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Abstract: The black soil region of Northeast China is one of the most fertile soil areas in the world
and serves as a crucial grain-producing region in China. However, excessive development and
improper utilization have led to severe land use issues. Conducting land cover extraction in this
region can provide essential data support for monitoring and managing natural resources effectively.
This article utilizes GF-6 remote sensing imagery as the data source and adopts the U-Net model
as the backbone network. By incorporating residual modules and adjusting the convolution kernel
size, a high-precision land cover extraction model called RAT-UNet is developed. Taking Qiqihar
City as an example, the RAT-UNet model is applied to extract land cover information. The results
are as follows: (1) The RAT-UNet model achieves high accuracy in land cover extraction, with the
following accuracies for different land types: cropland (95.11%), forestland (93.61%), grassland
(68.41%), water bodies (94.67%), residential land (89.40%), and unused land (87.25%). (2) The land
cover extraction performance of the RAT-UNet model is superior to DeepLabV3, U-Net, SegNet, and
LinkNet34 models. This research outcome provides methodological support for the intelligent and
high-precision extraction of land cover information and also offers timely data for Qiqihar city’s land
use planning.

Keywords: U-Net model; RAT-UNet model; land cover extraction; GF-6; Qiqihar City

1. Introduction

The black soil region of Northeast China is one of the four major black soil regions in
the world [1]. It includes Heilongjiang Province, Jilin Province, the northeastern part of
Liaoning Province, and the “Eastern Four Leagues” region of Inner Mongolia. The total
area of black soil in this region is about 1.09 million square kilometers, with 185,300 square
kilometers being typical black soil [2]. The typical black soil area in Heilongjiang Province
accounts for 56.1% of the total typical black soil area in the black soil region of Northeast
China. Among them, Qiqihar City in the western part of Heilongjiang Province is located in
the heartland of the Songnen Plain black soil area and is often referred to as the “Black Soil
Pearl.” It serves as a representative example of the black soil habitat for giant pandas. In
recent years, due to the continuous progress of agricultural development and urbanization,
Qiqihar City has faced serious land use issues. In line with the objective of protecting
the black soil, the region has undertaken a geographic information survey to optimize
the utilization and direction of regional natural resources. This effort is beneficial for
implementing the requirements for black soil preservation and the “storing grain in the
land and storing grain in technology” strategic approach.
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The extraction of land cover in the black soil region mainly relies on traditional field
survey methods and remote sensing-based extraction methods. The field survey method
is based on collected data from the black soil region, which is used to analyze the current
land use status and identify existing issues, proposing corresponding strategies. However,
this approach is affected by various factors such as the size of the survey area, topography,
and weather conditions, which significantly limits the scope of the survey and makes it
challenging to meet the demands for large-scale land cover extraction in the black soil
region. With the rapid advancement of remote sensing technology, remote sensing satellite
imagery has become the primary data source for land cover extraction. Some scholars have
utilized multi-temporal remote sensing data from the black soil region and achieved land
cover classification through visual interpretation methods, providing strategies for land
planning and management in the black soil region. Other researchers have constructed a
multi-dimensional index system for land cover classification in the black soil region, using
spatial overlay techniques to analyze the quantity and spatial distribution characteristics of
various land cover categories. This approach has laid a solid data foundation for the rational
utilization and conservation of black soil [3]. Although remote sensing-based methods for
land cover extraction in the black soil region have enabled large-scale extraction, the results
can be influenced by factors such as expertise and subjectivity. Moreover, these methods
still require substantial human and material resources, making it challenging to meet the
timely land cover extraction demands of the black soil region.

