainly dominated by the GCM ensemble and the RCP
scenario settings. Spatially, the uncertainty of landslide prediction is high in the western areas of
China and low in the eastern areas of China. Temporally, the uncertainty of landslide prediction
is evolving, with characteristics of high uncertainty in the near future and characteristics of low
uncertainty in the distant future. The annual average SNRs in the 21st century are 0.44 and 0.50 in
RCP4.5 and RCP8.5, respectively, and the RAS of landslide prediction in Southeastern China is only
50–60%. This indicates that more than half of the patterns show trends that are opposite to those of
the ensemble, suggesting that their landslide change trends are not universally recognized in the
pattern ensemble. Considering the uncertainty of climate change in landslide prediction can enable
studies to provide a more comprehensive picture of the possible range of future landslide changes,
effectively improving the reliability of landslide hazard prediction and disaster prevention.

Keywords: landslide prediction; climate change; GCM; uncertainties; LHASA model

1. Introduction

In recent years, increasing temperature has led to increased frequency and intensity
of extreme events, which has indirectly given rise to a variety of natural hazards, posing
multiple risks for ecosystems and for human societies. Among these extreme events, the
occurrence of rainfall-induced landslides is extremely dependent on climatic conditions.
Rainfall-induced landslides are among the most common and significant hazards caused
by climate change.

There have been many studies on the effects of climate change on landslides. For
example, Maraun et al. [1] studied potential severe landslide events in the Alpine foreland
under climate and land-use change, and Araújo et al. [2] investigated the impact of extreme
rainfall events on landslide activity in Portugal under climate change scenarios. Pei Y.
et al. [3] investigated the role of elevation in landslide activity induced by climate change
in the eastern Pamir Mountains.

Landslides pose a great threat to the safety of people and property [4,5]. According to
statistics from the China National Geological Disaster Bulletin, a total of 200,000 geological
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disasters occurred from 2007 to 2020, 66.31% of which were landslides. These disasters led
to 8170 deaths or missing persons and 3850 injuries. The direct economic losses reached
CNY 60.51 billion.

Ninety percent of the landslides in China are triggered by heavy or prolonged rain-
fall [6]. Although landslides can be triggered by a variety of other factors, including
earthquakes, snow and ice melt, volcanic activity, and human activities, rainfall-induced
landslides continue to be a primary cause. Research on the spatial and temporal predictions
of rainfall-induced landslide hazards can significantly reduce their adverse effects and
improve the effectiveness of policymaking aimed at disaster prevention and mitigation.
Accordingly, such research is of great scientific significance and practical value.

Climate change, represented by increasing temperatures, leads to increases in the
atmospheric saturated water pressure and water vapor content [7,8]. These phenomena
not only accelerate worldwide water cycle processes, but also exacerbate the occurrence
of extreme precipitation events [9–11]. Furthermore, rising temperatures affect soil water
saturation, causing the infiltration rate of rainfall into slopes to exceed the drainage rate
of the slopes. This leads to a critical water content level that triggers landslides [12,13]. In
addition, changes in rainfall can indirectly alter environmental and landscape conditions,
including land cover types and land use status. Such changes can affect the stability of
surface slopes, as well as the type, number, and frequency of landslides [14].

Studies on the response of landslide hazards to climate change have been conducted
using global climate models (GCMs) developed by various countries and institutions to
assess the possible impacts of climate change on the spatial and temporal distributions
of future landslides [15–17]. Many studies have predicted changes in rainfall-induced
landslides under different climate scenarios [18,19]. Related studies have also demonstrated
non-stationary changes in rainfall-triggering thresholds and landslide susceptibility under
future climate change scenarios [20,21].

However, climate predictions based on climate models are subject to large uncertainties
arising from two main sources: future emission scenarios and climate model structures [22].
Instead of relying solely on a climate model, it is common to use a variety of plausible emis-
sion projection scenarios, as it is challenging to simulate the trajectory of future greenhouse
gas (GHG) emissions, given the many possible political and economic developments [23].

In terms of climate model structures, cloud microphysical and energy exchange pro-
cesses are often simplified in climate models due to limited human knowledge of the
natural climate system. The structural and physical parameters of climate models represent
additional sources of uncertainty [22].

These uncertainties could potentially affect the prediction of future landslides. Accord-
ing to Kim et al. [24], the probability of landslide occurrence, as well as the size of the hazard
area, varies under distinct emission scenarios. Ciabatta et al. [25] used five GCMs to drive
the PRESSCA early warning system in predicting the quantity of expected future landslides.
They discovered noteworthy variations in the projections of the diverse models, suggesting
that the choice of GCM may have a momentous impact on the projections. Therefore, it is
necessary to consider the uncertainties associated with different emission scenarios and
different climate patterns while conducting research on the impacts of climate change on
landslides. In this way, the uncertainties in landslide prediction can be minimized and a
comprehensive understanding of future landslide progression can be achieved.

