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Abstract: River rehabilitation and ecological engineering are becoming critical issues for improv-
ing river status when ecological habitats and connectivity have been altered by human pressures.
Amongst the range of existing rehabilitation options, some specifically focus on rebuilding fluvial
forms and improving physical processes. The aim of this contribution is to illustrate how geomorpho-
logical expertise and process-based thinking contribute to river rehabilitation success. This semantic
contribution is intended to feed the rehabilitation debate, particularly concerning the design of ac-
tions and the proposed references for monitoring target reaches and evaluating rehabilitation effects
empirically. This article is also based on lessons learned from practical cases, mainly in gravel-bed
rivers. Geomorphic understanding is needed at a local level to achieve an adequate diagnosis of river
functioning, estimate human impacts and potential remnant river responsiveness, and to assess the
gains and risks from rehabilitation, as well as to appraise success or failure through several pre- and
post-project assessment strategies. Geomorphological studies can also be upscaled in a top-down
manner (from high-order controls to small-scale processes, understanding detailed processes in
their regional or basin-wide context), providing large-scale information at the regional, national,
or even global level, information that can be used to diagnose the health of riverscapes in relation
to local site-specific contexts. As such, geomorphological studies support strategic planning and
prioritization of rehabilitation works according to specific contexts and river responsiveness, so as to
move from opportunistic to objective-driven strategies.

Keywords: river restoration; river improvement; diagnosis; evaluation; monitoring; upscaled
approach; process-based understanding

1. Introduction

Given the widespread alterations to natural systems over recent centuries, conserva-
tion and prevention measures alone will not be enough to support ecosystem functions and
services [1]. Our dependence on healthy ecosystems has made river rehabilitation a critical
strategy for improving river status when ecological habitats and connectivity have been
altered by human pressures. However, attempts aiming to implement river rehabilitation
through discipline-bound ‘hard’ engineering applications have failed to fulfil their ambi-
tions [2]. Conversely, a growing number of cross-disciplinary examples have demonstrated
the benefits of integrative river science [3,4] and process-based understanding for assuring
the positive effects of rehabilitation measures over the long term.

When river rehabilitation first emerged as a question of interest for ecologists, the
expected response was primarily biological. However, the topic is currently becoming more
and more a social question, because rehabilitation is expected to improve ecosystem services,
goods, and well-being, for both humans and non-humans [5,6], such as, e.g., nutrient
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retention, water quality improvement [7], protection of infrastructures [8], spawning sites
for high-value recreational fish species [9], or flood mitigation [10]. Improving such services
can rely on different strategies, among which those acting on channel morphology and
hydrology stand out as being particularly meaningful, once good water quality is assured.

The morphological measures intended for the improvement of river status are fairly
diverse. We can redesign fluvial forms or their characters to increase habitat diversity, from
the very local scale of a single geomorphic feature (typically: riffle, pool, bar) up to the
entire floodplain (e.g., modification of substrate conditions or channel geometry along a
river reach; creation of lower and more frequently flooded alluvial margins; setting-back
of levees; recovering of more dynamic and complex channel patterns such as meanders
or multiple threads; reconnection of former side channels). We can also act on controlling
factors such as sediment supply through bank re-erosion, dam/weir removal, gravel
augmentation below dams in sediment-starved gravel-bed rivers, or improvement of the
flow regime through the design of eco-morphogenic flushing flows [3].

We expect that morphological measures will improve river corridor habitats, and then
consequently ecological communities. Although this assumption is strong, it needs a careful
appraisal to be verified, or even generalized, because of non-cyclic patterns of biophysical
processes and responses. The effects of pressures are not symmetrically balanced by the
effects of rehabilitation, and special attention must be given to the fact that morphological
measures do not systematically imply a positive ecological response. Morphological
measures are also critical when considering the sustainability of rehabilitation because
they act on river energy, resistance, and responsiveness, which have direct implications on
river adjustments and future channel states. Many examples of unsuccessful rehabilitation
actions have been reported by scientists (e.g., [11–13]). Most of the time, such failures are
related to a lack of a priori knowledge of the morphodynamics and geomorphological
context, and the actions are therefore not adapted to the situation, and the expected
recovered habitats are rapidly lost or never appear. There is also often a lack of well-defined
objectives for guiding rehabilitation measures and assessing their potential success [14–17].

All rivers are not equally sensitive or responsive to change, so all rehabilitation mea-
sures are not appropriate for all rivers. When rivers are highly responsive, rehabilitation
should be mainly focused on processes, and promoting self-rehabilitation is usually an
adequate strategy. When rivers are not very reactive over a certain period of time (e.g., a
few decades if we refer to measures that are supposed to be sustainable), acting on their
form can be recommended. Hence passive and active physical rehabilitations can both be
advocated, but each one within its specific and more suitable contexts.