With the development of artificial intelligence technology, land cover extraction has
encountered new opportunities, and AI-based land cover extraction has emerged as a
novel approach. Initially, machine learning methods based on shallow feature extraction
caught the attention of many scholars. They focused on comparing different machine
learning algorithms [4–8]. Subsequently, in order to further improve the accuracy of land
cover extraction, scholars became enthusiastic about research on the improvement of
machine learning algorithms [9,10]. Although land cover extraction based on machine
learning algorithms has shown improvements in both accuracy and efficiency compared to
traditional field survey methods and remote sensing-based extraction methods, analyzing
the various methods used over the years, it is evident that this approach heavily relies
on data quality and is susceptible to factors such as sample size and parameter settings.
Therefore, land cover extraction still presents certain challenges. Subsequently, deep
learning algorithms based on deep feature extraction gained prominence due to their
ability to effectively address the problem of machine learning algorithms’ inability to adapt
to target feature variations after feature engineering [11]. Moreover, these algorithms
can extract more complex features, making the extraction process more intelligent and
leaving an unforgettable impression in many fields [12]. Numerous studies have utilized
convolutional neural networks (CNN) as the foundation, such as land cover and crop
classification in multiple temporal scenes [13], agricultural land use classification [14], urban
feature classification [15], land cover classification based on satellite imagery [16], and more.
These studies have demonstrated that CNN is a feasible tool for solving remote sensing
data segmentation and target recognition tasks. However, it is important to note that CNN
as a representative of convolutional neural networks, suffers from the issue of losing local
information, leading to blurry object boundaries and difficulties in accurately discerning
pixel categories from abstract features, resulting in imprecise segmentation. To address
these limitations, Long et al. made improvements to the CNN architecture by replacing
the fully connected layers with convolutional layers, leading to the proposal of Fully
Convolutional Networks (FCN) capable of achieving pixel-level classification [17]. To obtain
deeper semantic information, several more advanced networks have been developed [18],
including FCN-8s [19], DeepLabV3+ [20,21], U-Net [22], and others. These networks aim to
enhance the segmentation accuracy and capture more detailed features within the images.

U-Net model, as a typical end-to-end architecture, has gained significant attention
and popularity in various fields. Initially recognized for its outstanding performance
in medical image semantic segmentation [23], the U-Net model has been subsequently
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widely applied in various domains, such as land cover extraction, vegetation extraction,
road extraction, and more [24,25]. The U-Net model employs a contracting path with
convolutional and pooling layers for feature extraction and may encounter the issue of
model degradation as the network gets deeper, leading to limited feature information
extraction. To improve the accuracy of land cover extraction, Singh et al. attempted to
add Dropout layers after each convolutional layer in the U-Net model. The experimental
results showed that incorporating Dropout layers effectively addressed the weight-sharing
problem, but the learning process still suffered from overfitting [26]. Another attempt by Li
et al. introduced dual attention modules to enhance the extraction performance of different
land cover types, but this approach increased the computational complexity and lacked
completeness in detecting large-scale land cover features [27]. Several researchers have also
explored the incorporation of residual modules and dilated spatial pyramid pooling into
the network architecture, applying the improved models to urban land cover extraction and
high spatial resolution image classification. These studies demonstrated the effectiveness of
residual modules and dilated spatial pyramid pooling in enhancing land cover extraction
performance. However, these models exhibited higher accuracy only on public datasets and
showed relatively lower performance on personally constructed training datasets, leaving
room for improvement when dealing with individually constructed datasets [28–30].

Currently, land cover extraction research in the black soil region of Northeast China
heavily relies on traditional methods, which consume significant human and material
resources. These methods struggle to meet the high-precision and timeliness requirements
for land cover extraction in the black soil region. To address this issue, constructing an in-
telligent and high-precision land cover extraction model based on deep learning algorithms
can effectively enhance the accuracy and efficiency of obtaining land cover information.
Additionally, such a model can provide timely data for natural resource planning and
management in the black soil region. In this study, we propose to build an intelligent land
cover extraction model based on deep learning methods. Drawing inspiration from existing
land cover extraction models and leveraging a personally constructed sample library for the
black soil region, we will utilize the U-Net model as a foundation and introduce residual
modules and adjust the convolutional kernel size in the model, creating the RAT-UNet
model. Subsequently, we will apply the RAT-UNet model to land cover extraction in
Qiqihar City to verify its effectiveness, offering a novel approach for land cover extraction
research in the black soil region of Northeast China.