This study applied a multi-model ensemble simulation method to explore climate
change impacts on rainfall-induced landslides in China. We analyzed the impact of climate
change on the spatial and temporal distribution of rainfall-induced landslides and their
uncertainties by constructing a landslide hazard susceptibility model to predict the possible
range and extent of future landslides. First, we processed CMIP5 GCMs with bias correction
and spatial disaggregation, and then validated them with CHIRPS. Then, we constructed
a landslide hazard susceptibility model to analyze the characteristics of landslide hazard
changes in the 21st century under climate change. Based on our study, we quantitatively
reveal the overall uncertainty characteristics of future landslide prediction and provide
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an intuitive and detailed picture of the changes in the distribution of rainfall-induced
landslides in China in the future under different climate change scenarios.

2. Data and Methodology

Our study constructs a model for determining susceptibility to landslide hazards.
This model allows for the analysis of changes in landslide hazard under the influence
of climate change in the 21st century. In this assessment model, the uncertainty in the
prediction process can be calculated. The methodological framework of this study is shown
in Figure 1.
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2.1. Data Sources

CHIRPS is a precipitation dataset developed by the U.S. Geological Survey (USGS) and
the Climate Hazard Group at the University of California. This dataset combines precipita-
tion climatology, synoptic thermal infrared observations, and ground station observations
(http://chg.geog.ucsb.edu/data/chirps/, accessed on 4 May 2022). It covers multiple
spatial and temporal scales (0.05–0.25◦, day–month), quasi-global coverage (50◦ S–50◦ N),
and a long record period (1981–present). In this study, CHIRPS daily precipitation data at
0.05◦ spatial resolution for China from 1981 to 2020 are used to validate the performance of
the bias correction.

In order to gain insights into the possible temporal and spatial changes in China’s
future climate and its uncertainty characteristics, the CMIP5 multi-model dataset is used in
this study (Table 1). The 16 selected models in this collection are representative in terms
of operational mechanisms, physical parameterization processes, and resolution in their
design. This dataset includes the daily precipitation data output from 16 GCMs. The climate
change scenarios use Representative Concentration Pathways (RCPs), which are based
on the radiative forcing of the atmosphere by greenhouse gases. Two emission scenarios
(RCP4.5 and RCP8.5) are used in this study to investigate the trend of landslide hazard
changes in China under the moderate emission scenario compared with the high-emission

http://chg.geog.ucsb.edu/data/chirps/
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scenario. The 1981–2005 period is selected as the historical period (base period), while the
2011–2100 period is selected as the future period, in which the 2011–2040 period is set as
the medium future, the 2041–2070 period is set as the mid-future period, and the 2071–2100
period is set as the far future.

Table 1. Basic information of CMIP5.

Paradigm Country Institution (Abbr.) Resolution (Grid Points in
Latitude × Longitude Directions)

ACCESS1-0 Australia CSIRO-BOM 192 × 145
ACCESS1-3 Australia CSIRO-BOM 192 × 145
CMCC-CM Italy CMCC 480 × 240

CMCC-CMS Italy CMCC 192 × 96
CNRM-CM5 France CNRM-CERFACS 256 × 128
FGOALS-g2 China LASG-CESS 128 × 60
GFDL-CM3 USA NOAA-GFDL 144 × 90

GFDL-ESM2G USA NOAA-GFDL 144 × 90
GFDL-ESM2M USA NOAA-GFDL 144 × 90

INM-CM4 Russia INM 180 × 120
IPSL-CM5A-MR France IPSL 144 × 143

MIROC5 Japan MIROC 256 × 128
MPI-ESM-LR Germany MPI-M 192 × 96
MPI-ESM-MR Germany MPI-M 192 × 96
MRI-CGCM3 Japan MRI 320 × 160
NorESM1-M Norway NCC 144 × 96

Five environmental factors including slope, distance to fracture zones, geology, roads,
and forest loss were combined into a fuzzy superposition model by Stanley T et al. [26],
resulting in a 1 km global landslide susceptibility map. The combination of multiple influ-
encing factors through a heuristic approach leads to landslides and provides a susceptibility
map with high accuracy.