The aim of this article is to illustrate, from literature review and lessons learned from
case studies conducted by the research team mainly in gravel-bed rivers, how morpho-
logical approaches can contribute to river rehabilitation success. Morphological under-
standing can feed the debate at a theoretical level when considering the definition of
actions (Section 2), at a local project level during the diagnosis (Section 3), risk assessment
(Section 4), and success evaluation (Section 5) steps, and at an up-scaled level (Section 6) to
provide the information required to diagnose river health conditions and assess potential
responses to river rehabilitation and subsequent failure or success. Different issues are
considered according to the rehabilitation phase (Figure 1).
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permission of Elsevier, 2023). 
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sponding to a complex set of disturbances within an even more complex space–time 
framework [19,20]. The return to a pre-disturbance state is now recognized as impractical 
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phology observations made before the major regulation phases, notably in Europe, were 
already altered by a longstanding history of deforestation and pastoralism dating back to 
the Neolithic period [24]. Restoration appears as a dream that is almost impossible to 
achieve, whereas rehabilitation, in the sense given by [25], is a target that is reachable [26]. 
Rehabilitation is about repairing damaged ecosystem functions, improving river status, 
and working towards an alternative steady-state [27], but also about setting objectives that 
are biophysically possible and socially acceptable [2]. Surprisingly, and despite scientists 
having proposed some clear definitions of restoration and rehabilitation in the 1990s (see 
Table I in [23]), most of the initiatives in the world aiming to improve or repair rivers are 
still labelled as restoration, despite fitting the definition of rehabilitation ([27]). Moreover, 

Figure 1. Different geomorphic knowledge needs when rehabilitating rivers: diagnosis to understand
the alterations and orders of magnitude of active processes (Section 3), project design for evaluating
risks (Section 4) or success (Section 5), or even top-down approaches for classifying, targeting, and
prioritising actions at a large scale (Section 6) (from Piégay et al. 2016 [18]; reproduced by permission
of Elsevier, 2023).

2. Reflecting on Geomorphology to Improve Rivers: The Emerging Field of
River Repair

Considering rivers through a geomorphologist’s perspective has contributed to the
debate on “what is river restoration”. It has shed light on the utopian aim of recovering
a pre-disturbance structural and functional state, because rivers are reactive systems re-
sponding to a complex set of disturbances within an even more complex space–time
framework [19,20]. The return to a pre-disturbance state is now recognized as impractical
because of: (i) the irreversibility of many anthropogenic alterations to aquatic ecosys-
tems [21], (ii) the need to reconcile human and environmental needs [22], and (iii) the
impossible task of defining a “pre-disturbance” or “pristine” state [23]. Indeed, river chan-
nel morphology observations made before the major regulation phases, notably in Europe,
were already altered by a longstanding history of deforestation and pastoralism dating back
to the Neolithic period [24]. Restoration appears as a dream that is almost impossible to
achieve, whereas rehabilitation, in the sense given by [25], is a target that is reachable [26].
Rehabilitation is about repairing damaged ecosystem functions, improving river status,
and working towards an alternative steady-state [27], but also about setting objectives that
are biophysically possible and socially acceptable [2]. Surprisingly, and despite scientists
having proposed some clear definitions of restoration and rehabilitation in the 1990s (see
Table I in [23]), most of the initiatives in the world aiming to improve or repair rivers are
still labelled as restoration, despite fitting the definition of rehabilitation ([27]). Moreover,
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some of the terms describing river improvement do not always match that classification.
For instance, environmental flows used to attenuate the impact of dams are considered as
mitigation measures, whereas gravel augmentation downstream of dams is often labelled as
restoration. Sustainable management of dams can be roughly described as a long-term miti-
gation measure if it is repeated through time, but alternative solutions could be chosen that
would better fit the purpose of rehabilitation. For instance, dam flushing practices can be
modified to minimise their environmental effects, or to help with vegetation maintenance
in non-adjusted reaches within which vegetation encroachment is not permitted because
of flood risk. This illustrates the complex story of terminology, and its dissemination,
appropriation, and evolution.

Doing things better (i.e., improving the physical quality of a river in a more pragmatic
manner) relies on the recognition that rivers are adjusting systems that follow trajectories;
future conditions may not resemble past conditions, particularly within the short-term
context of the Anthropocene. River systems can react to complex sets of drivers—so-called
press disturbances—while responding to pulses of perturbations corresponding to critical
flood events [28]. These characteristics highlight the numerous properties of rivers, such as
resistance or resilience, sensitivity or responsiveness, and vulnerability. On the basis of a
system’s responsiveness, it is possible to define whether to act on forms or on processes in
order to improve a river’s status, to consider process-based measures aimed at increasing
geomorphic complexity, and to identify sustainable measures that would be potentially
successful in terms of river improvement.

Living with rivers (rather than fighting them) by promoting nature-based solutions
forms the basis of geomorphic process-based rehabilitation and mitigation. This concept
gave rise to the development of what [2] called the ‘emerging process of river repair’, and
what today lays the foundation for the emerging technical discipline of riverine science
and engineering [29].

3. Understanding Alterations and Orders of Magnitude of Active Processes

Morphological alterations to rivers must be assessed during the diagnosis phase, to
assess their magnitude, their consequences on habitats, and how fast they are likely to occur.
These assessments are needed to understand potential ecological damages and anticipate
channel responsiveness to rehabilitation actions.