2. Materials and Methods
2.1. Study Area

Qiqihar City is located in the western part of Heilongjiang Province, China (45◦ N~48◦ N,
122◦ E~126◦ E). It covers a vast area and is currently administratively divided into 7 districts
and 9 counties. The total land area of the city is approximately 42,300 square kilometers.
The region has a temperate continental climate with four distinct seasons. Qiqihar City
is rich in black soil resources, including six types of soil: black soil, black calcareous soil,
meadow soil, albic soil, dark brown soil, and brown soil [31]. The typical area of black soil
cropland is 7720 square kilometers, making it the fourth largest grain-producing city in
China. The dominant landforms in Qiqihar City are plains and hills [32]. The land use types
include cultivated land, forest land, grassland, water bodies, and residential land. In recent
years, with the continuous development of agriculture and urbanization, as well as the
intensive and overloaded cultivation practices in the black soil region, ecological and land
degradation issues have become increasingly prominent in the area.The administrative
division map of the study area is shown in Figure 1.
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2.2. Dataset
2.2.1. Data Source and Preprocessing

This article mainly uses the domestic High-Resolution 6 (GF-6) multispectral satellite
imagery as the primary research data, downloaded from the China Center for Resources
Satellite Data and Application (https://www.cresda.com/zgzywxyyzx/index.html, ac-
cessed on 1 December 2021). The data selection was based on the criteria of cloud cover
less than 2% and includes 9 scenes of remote sensing satellite imagery covering the entire
growing season (May to October). The GF-6 satellite’s PMS (Panchromatic Multispectral
Sensor) sensor has one panchromatic band with a spatial resolution of 2 m and four mul-
tispectral bands with a spatial resolution of 8 m. The observation swath is 90 km, and
the revisit period has been reduced from 4 days for GF-1 to 2 days for GF-6. It possesses
characteristics such as high resolution, wide coverage, high quality, and efficient imaging.

Based on the spectral characteristics of the land cover in the black soil region, a com-
bination of blue, green, and red bands is used to display the true colors of the ground
objects, allowing for effective observation of various land cover categories. The GF-6
multispectral satellite imagery is preprocessed using ENVI 5.3 software. First, the Radio-
metric Calibration tool is used to perform radiometric calibration on the GF-6 panchromatic
and multispectral imagery, eliminating sensor-related errors. This step ensures accurate
radiometric values in the imagery. Second, the FLAASH Atmospheric Correction tool is
applied to the multispectral imagery to correct for atmospheric effects such as scattering
and absorption. This correction helps remove errors caused by atmospheric conditions
and illumination variations. Next, the RPC Orthorectification Workflow tool is utilized
to perform orthorectification on both the multispectral and panchromatic imagery. This
process corrects geometric distortions in the images, aligning them with the Earth’s surface
and improving their spatial accuracy. Finally, the NNDiffusePanSharpening fusion tool is
employed to merge the panchromatic and multispectral imagery. This fusion technique
combines the rich spectral information from the multispectral bands with the high spatial
resolution of the panchromatic band. The result is a high-resolution multispectral satellite
image with a spatial resolution of 2 m, effectively utilizing both the spectral and spatial
details of the imagery [33]. The pre-processing workflow for the remote sensing satellite
imagery in the study area is illustrated in Figure 2.

https://www.cresda.com/zgzywxyyzx/index.html
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2.2.2. Construction of the Land Object Sample Library

Taking into account the nature of black soil and the natural resource characteristics of
Qiqihar City and referring to the classification standards of the China National Land Use
and Land Cover Dataset (CNLUCC) for multiple time periods [34], a land object sample
library for Qiqihar City was constructed. The sample library includes six land object types:
cropland, forestland, grassland, water bodies, residential land, and unused land.

First, based on the remote sensing mechanism, the images were initially classified
by calculating the Normalized Difference Vegetation Index (NDVI) and Normalized Dif-
ference Water Index (NDWI) to initially extract vegetation and water bodies. NDVI is a
commonly used vegetation index, which distinguishes vegetation from non-vegetation
areas by mathematically transforming the differences between red and near-infrared light.
On the other hand, the NDWI index uses mathematical transformations of the differences
between green and near-infrared light to effectively suppress vegetation information while
highlighting water body information. The formulas for calculating NDVI and NDWI are
as follows:

NDVI = (B4− B3)/(B4 + B3) (1)

In the formulas, B4 refers to the near-infrared band, and B3 refers to the red band.