The validation data for the effectiveness of landslide prediction is based on the Global
Landslide Catalog (GLC), which spans the 2006–2020 period. It should be noted, however,
that the database contains fewer landslide occurrences than those that actually transpired.
Only landslides that occur in densely populated areas and those that are highly destructive
and cause a large number of casualties and property losses are more likely to be recorded.
In contrast, landslides in sparsely populated areas are often difficult to detect [27]. As a
result, landslides in areas such as the Tibetan Plateau and Northwestern China are very
poorly recorded.

2.2. Bias Correction and Spatial Disaggregation of GCMs

Global climate models (GCMs) tend to have systematic biases in their output. It was
observed that climate models frequently overestimate rainy days and tend to underestimate
precipitation extremes [28,29]. In some cases, errors occur in the timing of the monsoon
or the amount of seasonal precipitation, or temperatures may be consistently too high
or too low [30,31]. The use of uncorrected outputs in impact models or climate impact
assessments can lead to unrealistic results. Therefore, a systematic bias correction was
performed prior to conducting further analyses.

The bias of the GCM data makes them difficult to use to directly predict future climate
change projections. The Quantile Delta Mapping (QDM) method is used to correct the
bias in the precipitation data output from the GCM. QDM is based on the assumption that
climate model biases transition smoothly into the future while preserving the characteristics
of the historical periods. We therefore proceed as follows. First, the simulated precipitation
is substituted into the inverse function of the observed precipitation distribution function to
correct for systematic bias. Then, the relative change in the quantile is calculated between
the historical period and the future period. Finally, the two values are multiplied to obtain
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the bias-corrected model precipitation values. Thus, the QDM corrects the systematic bias
of the model relative to the observations while preserving the relative change in the model
projection [32]. Due to the large intra-annual and monthly variability of precipitation in
China, a monthly bias correction method is used to correct the precipitation data and to
more accurately correct the simulated data. The specific calculation formulae are as follows:

po:m,h: f = F−1
o,h

(
Fm, f

(
pm, f

))
(1)

∆m =
F−1

m, f

(
Fm, f

(
pm, f

))
F−1

m,h

(
Fm, f

(
pm, f

)) =
pm, f

F−1
m,h

(
Fm, f

(
pm, f

)) (2)

p̂m, f = po:m,h: f ·∆m (3)

where po,h and pm, f represent the observed and simulated rainfall in the historical period
and future period, respectively. Fm,h and Fm, f denote the model cumulative distribution
functions for the historical and future periods, respectively. po:m,h: f is the detrended simu-
lated rainfall in the future period, ∆m is the trend prediction of the model, and p̂m, f stands
for the bias-corrected rainfall for the future period.

The spatial disaggregation (SD) method is chosen to downscale the bias-corrected
patterns, aligning the pattern resolution with the observed resolution (0.05◦ × 0.05◦). This
is necessary because the resolution of simulated precipitation from the GCM is signifi-
cantly different from the observed precipitation. The resolution also varies among the
models. First, we calculate the monthly mean rainfall of each model with the measured
precipitation. Second, we divide the monthly mean precipitation of each model with the
measured precipitation separately to obtain the “correction scale correction factor” and
then interpolate it to a resolution of 0.05◦ × 0.05◦. Finally, we interpolate the GCM at the
original resolution and multiply it by the bias correction factor to obtain the downscaled
GCM [33,34].

2.3. LHASA Model

The Landslide Hazard Assessment for Situational Awareness (LHASA) model was
developed at NASA’s Goddard Space Flight Center to identify potential landslide hazards
and provide near real-time situational awareness of landslide hazards [35]. Many studies
have used the output of the LHASA model as an approximation of landslide hazard,
highlighting areas that are vulnerable to rainfall-induced landslide hazards [36,37]. The
model consists of two components: predisposing factors and static variables that can lead to
slope destabilization. The probability of slope destabilization is represented by a landslide
susceptibility map derived from five factors (slope, fault, geology, road, and forest), using
a fuzzy overlay algorithm and categorizing the susceptibility values into low, moderate,
and high. Low susceptibility indicates a low probability of landslides in the area, whereas
high susceptibility indicates a high probability of landslides. Typically, areas of moderate
to high susceptibility are found in regions with rugged topography, strong tectonic activity,
and frequent human activity.

Landslide triggering factors are represented dynamically by the Antecedent Rainfall
Index (ARI). The ARI is the weighted average of recent rainfall. The formulas are as follows:

ARI = ∑6
t=0 ptwt

∑6
t=0 wt

(4)

wt = (t + 1)−2 (5)

where t is the previous t days, pt is the rainfall of the previous t days, and wt stands for the
weight of the rainfall of the previous t days.
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In this study, the 7-day preceding precipitation index is calculated for the 1981–2005
period to obtain a continuous dataset. The 95th percentile of the historical ARI is taken as
the ARI threshold. By comparing the ARI value with the ARI threshold, it is possible to
determine whether an extreme rainfall event has occurred in the region.