The assessment of past channel changes is a way to better understand controlling
factors in space and time, which then allows us to consider what the potential solutions to
improve present conditions might be [30–32]. There is a link between upstream changes
and potentially cascading effects of changes downstream. In the case of a change in
sediment delivery, e.g., by damming, gravel mining activity, or land use change in the
catchment, a time lag of several years or decades can be observed between the drivers
and the downstream effects [33,34]. In the case of peak flow alteration, a downstream
channel response may occur all along the reach as long as hydrological conditions are
not significantly changed by the contribution of a tributary. However, the response is
not systematically linked to changes in the sediment or flood regime. Drivers can also be
local without any upstream changes (e.g., channel straightening or deepening), with the
adjusting variables all being interdependent. Another classical example corresponds to the
case of in-channel vegetation encroachment, which is an adjustment property linked to
ecological conditions controlling recruitment, growth, and resistance, and may be associated
with climatic changes or flow seasonality, independent of any change in flood or sediment
regime.

Different strategies may be used to identify drivers of change. Comparative ap-
proaches applied within an appropriate space–time framework can be powerful for testing
and ranking causal factors. They can be based on comparing a set of basins or river
reaches, or on exploring the longitudinal pattern on a given river reach to detect change
in downstream trends [35]. Such a process-based hierarchical diagnosis was conducted
on the Lower Ain River (France) downstream from the Allement dam. Rollet et al. [36]
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assessed the impacts of sediment starvation on channel shifting, bed incision, and bed
coarsening, and the ecological consequences on riparian forest, floodplain lake vegetation,
and fish communities. The causal diagnosis was spatially and temporally explicit in that it
identified the dam effects in the longitudinal dimension amongst the other drivers affecting
the whole reach (e.g., grazing decline and channel regulation). This multicriteria diagnosis
(Figure 2) provided a consistent basis for river managers to implement both curative and
preventive actions: the former channel rehabilitation measures were combined with gravel
augmentation in the upstream reach that was already affected by sediment starvation,
while the free-meandering reaches in the downstream section were preserved within an
erodible corridor avoiding any new bank protection [37].

Land 2023, 12, x FOR PEER REVIEW 6 of 23 
 

 
Figure 2. Example of causal diagnosis on the Ain River: summarising of the observed and non-ob-
served links between sediment starvation, geomorphic adjustments, and ecological consequences 
(from Rollet et al. 2013 [36]; reproduced with permission of J. Wiley, 2023). 

4. Pre-Project Assessment: Evaluate Risks, Gains, and Potential Channel Responsive-
ness before Acting 

Although rehabilitation projects are now becoming more frequent, a systematic 
framework for designing and monitoring rehabilitation actions is still lacking [17,45,46]. 
Rehabilitation actions remain experimental manipulations of local features of a river, 
sometime whole river reach, and are associated with uncertainties and risks that must be 
addressed in the early stages of projects [47,48]. In the case of sand deposition in the by-
passed section of a gravel-bed river (Selves River, France; [49]), experimental (eco)mor-
phogenic flows (e.g., the geomorphic domain of environmental flows; [3]) were designed 
to identify the most appropriate discharge to flush sand downstream without remobiliz-
ing coarser particles and impacting existing habitats. During three tests at maximum dis-
charge (10, 15, and 20 m3/s), each carried out for four hours, sand movement was meas-
ured using coloured tracers, sediment flux was surveyed using a Helley–Smith sampler, 
and repeated field measurements of bedforms were made. These experiments provided 
information on the best flow level and duration, facilitating the design of repeated 
measures to maintain the improved habitats and promote an adaptive approach to miti-
gate impacts caused by the dam. 

In the case of artificial gravel augmentation oriented towards mitigating the adverse 
effects of sediment starvation downstream from dams, the risks include flood-stage rising 
in the area of the stockpile deposit, uncontrolled bed scour with the reactivation of bed-
load transport, and threats to downstream infrastructures that depend on the sediment 
transfer pace. The challenge is thus to develop a knowledge feedback system through con-
solidation of the different stages of the rehabilitation project, thereby reducing the uncer-
tainties relating to the expected benefits and risks before acting [42]. In situ and ex situ 
experiments can be performed to improve the rehabilitation design. The volumes of intro-
duced gravels are generally selected on the basis of the mean annual transport capacity of 
the reach. Location, geometrical configuration, and grain size of the introduced gravel are 
also critical issues. In addition to in situ monitoring, feedback, often coming from pebble 
tracking [50–52], flume experiments [53–55], and numerical modelling [56,57], is devel-
oped to evaluate these issues, assess channel sensitivity, anticipate potential failures, and 

Figure 2. Example of causal diagnosis on the Ain River: summarising of the observed and non-
observed links between sediment starvation, geomorphic adjustments, and ecological consequences
(from Rollet et al. 2013 [36]; reproduced with permission of J. Wiley, 2023).