NDWI = (B2− B4)/(B2 + B4) (2)

In the formulas, B2 refers to the green band, and B4 refers to the near-infrared band.
Next, based on the preliminary classification results of the image, target areas covering

the 6 land cover classes are selected within the image. The visual interpretation method is
employed to delineate the land cover classes in the target areas as polygon features and
assign corresponding attribute values. In this case, 1 represents cropland, 2 represents forest
land, 3 represents grassland, 4 represents water bodies, 5 represents urban, industrial, and
residential land, and 6 represents unused land. Finally, the interpreted results are corrected
through expert judgment and field investigation, and the vector data are converted into
raster data, serving as the ground truth label dataset. The processed image data and their
corresponding label data are divided into training, testing, and validation sets using a
sliding window approach in an 8:1:1 ratio. The final dataset consists of 1369 images in the
training set and 329 and 327 images in the testing and validation sets, respectively. Some
sample images and their corresponding labels are shown in Figure 3.
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2.3. Deep Learning Method

In this study, a personally constructed sample library was used as the data source.
The U-Net model was chosen as the backbone network, and a contracting path with
residual modules was employed to extract contextual features of the land objects, aiming to
improve feature extraction accuracy and avoid the degradation of the model. The size of the
convolutional kernels in the model was adjusted to explore the impact of different kernel
sizes on the accuracy of land feature extraction. Finally, the ResNet34 residual module and
3 × 3 convolution were selected to construct the RAT-UNet model.

As shown in Figure 4, the input is a 256 × 256 image. Firstly, a 3 × 3 convolution is
applied once to adjust the number of input channels, facilitating the subsequent residual
connection calculations. Then, four residual connection calculations are performed. After
each residual connection calculation, max pooling with a stride of 2 is used for downsam-
pling. Subsequently, the image enters the expansion path of the model, where each layer
employs a 2 × 2 transpose convolution for upsampling. Simultaneously, skip connections
are used to fuse shallow and deep feature maps. Then, two 3 × 3 convolutions are applied.
After four iterations of upsampling, convolution, and feature fusion, semantic segmen-
tation of the image is achieved. Finally, a 3 × 3 convolution is performed to adjust the
channel number to the number of extracted classes, resulting in a 256 × 256 output image
representing the extracted land cover classes in the black soil region. The structure of the
RAT-UNet model is illustrated below.
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2.4. Accuracy Assessment Method

The accuracy evaluation method is used to assess the performance of the model.
After the model training is completed, the model’s extraction results need to be evaluated
for accuracy. Common accuracy evaluation metrics in deep learning include Overall
Accuracy (OA), Precision (P), Recall (R), F1 score, Intersection over Union (IoU), and
Mean Intersection over Union (MIoU). OA represents the percentage of correctly predicted
samples among all samples. A higher OA indicates that the model has predicted more
samples correctly overall. F1 score is a comprehensive metric that is the harmonic mean
of Precision and Recall. It provides a balanced measure of the model’s performance in
both Precision and Recall. IoU measures the overlap between the target region and the
predicted region, with values ranging from 0 to 1. A higher IoU indicates better prediction
performance. IoU is calculated for each individual class, while MIoU is the average IoU
across all classes. Therefore, in this study, OA, F1 score, and MIoU are selected as the
evaluation metrics to assess the model’s land cover extraction performance. The formulas
for calculating OA, F1 score, and IoU are shown in Equations (3)–(7):

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1 score = 2× Precision× Recall
Precision + Recall

(4)

IoU =
TP

TP + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

In the equations: TP represents the number of pixels correctly classified as positive
samples in the classification result; TN represents the number of pixels correctly classified as
negative samples in the classification result; FP represents the number of pixels incorrectly
classified as positive samples in the classification result; FN represents the number of pixels
incorrectly classified as negative samples in the classification result; Precision represents
the accuracy of the positive predictions, calculated as TP divided by the sum of TP and FP;
Recall represents the rate of correctly identified positive samples, calculated as TP divided
by the sum of TP and FN.

3. Experimental Setup and Results Analysis
3.1. Experimental Setup

The experiments in this study were conducted using the PyTorch deep learning
framework. To ensure fairness and consistency, all model algorithms were trained using
the Adaptive Moment Estimation (Adam) optimizer with a 2 × 10−4 learning rate. The
batch size was set to 2 samples, and the models were trained for 200 epochs. During the
model training process, we closely monitored the changes in validation accuracy. The
parameters of the model from the last 10 training iterations were saved, and the model with
the highest validation accuracy was selected for testing purposes. This approach ensured
that the best-performing model was used for evaluating the results.