The decision-making process of the LHASA model is as follows. First, the ARI of the
region for the previous 7 days is calculated and compared with the ARI thresholds. If the
ARI is below the historical threshold, an extreme rainfall warning is not issued. Only if the
ARI is above the historical threshold will susceptibility maps be considered further. Low
susceptibility areas, with a low probability of landslide occurrence, do not receive a hazard
warning. Similarly, moderate susceptibility results in a moderate hazard warning and high
susceptibility results in a high hazard warning.

2.4. Uncertainty Analysis Method

To quantify the variability within the climate model ensemble, this study assesses
the uncertainty in predicting future changes in landslide hazard. This is accomplished by
evaluating the signal-to-noise ratio (SNR) and the ratio of agreement in sign (RAS) among
the ensemble members [38]. The SNR characterizes the uncertainty in the future value of
the changed quantity (variability uncertainty), while the RAS characterizes the uncertainty
in the future positive and negative changes (increase/decrease uncertainty).

The signal-to-noise ratio is the ratio between the climate change signal and the cli-
mate variability. The climate change signal is the absolute value of the relative change in
landslide risk in different future periods relative to the reference period (M). The climate
fluctuation is quantified by the standard deviation (Std) of the predicted landslide risk from
different ensemble members of the GCMs [39]. Here, we choose the standard deviation
of the predicted landslide hazard of the GCM ensemble members as the noise, which is
calculated as follows:

SNR(t) =
M(t)

Std(t)
=

∣∣∣ 1
N ∑m ∆m(t)

∣∣∣√
1
N ∑m(∆m(t)− M(t))2

(6)

where t is different periods in the future, m stands for different ensemble members, N
is the total number of ensemble members, and ∆m(t) stands for the relative amount of
change predicted for each pool member at different future periods relative to the base
period. An SNR greater than 1 indicates that the climate change signal is greater than the
natural internal variability of the climate system, at which point the uncertainty in the
future predictions of the pool members is small enough to pass the SNR test.

The ratio of agreement in sign refers to the proportion of the total number of pool
members whose predicted relative change in landslides is consistent with the average
predicted relative change in landslides in the pool. Tebaldi et al. [40] argued that only when
the ratio of agreement in sign is greater than 80% can it reflect the main trend in landslide
hazard change, defined as passing the RAS test.

3. Results
3.1. GCM Rainfall Downscaling and Validation

Due to the large number and complexity of climate types in China, this study follows
the method of Wang et al. [41] and divides China into seven subregions based on the
similarity in regional climates. We divide China into Northeastern China (NEC), Northern
China (NC), Southeastern China (SEC), Southwestern China (SWC), the east of Northwest-
ern China (ENWC), the west of Northwestern China (WNWC), and the Tibet region of
China (TC) (Figure 2) in order to analyze the climatic variability among regions.
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west of Northwestern China; TC: Tibet region of China).

To validate the downscaling results of the GCMs for the seven subregions under the
two climate scenarios, we compared the monthly mean precipitation data from CHIRPS
with the monthly mean precipitation produced by the 16 bias-corrected GCMs for the
2006−2020 period. As shown in Figure 3, although there are some differences between
various GCMs, all GCMs after bias correction and downscaling are generally able to
accurately characterize more precipitation in summer and less precipitation in winter.
In particular, the mean of the GCM ensemble is in good agreement with the measured
precipitation, which largely corrects the output bias of the GCM. In addition, the differences
in precipitation between different subregions are well reproduced. High precipitation
values are mainly found in the SEC and SWC, up to 200 mm or more in July. The ENWC
and WNWC have lower precipitation values. However, for high rainfall areas such as the
SEC and NC, precipitation is significantly underestimated in the period of June to October,
while it shows some overestimation in the period of February to May. In regions with low
precipitation like the WNWC and TC, there is an overestimation of precipitation throughout
the year. This may be due to the fact that the QDM method has some deficiencies in the
correction of extremes, leading to an underestimation in areas with more rainfall and an
overestimation in areas with less rainfall; however, these biases are not notable. In general,
the QDM bias correction method and the SD downscaling method can provide a more
accurate rainfall forecast for China.