Sediment budgeting is a key aspect of morphological diagnosis. To identify effec-
tive rehabilitation measures, we need to have a clear idea of the orders of magnitude of
sediment transport, the distance and timing of change propagation, and the contribution
of the different basin compartments (e.g., tributaries versus floodplain). The sediment
budgeting approach aims at estimating sediment erosion, transfer, and deposition through
a given river reach by considering three-dimensional morphological changes [38,39]. It
can be based on different techniques that may be more or less advanced, such as use of a
bedload transport formula at a station [40], morphodynamic modelling [41], field valida-
tions based on sediment tracking [42], and sediment flux estimates based on geophones
or traps [43]. This sediment budgeting approach is usually combined with historical in-
formation (topographical and planimetric) and field campaigns (bank height estimates,
overbank fine sediment volumes), and sometimes with LiDAR-derived digital elevation
models (DEM) to detect geomorphic changes following gravel mining or other human
pressures on sediment storage and floodplain–channel interactions. For example, the work
performed by Boutault [44] on the Dordogne River showed that since 1948 the river channel
has undergone an overall deficit of 5.6 million m3 of sediment; the 8.8 million m3 of sedi-
ment extracted was partly compensated by bank erosion (3.7 million m3 of sediment was
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introduced), but also exacerbated by no upstream entrance due to damming and a down-
stream output of 0.5 million m3 of sediment. It should also be noted that 20.5 million m3 of
sediment was also stored within the floodplain through an active process of afforestation
and channel metamorphosis (from a wandering to sinuous single-bed channel) due to
very significant peak flow lowering. This sediment budget provided information that was
critical for estimating the potential effects of rehabilitation measures such as bank erosion
promotion and the raising of peak flows, as well as for quantifying the volume needed to
reach a certain improvement level.

4. Pre-Project Assessment: Evaluate Risks, Gains, and Potential Channel
Responsiveness before Acting

Although rehabilitation projects are now becoming more frequent, a systematic frame-
work for designing and monitoring rehabilitation actions is still lacking [17,45,46]. Rehabil-
itation actions remain experimental manipulations of local features of a river, sometime
whole river reach, and are associated with uncertainties and risks that must be addressed in
the early stages of projects [47,48]. In the case of sand deposition in the by-passed section of
a gravel-bed river (Selves River, France; [49]), experimental (eco)morphogenic flows (e.g.,
the geomorphic domain of environmental flows; [3]) were designed to identify the most
appropriate discharge to flush sand downstream without remobilizing coarser particles
and impacting existing habitats. During three tests at maximum discharge (10, 15, and
20 m3/s), each carried out for four hours, sand movement was measured using coloured
tracers, sediment flux was surveyed using a Helley–Smith sampler, and repeated field
measurements of bedforms were made. These experiments provided information on the
best flow level and duration, facilitating the design of repeated measures to maintain the
improved habitats and promote an adaptive approach to mitigate impacts caused by the
dam.

In the case of artificial gravel augmentation oriented towards mitigating the adverse
effects of sediment starvation downstream from dams, the risks include flood-stage rising
in the area of the stockpile deposit, uncontrolled bed scour with the reactivation of bed-
load transport, and threats to downstream infrastructures that depend on the sediment
transfer pace. The challenge is thus to develop a knowledge feedback system through
consolidation of the different stages of the rehabilitation project, thereby reducing the
uncertainties relating to the expected benefits and risks before acting [42]. In situ and ex
situ experiments can be performed to improve the rehabilitation design. The volumes of
introduced gravels are generally selected on the basis of the mean annual transport capacity
of the reach. Location, geometrical configuration, and grain size of the introduced gravel
are also critical issues. In addition to in situ monitoring, feedback, often coming from
pebble tracking [50–52], flume experiments [53–55], and numerical modelling [56,57], is
developed to evaluate these issues, assess channel sensitivity, anticipate potential failures,
and thus improve the rehabilitation strategy. For example, using a flume, Koll and Koll
(2012) [58] tested the effects of different amounts of gravel augmentation on the stability of
a static armour layer and associated sediment transport velocities prior to in situ gravel
augmentation in the Rhine River (Figure 3). Among the uncertainties associated with
gravel augmentation is the question of the availability of sufficient sediment volumes (as
stocks or active production) to ensure the sustainability of the actions; the volume of coarse
sediments stored in the floodplain is determined by the morphological sediment budget,
and therefore the sustainability of gravel augmentation measures can be deduced from it.
In a study on the Ain River, Talaska et al. (2014) [59] estimated from the sediment budget
that the floodplain gravel supply should be available for 40 to 90 years to counteract the
15,000 m3·year−1 sediment starvation affecting the channel.
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Figure 3. Flume experiment prior to the in situ gravel augmentation on the Rhine River: distribution
of tracers after a run time of T = 30 min according to the tracer amount (M01 to M05: 1.1 to 4.4 kg),
with a = front of the initial tracer bar, b = position of the balance point, c = position of the tracer front
(6 m long, 0.3 m wide, and 0.4 m high flume) (from [58] Koll, K. and Koll, K. Influence of Depot Size on
Bed Load Transport Velocity over Static Armour Layers. In River Flow; R.E. Murillo Munoz: London, 2012;
Vol. 1, pp. 451–456; reproduced by permission of Taylor and Francis Group).