The RAT-UNet model was utilized for land cover extraction in the black soil region,
and its effectiveness was validated through a series of comparative experiments. Firstly,
a comparative experiment was conducted between the RAT-UNet model and traditional
models such as U-Net, SegNet, LinkNet34, and DeepLabV3. The aim was to analyze the
advantages and disadvantages of the RAT-UNet model. Secondly, comparative experiments
were performed with different numbers of residual network layers and different kernel sizes



Land 2023, 12, 1566 8 of 16

to validate the effectiveness of the RAT-UNet model. Next, comparative experiments were
conducted using different band combinations to determine the optimal band combination
for land cover extraction in the black soil region. Finally, ablation experiments were
carried out to analyze the roles played by the Resnet34 residual module and the 3 × 3
convolution in land cover extraction in the black soil region. Through these experiments,
the performance and effectiveness of the RAT-UNet model were evaluated, providing
insights into its strengths and optimal configurations for land cover extraction in the black
soil region.

3.2. Results Analysis
3.2.1. Large-Scale Area Land Cover Extraction Results

Utilizing the RAT-UNet model to extract land cover information in Qiqihar City, a
representative black soil region of Northeast China, can provide valuable data support for
the monitoring and management of regional natural resources. As shown in Figure 5, the
RAT-UNet model can accurately extract most of the land coverage information, among
which the extraction performance of cropland, grassland, water bodies and residential
land is good, which can provide effective data for large-scale land cover monitoring in
the black soil region. This, in turn, can facilitate the formulation and implementation of
land planning and management decisions in the black soil region. However, for scattered
grassland and unused land, the RAT-UNet model shows noticeable misclassifications and
omissions, as indicated by the rectangles in the figures. The confusion between unused
land and grassland, as well as the misclassification of unused land as cropland or other
categories, may be attributed to data imbalance. In future research, further improvements
can be made to the model to address issues such as data imbalance.
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3.2.2. Local Area Land Cover Extraction Results

By conducting comparative experiments between the RAT-UNet model and U-Net,
SegNet, LinkNet34, and DeepLabV3 models, the land cover extraction results from these
five models are thoroughly analyzed. This comparative analysis aims to validate the
effectiveness of the RAT-UNet model and affirm its potential as a reliable and efficient
approach for land cover extraction in the study area.

As shown in Table 1, the RAT-UNet model achieved the highest overall accuracy
of 93.04% in land cover extraction, surpassing the performances of DeepLabV3, U-Net,
SegNet, and LinkNet34 models in sequence. The RAT-UNet model demonstrated superior
accuracy in extracting land cover information, thus providing effective data support for land
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planning and management in the black soil region. Regarding the extraction performance
of the six land cover categories, the RAT-UNet model achieved the highest extraction
accuracy for cultivated land, followed by water bodies, forest land, residential land, unused
land, and grassland. Except for grassland, the extraction accuracy for other land cover
categories exceeded 80%. This high level of accuracy can provide effective methodological
support for the monitoring and management of cultivated land resources in the black
soil region. The timely acquisition of cultivated land cover information can facilitate
the implementation of policies for the development and conservation of cultivated land
resources in the area. Compared to the four classical deep learning models, the RAT-
UNet model demonstrates superior extraction performance for cultivated land, forest land,
and residential land. Although the extraction performance for water bodies, grassland,
and unused land is slightly lower than that of the DeepLabV3 model, it still provides
valuable insights for policy-making in the black soil region, especially for policies related
to afforestation, farmland conservation, and urban–rural planning.

Table 1. Land cover extraction accuracy evaluation table for five models.