3.2. Changes in Future Landslide Hazards in China

Figure 4 demonstrates the relative change in the number of days when the ARI
exceeds the historical threshold in (a) moderately and (b) highly susceptible areas in China
in different future periods compared to the base period. Both Figure 4a,b show a general
increase in the number of days with potential landslide disasters in China in the 21st
century, and the spatial distribution characteristics of the relative changes in moderately
and highly susceptible areas are similar.
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At the beginning of the 21st century, most regions experienced an increase in relative
change lower than 15%. However, areas such as the Tibetan Plateau, which borders
the WNWC, have shown increases of over 80%. A few parts of the southwestern and
southeastern regions exhibit decreasing trends in landslide hazards. Although there is
not a significant difference in decreases between RCP4.5 and RCP8.5, the latter displays
widespread decreases in many regions. In the mid-21st century, an upward trend in
landslide hazards was observed in the Southwest and Southeast regions, with a 10%
increase as compared to historical periods. Notably, the Tibetan Plateau region shows the
highest increase, with a slightly higher increase under RCP8.5 than RCP4.5. Towards the
end of the century, significant increases were observed under RCP8.5. Alternatively, under
RCP4.5, the eastern and western regions depicted increases of approximately 15−20% and
40−60%, respectively. Under the RCP8.5 scenario, there was a projected increase of 20–40%
in landslide risk in the eastern region, with a higher projected increase of 80–100% in the
western region and more than 100% in most areas of the Tibetan Plateau. China displays
a topographical feature of increasing elevation from the east to the west of the country.
The higher landslide risk in the western region can be attributed to the presence of more
mountainous areas. The increase in the susceptibility of landslides raises the potential risk
of loss, particularly in the SWC, SEC, and NC, where nearly one billion people and the
most developed regions are situated. This highlights the necessity for a comprehensive
monitoring network and an early warning system.

Figure 5 shows the forecasted days of landslide disasters for each season in each
subregion at different stages of the 21st century and the average increase relative to the
base period. The model-predicted landslide hazards show more occurrences during the
summer and fewer occurrences during the winter, with the forecasted days of landslide
disasters reaching 10–15 days in the summer. The average increase in forecasted days under
the RCP4.5 scenario is 1–3 days in the spring and summer. The absolute and percentile
increases in the fall amount to 1 day and 20%, respectively. The percentages of increases in
the forecasted days in the spring, summer, fall, and winter under the RCP8.5 scenario are
50%, 10%, 30%, and 100%, respectively, so the increases in the forecasted days of extreme
rainfall in the spring and fall are greater under RCP8.5 than under RCP4.5.

When comparing the seasonal changes among the subregions, it is apparent that
landslide hazards in the early 21st century have slightly decreased in the southeastern
and southwestern regions during the summer. The largest relative increases in summer
precipitation (about 20%) occurred in the WNWC and the TC. The increase reaches 35% in
the TC under the RCP8.5 scenario, while the rest of the region has an increase of only about
10%. The subregion with the largest increase in forecasted days in winter is located in the
SWC, with an absolute increase of 2 days under RCP4.5, and an increase of 3 days under
RCP8.5. The numbers of forecasted days in the spring and fall show significant increases
in all subregions of China, except for the SEC and SWC. The relative amount of change
in landslides in the spring and fall is in the range of 10–20%. The number of forecasted
days in the fall is slightly less compared to that in the spring, but still increased by about
30%. There is little difference in the increase in extreme precipitation across varying GHG
concentrations, followed by a larger increase in the RCP8.5 scenario and a substantial
increase in forecasted days.

3.3. Uncertainty Analysis of Rainfall-Induced Landslide Prediction

Table 2 shows the RAS and multi-year SNR average for various time periods in China,
including each subregion. The annual average numbers of forecasted days in the next
100 years of all subregions of China predicted via the multi-model ensemble show an
increasing trend, with a linear increase of about 0.43 days/10a for the whole country under
the RCP4.5 scenario and an increase of 0.67 days/10a under the RCP8.5 scenario. The
Tibetan Plateau and the southwestern region have the highest increasing trends, with
increases of 0.78 and 1.53 days/10a in the Tibetan Plateau and 0.53 and 0.76 days/10a in
the southwestern region under the two climate scenarios. Conversely, the smallest increase
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is observed in the northern region, which experiences an increase of 0.36 and 0.58 days/10a
under the two climate scenarios.
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From the comparison of the GCM ensembles, all 16 models agree that the number of
future potential landslide disasters in China is on an upward trend, but the magnitude of
the interannual changes between the different models are significantly different. The SNR
of the relative change in the number of forecasted landslide days in China is less than 1 in
the 21st century, indicating that the magnitude of change in the landslide hazard is much
smaller than the internal natural variability of the climate system. This further implies that
a large uncertainty exists in the prediction of landslide hazard. The RAS values of the two
scenarios are 59.11% and 61.15%, respectively, which means they do not pass the RAS test
and present large uncertainties in the positive and negative trends of landslide prediction.
Despite the fact that neither the SNR nor the RAS pass the test, they steadily increase over
time. Moreover, the consistency of the model-predicted hazard change magnitude and the
direction of positive and negative trends are gradually strengthened.
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Table 2. Average SNR and RAS values of Chinese subdivisions in different time periods.