The geomorphologist’s perspective contributes to providing an inference on how
physical compartments can react in the future, and the implications for habitat improve-
ment and sustainability. Geomorphological analysis is a way to evaluate not only potential
risks, but also potential gains. At this stage, collaboration with biologists is needed to
assess potential ecological responses to manipulations of forms and processes. The main
ecological objectives of the gravel augmentation on the Rhine River were a gain in sub-
strate diversity to improve spawning habitat for lithophilic fish species and enhance the
recruitment of pioneer plants, and a gain in surficial and sub-surficial water exchanges
for the associated benthic and hyporheic diversity [42]. During the initial phase of pre-
project assessment, ecological monitoring was proposed to evaluate the potential gain in
such specific measures because of the potential cumulative effects of several rehabilitation
measures (gravel augmentation, instream flow increase) and environmental drivers (water
quality, colonization by invasive species) on the biological communities. However, the
combination of before–after and control–impact monitoring approaches allowed differenti-
ation of the effects of the rehabilitation measures and environmental drivers on the richness
of the macrophyte species, recruitment of pioneer terrestrial species, and taxonomic rich-
ness of macroinvertebrates [60]. On the basis of these results, a conceptual model of key
cause–effect relationships and interactions was developed to describe positive, negative,
and mixed effects of rehabilitation, with this model providing a design framework for
maximizing ecological gains in the more extended rehabilitation project (Figure 4).
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rehabilitation action (Staentzel et al., 2018 [60]; reproduced by permission of J. Wiley, 2023).

5. Post-Rehabilitation Project Assessment: Evaluate Success and Provide Predictive
Models for Rehabilitation Design

Because rehabilitation can fail, monitoring is often recommended to assess its success
or failure, to allow reporting of it and adaptation of existing measures with additional
ones. Monitoring is even more important when a pre-project assessment step to evaluate
potential risks and gains is not implemented. Although ecological indicators are most
often used, morphological ones can also be considered for assessing the sustainability of
measures, being taken as indicators of rehabilitation success. Morphological indicators are
also monitored in combination with ecological ones to help interpret ecological responses
and better understand any additional measures required, as well as to provide predictive
models that can serve as pre-rehabilitation tools useful for improving design efforts to
achieve optimal response scenarios. In some cases, morphological assessments can also be
cheaper than ecological monitoring, and the diversity of forms can be viewed as a surrogate
for the diversity of communities or expected functional responses.

5.1. Is Rehabilitation a Success? What Can a Monitoring Framework Tell Us?

We here provide three examples to illustrate how to evaluate the success of rehabili-
tation using morphological approaches. The first two are based on a before/after survey
design, whereas the third illustrates a control/impact strategy.
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The first example is based on a before/after survey design that considered both
the sustainability of measures and habitat improvement. One of the key measures to
improving the ecological conditions of the Rhône River was to rehabilitate the side channels
in by-passed reaches. To maintain these critical habitats that the river can no longer
sustain by itself, a strategy based on mechanical rejuvenation by dredging and/or partial-
to-full reconnection of the extremities of former channels with the main river has been
implemented since 1999. The guiding principles of the rehabilitation were to improve
ecological functioning and maximize the diversity of habitat conditions in side-channels
at the reach scale in order to maintain a wide range of successional stages [61]. The main
objective of the monitoring was to assess the relevance of the rehabilitation strategy in
terms of efficiency and sustainability on the basis of a before/after survey design [62].
Indeed, morphological adjustments to former channels are highly site-dependant, and can
be strongly influenced by changes in geometry caused by rehabilitation works, and the
use of control sites in such environments is therefore complicated. A quick, simple, and
easily-reproducible protocol to survey a large number of side channels was developed. For
each channel, this consisted of probing water depths and fine sediment thickness along the
centreline of the waterbody and sampling surficial fine sediment for grain size analysis.
These measurements were carried out at least once before rehabilitation and every two
years on average after rehabilitation. They are complemented by a continuous monitoring
of the flood regime as a first-order control parameter of the hydromorphological evolutional
trajectory (duration, frequency, and intensity of flood pulses). After more than a decade
of monitoring, the results showed that the hydromorphological conditions observed after
rehabilitation were often very similar to those observed prior to the work, with the exception
of active secondary channels that were reconnected at both ends [63,64]. In most cases, the
geometry of side channels was modified by rehabilitation without substantially modifying
the main processes controlling the conditions (i.e., connectivity between side channels and
the main river channel). Indeed, the geometries of upstream alluvial plugs of the backwater
channels (permanently connected with the river only at their downstream end) were not
modified. The excavation of backwater channels led to an increase in their ability to trap
diffused sediments during backflow events. This trend is all the more obvious because
most channels were perched above the main river channel before rehabilitation. In terms
of potential life span of the rehabilitated channels, the increase in water depths resulting
from rehabilitation largely compensated for the higher fine sediment accumulation rates
observed after rehabilitation.