F1score RAT-UNet DeepLabV3 U-Net SegNet LinkNet34

cropland 95.11% 94.10% 93.47% 86.09% 83.62%
forest land 93.61% 93.30% 91.47% 83.71% 81.18%
grassland 68.41% 68.62% 63.97% 53.83% 32.19%

water bodies 94.67% 95.20% 92.34% 83.02% 71.89%
residential land 89.40% 88.79% 87.84% 80.94% 75.07%

unused land 87.25% 88.47% 81.40% 69.03% 52.80%
OA 93.04% 92.81% 90.77% 82.67% 77.31%

MIoU 79.79% 79.75% 75.29% 62.67% 51.91%

To further analyze the advantages of the RAT-UNet model, a visual analysis of land
cover extraction results in specific local regions can be conducted. As shown in Figure 6A–F,
image A–F corresponds to cropland, forest, grassland, water bodies, residential land, and
unused land, respectively. The rectangular boxes in each image highlight the differences in
land cover extraction among the five models. The black rectangular boxes represent the
ground truth land cover labels, the blue rectangular boxes represent correctly extracted
areas, and the orange rectangular boxes represent incorrectly extracted areas. Visual
analysis of the extraction results from the five models reveals the following observations:
The RAT-UNet model demonstrates an advantage in extracting linear features and is
capable of preserving complete boundary information of land cover. The DeepLabV3
model can extract more complete information about water bodies, but its performance in
extracting small and scattered features is relatively poor. The U-Net model lacks the ability
to extract small linear features, and the extracted land cover boundaries appear slightly
blurred. The SegNet model can only extract a limited number of linear features, and the
extracted land cover boundaries are relatively unclear. The LinkNet34 model performs well
in extracting cropland and residential land, but it shows evident misclassification issues
when dealing with areas where multiple land cover types are mixed.

In conclusion, for the purpose of monitoring and managing the black soil resources
in Qiqihar City, the RAT-UNet model outperforms the DeepLabV3, U-Net, SegNet, and
LinkNet34 models in land cover extraction, with an overall accuracy of 93.04%. It shows
particularly high accuracy in extracting cropland, which is beneficial for subsequent crop-
land resource planning and management tasks. The RAT-UNet model demonstrates certain
advantages in extracting linear features and retains complete boundary information of
land objects. It provides accurate and comprehensive land cover information for regional
natural resource monitoring and management. However, the RAT-UNet model still exhibits
limitations in dealing with irregularly distributed small features, as shown in Figure 6E,
where there is a missing extraction of cropland around the periphery of residential land, and
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in Figure 6D, where water bodies are misclassified as unused land. Further improvements
can be made to the model to address these issues in future research.
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4. Discussion
4.1. Impact of Residual Network Depth on Model Extraction Accuracy

The contraction path of the RAT-UNet model utilizes residual modules for contextual
feature extraction. To investigate the impact of residual network depth on the extraction
accuracy of the model, we conducted experiments using both Resnet18 and Resnet34 resid-
ual modules. Figure 7 illustrates the accuracy and loss curves of the land cover extraction
models using these two residual modules. The x-axis represents the epochs, while the
y-axis represents the loss and accuracy, respectively. After training for 150 epochs, the
accuracy and loss curves of the models using both residual modules were comparable.
However, the curve using the Resnet34 residual module exhibited less fluctuation, indicat-
ing that the land cover extraction model with Resnet34 converged faster. Therefore, the
RAT-UNet model selected the Resnet34 residual module for contextual feature extraction
in the contraction path.
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To further analyze the effectiveness of the Resnet34 residual module, we compared the
land cover extraction performance of models using both Resnet18 and Resnet34 residual
modules for the six land cover classes. In the bar chart shown in Figure 8, the x-axis
represents the six land cover classes, and the y-axis represents the F1 score of land cover
extraction. Observing the bar chart, we can see that both models using the two residual
modules achieved extraction accuracy above 90% for cropland, forest, and water bodies.
The extraction accuracy for residential land and unused land was above 80% for both
models. The model using the Resnet34 residual module showed improvements of 0.91%,
1.29%, 12.11%, 3.37%, 0.93%, and 5.82% in extraction accuracy for the six land cover classes
compared to the model using Resnet18. Therefore, the RAT-UNet model selected the
Resnet34 residual module for the contraction path as it demonstrated higher land cover
extraction performance.
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4.2. The Impact of Convolutional Kernel Size on Model Extraction Accuracy