China NEC NC SEC ENWC SWC WNWC TC

SNR

RCP4.5

2011–2100 0.44 0.43 0.40 0.37 0.47 0.36 0.62 0.53
2011–2040 0.33 0.29 0.28 0.31 0.32 0.24 0.56 0.35
2041–2070 0.46 0.50 0.44 0.36 0.50 0.38 0.62 0.57
2071–2100 0.54 0.51 0.52 0.44 0.63 0.50 0.68 0.71

RCP8.5

2011–2100 0.50 0.51 0.47 0.38 0.57 0.42 0.70 0.65
2011–2040 0.35 0.27 0.28 0.27 0.36 0.26 0.63 0.39
2041–2070 0.49 0.50 0.49 0.35 0.57 0.40 0.70 0.67
2071–2100 0.69 0.81 0.68 0.54 0.80 0.63 0.78 0.94

RAS (%)

RCP4.5

2011–2100 59.11 51.66 59.06 50.97 63.93 61.38 69.09 66.62
2011–2040 56.75 49.00 55.52 50.76 59.14 58.50 67.36 60.22
2041–2070 59.10 52.89 59.76 49.83 64.42 61.09 69.18 67.62
2071–2100 61.86 53.53 62.48 52.35 69.03 65.02 71.02 73.09

RCP8.5

2011–2100 61.15 53.87 61.54 51.85 67.27 63.17 71.56 71.38
2011–2040 57.17 48.20 55.40 49.87 60.40 59.53 69.35 62.13
2041–2070 60.55 52.99 62.39 50.28 67.48 62.03 71.64 71.39
2071–2100 66.40 61.35 67.86 55.73 75.06 68.57 74.07 82.15

For each subregion, the SNR values exhibit a notable rise over time. Of all the subre-
gions, the WNWC region reports the highest average SNR annually, with 0.62 and 0.7 for
the two scenarios. It indicates that the multi-model ensemble predicts the least discrepancy
in the number of forecasting landslides in this region compared to the other areas, with
minimal uncertainty. Except for the WNWC region, the SNRs in the remaining regions
are mainly between 0.2 and 0.3 in the early 21st century. Although the climate system
has significant natural internal variability, the average SNRs increase significantly in the
mid-to-late 21st century. By the late 21st century, under the RCP4.5 scenario, coastal re-
gions with higher precipitation, along with the NEC and SWC regions, may have SNRs of
approximately 0.5. Compared to wetter regions, the SNR experiences a more substantial
increase in the mid-to-late 21st century in the ENWC and the Tibetan Plateau region. In
the late RCP8.5 scenario, the SNR in the WNWC is approximately 0.8, while in the Tibetan
Plateau region, it is approximately 1. The results from the RAS test demonstrates that the
WNWC region has the best results in the late 21st century under the RCP8.5 scenario; it
can pass the RAS test in most instances. The model simulation shows consistent positive
and negative changes. The ENWC region passes the test in the late 21st century within a
few years. Furthermore, no other regions have an RAS exceeding 80%. A distinct trend
of increased agreement over time also appears, as the later part of the 21st century shows
greater agreement than the early part. There are certain regions and time periods that
exhibit improved congruence in patterns. However, generally speaking, multi-modal as-
semblages still contain a significant amount of uncertainty in terms of positive and negative
predictions, as well as in the variability.

When comparing the results of the SNR and the RAS tests under the two climate
change scenarios, it can be found that the vast majority of regions exhibit lower SNR and
RAS values under the RCP4.5 scenario than under the RCP8.5 scenario. This suggests
that there is a greater degree of uncertainty in the prediction of landslide hazard under
the RCP4.5 scenario. The potential explanation is that the scenarios with high carbon
emission concentrations are generally recognized as having a greater degree of consis-
tency in the frequency of extreme precipitation in the future. Nonetheless, the trend of
extreme precipitation in the future is more contentious for scenarios with moderate carbon
emission concentrations.