Our second illustration of the before/after monitoring framework focuses on gravel
augmentation contexts, for which the technologies of radio frequency identification (RFID)
have become an almost mandatory technique for validating the effectiveness of measures.
Along with topographic surveys, these technologies are frequently applied to survey
the mobility of the coarse fraction (b-axis > 20 mm) of bed sediment in rehabilitated
sections [42,51,52,65–67]. This approach is also used for monitoring the morphologic effect
of river rehabilitations and assessing their performance. Classically, passive low frequency
transponders (so called PIT tags) were used because their small size, low cost, and long
operating life made them ideal for long-term monitoring of large sets of tracers [42,66–68].
These PIT tags have recently been complemented with the addition of active ultra-high
frequency transponders (so called a-UHF tags [69]). Although more expensive and with a
shorter operating life, the latter do not suffer from signal collision and have a wider sensing
range (up to 40 meters) allowing faster surveys with a variety of protocols, depending on
study purposes and available resources [70]. They have even been used to monitor streams
exhibiting intense vertical bedload mixing and large transport distances [52]. Moreover,
they offer the possibility to determine active layer thickness and the displacement of
constrained particles during the first survey after injection when deployed in columns into
the active layer of wadable streams [44,71]. The combination of these two technologies
offers new perspectives for long-term monitoring and sediment transport budgeting. When
monitoring rehabilitation projects, RFID technologies are helpful to:
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1. Validate the grain size of the replenished sediment mass that can be effectively trans-
ported by the stream once rehabilitated, and which is estimated from hydraulics
models and flow records;

2. Estimate the effects of the rehabilitation on aquatic habitats in terms of improved bed
surface area and sustainability;

3. Estimate, improve, and validate the volumes needed and the necessary frequency for
reinjection operations.

The third example is illustrated by a control/impact design implemented on the
Drac River following a large-scale rehabilitation scheme. The Drac River is a braided
Alpine river with active bedload transport and a mean annual discharge of 9 m3/s. In
its section upstream from Saint-Bonnet-en-Champsaur, the river suffered from significant
incision that reached the underlying clay layers and from a clear change in planform
style from braided to single-threaded river due to intense mining in several places up
until 2012 [72]. Following this degradation, 3.9 km of river and an area of 27 ha were
rehabilitated, with channel widening and clearcutting of riparian vegetation to re-open a
stabilised landscape, rehabilitation of local wetlands within the floodplain, and an artificial
gravel augmentation (+450,000 m3). This induced an average mean bed elevation rise of
+3 m, a channel width increase from 30–40 to 80–120 m, the recovery of braided patterns,
and partial restoration of bedload transport dynamics [72,73]. However, one of the expected
outcomes from these restored braided patterns was the provision of important functional
processes such as groundwater exchanges and cold spots, which are critical components of
such systems, allowing it to be considered as an Alpine reference [74]. Thermal behaviour
related to channel geomorphology was then assessed using airborne thermal infrared
(TIR) imagery within a control–impact strategy, comparing the rehabilitated reach with
an upstream natural braided reach (Table 1). Airborne TIR now has long history of use
to study rivers [75] as it allows assessing of surface temperature with high precision and
high resolution over large spatial scales [76]. It has been successfully used to characterise
the thermal diversity of a range of gravel-bed rivers [77] but is rarely used within a post-
rehabilitation monitoring strategy.

Table 1. General characteristics of the control and rehabilitated sections of the Drac River (* braiding
index = Pttw (see Figure 2; [73,78]); normalised bed relief index = BRI * [73]).

Control Section Rehabilitated Section

Thickness of alluvial material 10–15 m ~3 m on average

Length of section 3.9 km 4.0 km

Average width (±1 S.D.) 78 ± 27 m 80 ± 30 m

Average slope 0.0092% 0.0107%

Braiding index * 4.14 4.35

Wetted width vs. active width ratio (R) 0.24 0.49

Normalised bed relief index * 0.003 0.003

From a morphological perspective, the rehabilitation has proven to be effective; active
width has increased, the braiding index has recovered, and some bedload transport has
been reactivated (Table 1). However, from a temperature perspective, the behaviour of
the reach remains different from that of the control reach: the thermal gradient is positive
(+0.52 ◦C/km), whereas it is negative in the control reach, and the density and diversity
of thermal habitats are low (Figure 5a,b). Several lateral seeps were identified along the
floodplain margins as well as poorly-connected cold side-channels, showing that cold-
water inputs exist but connectivity flow paths are yet to be restored. Similarly, a limited
number of hyporheic upwellings were found in the rehabilitated reach, showing that
vertical connectivity is also low. The limited signs of restored thermal functions can be
explained by several factors [79]. First, the layer of available alluvium is relatively thin
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(Table 1) and too ‘young’ to actively interact with the groundwater table, as even internal
recycling of surface water along gravel features is limited. Despite the recovery of braided
patterns, no morphogenic discharge occurred following the rehabilitation to re-work the
sediment. Geomorphic features have remained rather artificial (being the ones designed by
the operator), with, for example, a wide wetted channel that is much higher than the one of
the reference reach (Table 1), and which causes the water to be spread thinly over a large
area, and thus to be more exposed and vulnerable to solar radiation.
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Figure 5. Thermal responses of a rehabilitated reach in comparison with a control reach following
rehabilitation of the upper Drac River, France. (a) Longitudinal temperature profile with local
thermal gradients, (b) distribution, types, and characteristics of cold-water patches, (c) TIR image
and orthophoto of a section of the rehabilitated reach illustrating the disconnection between cold-
water features and the main overly-wide restored braids (modified from Marteau et al., 2022 [79],
reproduced by permission of J. Wiley and Sons, 2023).