The first convolutional layer of the RAT-UNet model is used to adjust the number
of channels, converting the feature channels from 3 to 64. This adjustment facilitates
the subsequent residual connections. The convolutional kernel can be seen as a filtering
operator in digital image processing, which performs weighted summation over local
regions of the input feature map to extract features. Commonly used convolutional kernel
sizes include 1 × 1, 3 × 3, 5 × 5, and 7 × 7. In the Resnet34 network, the first convolutional
layer is a 7 × 7 convolution with a stride of 2. To investigate the impact of convolutional
kernel size on feature extraction, experiments were conducted using 7× 7, 5× 5, 3× 3, and
1 × 1 convolutions for the first layer. As shown in Table 2, the model with a 3 × 3 kernel in
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the first convolutional layer achieved the highest extraction accuracy. This result indicates
that a larger kernel size does not necessarily lead to better feature extraction. Larger kernels
increase the complexity of the convolutional computation and involve more parameters in
the calculation. On the other hand, smaller kernels result in simpler computations with
fewer parameters, but the extracted features may not be as clear. Therefore, the selection
of kernel size should not be too large or too small. The RAT-UNet model sets the kernel
size of the first convolutional layer in the residual module to 3 × 3, reducing the number of
parameters while maintaining good feature extraction performance.

Table 2. Land cover extraction accuracy table of different convolutions in the first layer.

Convolutional
Kernel Size

Metric
Category Cropland Forest Land Grassland Water

Bodies
Residential

Land
Unused

Land

1 × 1
F1score 89.17% 85.38% 40.27% 85.44% 85.00% 68.76%

IoU 80.45% 74.48% 25.21% 74.58% 73.91% 52.39%
OA 84.52%

3 × 3
F1score 95.11% 93.61% 68.41% 94.67% 89.40% 87.25%

IoU 90.67% 87.98% 51.98% 89.88% 80.84% 77.38%
OA 93.04%

5 × 5
F1score 88.19% 84.03% 25.61% 84.50% 78.66% 60.89%

IoU 78.87% 72.46% 14.68% 73.16% 64.82% 43.77%
OA 82.44%

7 × 7
F1score 93.98% 91.16% 66.18% 94.05% 87.94% 83.74%

IoU 88.65% 83.76% 49.45% 88.76% 78.47% 72.03%
OA 91.33%

The last layer of the RAT-UNet model, similar to U-Net, is used to adjust the number
of channels to match the number of output classes for convenient feature output. In U-Net,
the last layer consists of a 1 × 1 convolution. In this study, we conducted experiments
using both 1 × 1 and 3 × 3 convolutions as the last layer of the model to investigate the
impact of the convolution kernel size on the model’s extraction accuracy.

Observing the extraction results in Table 3, it can be seen that compared to the model
with a 1 × 1 convolution as the last layer, the model with a 3 × 3 convolution as the last
layer shows an improvement in Intersection over Union (IoU) for the categories of cropland,
forest land, grassland, residential land, and unused land, with increases of 0.5%, 1.83%,
0.66%, 2.04%, and 2.06%, respectively. However, the IoU for water bodies decreased by
0.54%. Overall, considering the improvement in IoU for the other five land categories and
the overall accuracy increase of 0.43%, setting the last layer’s convolution kernel size to
3 × 3 demonstrates better land extraction performance.

Table 3. Land cover extraction accuracy table of different convolutions in the last layer.