Figure 6 shows the spatial distribution of the multi-year average SNR and RAS values
for the number of forecasted landslide days in different periods of the 21st century. The
SNR tends to have high values in the west and low values in the east. A high SNR can
only be observed at the beginning of the 21st century in the TC bordering the WNWC. The
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SNR values range from 0.7 to 1.2, and the RAS exceeds the 80% confidence level, indicating
a lower degree of uncertainty in the increase in landslide forecasts for this region. In the
rest of the region, the SNR is below 0.5 and the RAS also exceeds 60% only in the Tibetan
Plateau and in a fraction of the SEC. As we approach the middle of the 21st century, only the
northern section of the Tibetan Plateau will retain an SNR that is higher than 1 and an RAS
higher than 80%, whereas the remainder of the Tibetan Plateau will retain an SNR of higher
than 0.5 and an RAS higher than 60%. The rest of the plateau has a SNR below 0.5. Only
the northeastern, northern, and southwestern regions have an RAS exceeding 60%, which
indicates a large degree of uncertainty. As we progress further into the far future of the
21st century, the natural internal variability of most regions becomes significantly smaller.
Except for the southwest and northwest regions, most of the regions have stabilized above
0.7, and the RAS is also greater than 60%, which shows a reduced uncertainty among the
models compared with that in the early and middle of the 21st century.
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It can be found from Figure 6 that in regions with a smaller variation in the relative
change, the SNR and the RAS values are smaller, and the level of uncertainty is higher.
Oppositely, in regions where the variation is more than 60%, the SNR and the RAS values
are larger, and the level of uncertainty is smaller.

4. Discussion

The results of the prognostic studies above suggest that as global warming continues,
extreme precipitation events in China will become more frequent. This will further con-
tribute to the susceptibility of landslide hazards, revealing a steady rise from the east to the
west, in line with China’s topography (where the elevation gradually increases while mov-
ing westwards). The greatest increases in landslide incidence are observed on the Tibetan
Plateau and in Northwestern China. This observation corresponds with the conclusions
drawn by Lin et al. in 2020 [42]. They found that under the RCP8.5 scenario from 2066 to
2095, landslides tended to increase significantly in the northwestern region, and the Tibetan
Plateau and the southwestern region had increases of more than 25%. The southeastern
hilly region exhibits a 10% increase in landslide frequency, while the southeastern coastal
region presents a decline in incidence. Comparing the northeast and southeast regions
of China, the rate of possible future landslide increase in the northeast region of China is
significantly larger than that in the southeast region. The change in monsoon circulation
may be one reason for the north–south difference. As the monsoon circulation strengthens,
the rain band will push northward, resulting in a large increase in precipitation in the
northern and northeastern regions of China, while the southeastern regions experience less
increase or even a decrease in precipitation [43,44]. Similarly, Kirschbaum et al. [45] found
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that most of the Tibetan region also showed an increasing trend. They found that the most
substantial alteration took place during the summer months and the monsoon played a
major role in generating extreme rainfall in the region. As far as the time evolution trend is
concerned, this study concludes that the trend of change at the end of the 21st century is
more significant than at the beginning. He et al. [46] similarly concluded that the pattern of
change at the end of the 21st century was basically the same as that of the mid-21st century.
However, the extent of the increase was higher, with landslides increasing by 16.87% in the
mid-21st century and by 20.53% at the end of the 21st century.

The aforementioned outcomes, derived from an ensemble of various models, offer
a rational perspective on forecasting landslides in China. Nevertheless, the degree of
uncertainty in rainfall-based landslide forecasting through extant climate models remains
far from negligible. Illustratively, the region with the most pronounced uncertainty, i.e., the
southeast region, manifests an SNR value in the 0.2 to 0.6 range. This indicates that the
natural internal variability among the model ensembles is 2–5 times the mean value of the
ensemble’s relative variability, resulting in significant differences in the model simulation
results. In addition, the RAS in this region is only 50–60%, indicating conflicting trends
in approximately half of the models when compared to the ensemble. Consequently, the
trend of landslide change in the southeast is not universally recognized in the model
ensemble. The weak simulation ability of GCMs for East Asian monsoon precipitation
may be a possible reason, along with the deviation in the seasonal advancement process
of rain bands from observation. Moreover, many models tend to underestimate rainfall
and its variability [11], which may lead to the underestimation of landslide changes in the
eastern region.