This case study (among others, see [79]) showed that a successful morphological
rehabilitation does not necessarily mean a successful recovery of functions. Some functions
(i.e., those related to temperature in this example) are more complex and/or slower in their
responses to changes (here assumed to be positive changes) than are morphological re-
sponses, and therefore so are the timeframes of most monitoring programmes implemented
as part of the rehabilitation design. This example also suggests that alternative tools (e.g.,
airborne TIR) providing alternative indicators (e.g., thermal gradients, cold-water habitats)
can be used to help refine the assessment of the success or failure of rehabilitation schemes,
and also shed new light on some of the reasons for observed failures.

The successfulness of rehabilitation is commonly assessed using biological indicators
based on similar control/target monitoring frameworks. However, as shown before, success
is sometimes only partial, or even completely absent, for various reasons (see Section 2).
In such contexts, a better geomorphic understanding can help promote the additional or
correcting measures needed to improve the initial rehabilitation scenario. The effects of
gravel bar redesign on plant community functional composition were assessed along the
Rhône River by [80]. They compared bar elevation and soil texture gradients on bars being
newly reprofiled in sediment starved reaches (target) with bars located in a reach where
they can be naturally rejuvenated by sediment transport (control). The co-occurrence of
species with contrasting traits was higher in highly disturbed environments, demonstrating
the importance of rejuvenation processes in inducing ecological improvement related to
sediment transport. The monitoring showed that the measures implemented were not
sustainable because the initial design (bar reprofiling) was not process-based. To promote
an effective ecological rehabilitation of such riparian zones, the rehabilitation of bedload



Land 2023, 12, 1491 12 of 23

transport was recommended instead. This was presented as a more effective measure
because it provides more natural disturbances that allow diverse and repeatedly renewed
vegetation assemblages to develop, with the aim of preventing biodiversity decline through
time.

5.2. The Feedback Loop of Post-Rehabilitation Monitoring Data: Feeding Predictive
Response Models

Post-rehabilitation monitoring data are useful for assessing success, but can also be
used to feed models that can then provide useful tools for improving practices and guiding
future rehabilitation designs. Monitoring is essential to increase operational feedback and
provide models for a priori use in the targeting of rehabilitation actions [81].

Models based on a 15-year monitoring of rehabilitated side channels along the Rhône
River provide a good example of such findings. It was demonstrated that grain size patterns
and associated habitat types [63], fine sediment accumulation rates, and the life spans of
rehabilitated channels as aquatic habitats [64], can be successfully predicted using simple
metrics describing the hydrodynamic functioning of these channels: the frequency and
magnitude (i.e., maximum total boundary shear stress) of upstream overflow events and
the maximum intensity of backflow events (i.e., maximum backflow capacity) (Figure 6).
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upstream overflow events and the maximum intensity of backflow events (i.e., maximum backflow
capacity) (modified and adapted from [63,64], respectively). PCA, principal components analysis;
NLME, nonlinear mixed-effects (NLME) models. Reproduced by permission of Elsevier (a) and J.
Wiley and Sons (b).
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The main interest in these predictors lies in the fact that they reflect the control exerted
by the geometry of side channels (e.g., the morphology of the upstream alluvial plug, slope
conditions), which managers can target or modify. Such statistical empirical relationships
make it possible to quantify how engineering decisions relating to the design of channels
can influence their hydromorphological adjustment after rehabilitation. On this basis,
Marle et al. (2021) [82] combined calculation of the changes in the side channel morphology
driving changes in local hydrology (upstream overflow and backflow processes) with statis-
tical modelling of aquatic macroinvertebrate occurrences in response to these hydrological
metrics. This eco-morphological modelling framework allowed prediction of changes in
macroinvertebrate diversity along successional sequences in side channels according to
different rehabilitation scenarios. All these models represent relevant operational tools
to guide future project design, and can be used, for example, to predict the likely effects,
ecological efficiency, and sustainability of side channel rehabilitations, or to target physical
habitats that are infrequent or missing at the reach scale. Such approaches provide a good
illustration of the gradual transition from trial-and-error attempts to rehabilitation works
based on the science of design (sensu [83]).

Another illustrative example deals with particle mobility within a gravel augmentation
scenario using the RFID technologies and monitoring data introduced in Section 5.1. Two
main processes can be tracked using RFID-tagged stones: (1) the downstream migration
(advection) of particles [84], which is the distance of transport of the tracers’ cloud centroid;
and (2) the particle dispersion (diffusion), which evaluates the variance of the distance of
transport of the tracer population [85–87]. The information derived from particle tracking
experiments can thus be used to feed models linking gravel transport to different hydraulic
parameters [88], e.g., cumulative excess stream power and flow duration. These models
are usually based on surveys accomplished over a long time-span in order to record a
large enough range of flow and transport conditions for a single site, and/or use data
collected at several sites that are adequately normalized and are compared together to
provide more robust generic models. In this regard, by combining a probabilistic function
for downstream tracer dispersion with a one-dimensional sediment transport model based
on field observations using RFID-tagged stones, Vazquez-Tarrio et al. (2023) [89] were able
to estimate the time needed to export all the augmented sediment from a by-passed reach
of the Rhône (Figure 7) and to simulate different scenarios of gravel augmentation. The
model predicted that even 50 years after the injection of gravels, the sediment will remain
stocked in the by-passed channel, and almost no sediment will arrive at the downstream
non diverted-channel (Figure 7b,c). This approach is very useful for evaluating the amount
of gravel required for a potential geomorphic diversification of the channel features without
causing disruption to human uses such as downstream navigation. It can help to identify,
before any rehabilitation actions, the best locations, frequencies, grain size, and volumes of
injection, and the potential areas where we should expect significant habitat improvements
and major discontinuities in sediment transport that must be considered.