Kernel Size Accuracy
Categories Cropland Forest Land Grassland Water

Bodies
Residential

Land
Unused

Land

1 × 1
F1score 94.86% 92.69% 68.11% 94.94% 88.38% 86.23%

IoU 90.22% 86.37% 51.64% 90.37% 79.19% 75.79%
OA 92.64%

3 × 3
F1score 95.11% 93.61% 68.41% 94.67% 89.40% 87.25%

IoU 90.67% 87.98% 51.98% 89.88% 80.84% 77.38%
OA 93.04%

4.3. Impact of Band Combination Methods on Model Accuracy

Different band combination methods in remote sensing imagery can have an impact
on the accuracy of land cover extraction. The reflectance of black soil in the study area is
significantly influenced by soil organic matter content. Experimental results of soil organic
matter retrieval using high spatial resolution remote sensing data indicate that the highest
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correlation exists between black soil organic matter content and the infrared and near-
infrared bands. The band combination of green, red, and near-infrared (b2, b3, b4) yields
the best results for extracting black soil information. In order to explore band combination
methods more suitable for land cover extraction in black soil regions, four different band
combinations were utilized: blue, green, red (b1, b2, b3); green, red, near-infrared (b2, b3,
b4); blue, green, near-infrared (b1, b2, b4); and blue, red, near-infrared (b1, b3, b4). The
results of land cover extraction using these band combinations are shown in Figure 9. It can
be observed that the model performance using the band combination of b1, b2, b3 achieves
the best results, particularly for grassland and unused land, with significant improvements
in accuracy compared to the other three band combinations (b2, b3, b4; b1, b2, b4; and b1,
b3, b4). The accuracy of grassland extraction increased by 52.43%, 40.71%, and 49.67%,
respectively, while the accuracy of unused land extraction increased by 34.43%, 23.86%,
and 38.9%, respectively. Therefore, this study suggests that the best band combination for
land cover extraction in black soil regions is based on the blue, green, and red bands.
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4.4. Ablation Experiment

To verify the effectiveness of the residual module and the 3 × 3 convolution in land
cover extraction, two ablation experiments were conducted in this study: 1© Restoring the
final 3 × 3 convolution to a 1 × 1 convolution (RAT-UNet1×1). 2© Restoring the residual
modules in the contracting path to regular convolutional modules (U-Net). The extraction
results are shown in Table 4 and Figure 10A–C.

Table 4. Evaluation table of ablation experiments.

Model
Final

Convolution
3 × 3

Residual
Module

Final
Convolution

1 × 1
MIoU OA

RAT-UNet
√ √

79.79% 93.04%
RAT-UNet1×1

√ √
78.93% 92.64%

U-Net
√

69.84% 88.23%
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The two ablation experiments verified the effectiveness of the RAT-UNet model. The
RAT-UNet1×1 model, which has a 1 × 1 convolutional kernel in the final layer, showed a
decrease of 0.43% in overall extraction accuracy. It exhibited difficulties in extracting mixed
land cover classes and lacked comprehensive feature information compared to the RAT-
UNet model. For example, in Figure 10B, there is confusion between forest, grassland, and
residential areas in the rectangular area. This result indicates that the 3 × 3 convolutional
kernel can learn more discriminative features, enabling more effective differentiation of
various land cover classes.

On the other hand, the U-Net model with regular convolutional modules replacing the
residual modules in the contracting path showed a decrease of 5.45% in overall extraction
accuracy compared to the RAT-UNet model. It failed to extract small linear features
and exhibited significant misclassification of land cover. For instance, in Figure 10B, the
rectangular area shows a lack of linear features in the land cover, and there is confusion
between residential land and cropland. In Figure 10C, forest land was misclassified as
residential land. This result suggests that using residual modules in the contracting path of
the model is advantageous for the extraction of small linear features.

Based on the comprehensive analysis and comparison of the results from the ablation
experiments mentioned above, it can be concluded that the residual modules in the RAT-
UNet model are beneficial for the extraction of small linear features. Additionally, using a
3 × 3 convolutional kernel helps in learning more informative features.

5. Conclusions

As agricultural development and urbanization continue to progress, the issue of land
use in the black soil region of Northeast China has become severe. Currently, obtaining land
cover information in the black soil region relies on traditional methods, which are difficult
to meet the demands for accurate and timely monitoring. In this study, we constructed the
RAT-UNet land cover extraction model based on deep learning methods. Taking Qiqihar
City as an example, we used the RAT-UNet model for land cover extraction, achieving an
impressive overall accuracy of 93.04%. Through a series of comparative experiments, we
demonstrated that RAT-UNet outperforms traditional models such as DeepLabV3, U-Net,
and SegNet in land cover extraction performance. Additionally, we conducted ablation
experiments that showcased the advantages of the residual network in extracting linear
land features.
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Indeed, the RAT-UNet model still exhibits misclassification and omission issues when
it comes to extracting irregularly distributed small land features and land cover classes with
limited data samples. In future research, we can explore ways to improve the performance
of land cover extraction models by focusing on boundary loss functions and data augmen-
tation techniques. These approaches may help enhance the model’s ability to accurately
identify and extract challenging land cover categories and improve its overall performance.
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