In the early part of the 21st century, there is roughly a 5% difference in the ensemble
mean values between RCP4.5 and RCP8.5, with little difference in the SNR values. However,
by the late 21st century, the discrepancy between the ensemble mean values increases to
20-40%, and the SNR values show evident divergence. This illustrates that especially in the
late 21st century, the credibility of landslide prognosis is significantly different for various
RCP scenarios. In the early stage, the RCP bears minimal impact on the uncertainty of
landslide prognosis. However, towards the end of the 21st century, the RCP uncertainty
gradually increases. This is consistent with the study by Wu et al. [47], which highlights that
the GCM ensemble and RCP scenarios’ uncertainty portrayed interannual variability. This
research provides valuable insights for the landslide susceptibility under climate change.
The prediction framework can be utilized to other regions for landslide assessment and
uncertainty analysis.

Although this study analyzes the uncertainty introduced by the natural internal
variability of the GCM ensemble and climate development scenarios, there are still some
limitations that prevent a complete investigation of the sources of uncertainty. For example,
future precipitation predictions are highly susceptible to data sources [48]. Chen et al. [49]
used different rainfall datasets in a slope stability model and found that there is a large
uncertainty in the simulation results when there are significant differences in the rainfall
data. More attention needs to be paid to the uncertainty of rainfall in slope stability models.
In addition, the trend of rainfall characteristics can be significantly influenced by various
bias correction and downscaling methods, leading to uncertainty. This can even alter the
direction of the trend, as noted by Homsi et al. in 2020 [50].

Additionally, the NASA team has refined and developed version 2 of the LHASA
model to further account for factors such as soil moisture, snow mass, and geological
information [51]. There have been a number of studies applying soil moisture to landslide
prediction [52,53]. Therefore, more landslide-triggering factors, such as soil moisture, need
to be taken into account in landslide prediction studies in the future. More methods for
the prediction of landslides should also be considered, such as the probabilistic threshold
propose by Zhao, B. et al. [54]. Also, Khan et al. [55] introduced the global LHASA-Forecast
(LHASA-F) framework, which incorporated the forecasted precipitation data. It demon-
strates the feasibility of using rainfall prediction data to predict future landslide hazard.



Land 2023, 12, 1732 14 of 16

5. Conclusions

In this study, the LHASH model is employed to scrutinize the attributes of upcoming
landslide danger variations in China using 16 CMIP5 climatic models and two carbon release
scenario predictions. The associated ambiguities of the multi-model and multi-scenario
forecasts are also examined. Based on the analysis, we draw the following conclusions:

(1) There is strong spatial and temporal heterogeneity in the variability of landslide
hazard due to climate change. Compared with the historical period, the number of
future landslide hazard basically shows an increasing trend, and the incidence of
landslides under the RCP8.5 scenario is greater than that under the RCP4.5 scenario.
In the early 21st century, there is expected to be a 5–10% increase in landslide hazards
relative to the base period. The middle of the 21st century will see a more notable
increase by 10–20%, with RCP8.5 having a slightly higher increase than RCP4.5,
although not significantly. By the end of the 21st century, they will increase by 20–40%
and 40–60% for RCP4.5 and RCP8.5, respectively. Spatially, the increase in the relative
change in landslide hazards shows a spatial distribution characteristic of gradually
increasing from east to west, corresponding to the topography of China. At the end
of the 21st century, the relative increase in landslide hazard in the Tibetan Plateau,
southwest, and southeast regions are 100%, 40%, and 20%, respectively. The seasonal
differences in future landslide changes are significant, with the most increase in the
spring and fall in most regions.

(2) Overall, the GCM ensemble generally recognizes an upward trend in future landslide
hazards in China, although the model has large uncertainties in the variability as
well as the increase and decrease in changes. The SNR and the RAS are gradually
increasing over time, and the consistency of the magnitude and positive and negative
directions of the disaster changes predicted by the GCM are gradually strengthening.
However, the uncertainty introduced by the RCP scenario is also rising. For each
subregion, both the SNR and the RAS show high values in the west and lower values
in the east. Except for parts of the Tibetan Plateau, where the SNR is greater than
1 and the RAS is more than 80%, uncertain levels are high in the remaining regions.

(3) The characteristics of the distribution of uncertainty in the landslide prognoses are
similar to those of the distribution of future variability in the landslide prognoses.
In regions where the predicted future variability is small (<10%), both the SNR
and RAS are low, resulting in high levels of uncertainty. Conversely, in locations
where the variability is large (>60%), both the SNR and RAS are high, leading to
reduced levels of uncertainty. Scenarios with high carbon emission concentrations will
likely experience a greater degree of GCM ensemble for future extreme precipitation
frequency compared to moderate and low carbon emission concentration scenarios,
and will have stronger agreement and lower uncertainty in the variability, as well as
incremental and decremental changes in landslide hazards.
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