One of the main questions commonly addressed in river rehabilitation is the required
duration of post-restoration monitoring to properly evaluate operation success. The answer
to this question differs according to the biological or physical compartments targeted by
restoration, as well as the restoration measure itself. For example, in the case of dam
removal, the recovery of longitudinal fluxes (i.e., flow, sediment transport, biological organ-
isms) is almost immediate [90,91]. However, the recovery of biophysical processes derived
from the restoration may require years or even decades and may be more difficult to detect
(e.g., adjustment of physical habitats, stabilization of the new fluvial landscape, changes
in the composition of biological communities) [13]). In particular, the responsiveness of
geomorphic features to river restoration is closely linked to flood frequency and magni-
tude, upstream sediment supply, and vegetation recruitment and growth processes that
influence riverbed roughness. This means that post-restoration monitoring must be fairly
long, at least a decade (or including the occurrence of a Q10 flood) to be able to evaluate
channel adjustments, and potentially two decades to accurately assess the sustainability
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of the measures and evaluate the validity of predictive models. In the case of the Rhône
side channels rehabilitation programme, a 10-year period was found to be a minimum
to determine whether sedimentation in restored side channels was time-dependant, or
whether these could be reset by scouring during large floods [64]. Similarly, the recent
gravel augmentation operations conducted in by-passed channels of the Rhône and the
modelling strategy developed to predict the kinematics of gravel propagation [89], also
show that 10 years is the minimum temporal extent to accurately validate the effectiveness
of the restoration measure (Figure 7). In the case of the Drac River, it seems that restoration
is not sustained after 10 years and an additional monitoring period that includes a large
(e.g., Q10) flood would be required to validate the initial diagnosis (Figure 5). Finally, be-
yond the duration of the monitoring, defining the best temporal frequency of observations
is also critical. According to targeted biophysical indicators and expected responses related
to river characteristics (e.g., hydrological regime, sediment supply, basin topography), sur-
veys can be performed once a year or every two to three years. Planform-based indicators
from satellite imagery, in the case of river features greater than about 100 m2, enable almost
real-time monitoring with Sentinel-2 images (10 m in resolution) or nanosatellite images
(about 4 m in resolution for planet.com) (see next section and Figure 8).
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5.3. A New Monitoring Era Is Emerging with Remote Sensing Information

Recently, Fryirs et al. (2019) [92] wrote about the ongoing revolution in monitoring and
measurement techniques that is transforming data availability and approaches within earth
and environmental sciences. The recent increase in data availability (particularly remotely-
sensed data) offers perspectives on the generalisation of large-scale analyses of rivers and
their catchments [93,94]. Advances in acquisition techniques allow higher resolution and
higher frequency data to be quickly gained with archives allowing us to explore changes
occurring over the last four decades and, more recently, almost on a weekly basis. These
new data enable geomorphologists to obtain information that is relevant at each of the
scales of interest and to track indicators over time, including during the diagnosis phase
and the pre- and post-action assessments.

For example, Figure 8a,b shows the evolution of the annual active channel width (i.e.,
including sediment and wetted areas) along the Drac River obtained from spectral indices
(MNDWI, NDWI, and NDVI) [95] through the retrieval of 309 Landsat (30 m resolution)
and 72 Sentinel-2 (10 m resolution) images acquired during the summer season (i.e., to
include the vegetation extent). This clearly displays that the active channel (AC) width
progressively decreased since the 1980s to adjust to impacted conditions until the restoration
operations in 2013–2014, when a significant increase in AC width was observed, followed
by a further adjustment during the following years. From 2017 onwards, Sentinel-2 images
allowed assessing of the detailed sequence of adjustments until the recent increase in
2020–2021, as a consequence of additional gravel augmentation operations combined with
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the occurrence of large floods. Additionally, Figure 8c,d illustrates the annual vegetation
encroachment (in terms of vegetated area increase) within the total active channel from
the analysis of all 184 Sentinel-2 archived images in the area (c) and the 72 Sentinel-2
images over the summer season. These examples demonstrate how our capacity to directly
measure and monitor geomorphic characteristics is significantly enhanced. This allows for
better orientation of field surveys as well as calibration and validation of models, which in
turn leads to positive feedback for developing models at larger scales [96].

Today, a strong challenge lies in harmonizing and sharing more widely and effectively
datasets and methods [94,96]. This is particularly important to improve communication
with managers and decision makers [93]. There is also a growing number of regional
‘observatories’ that monitor river conditions and biodiversity, filling the gap between river
scientists and river managers [94,97].

6. Targeted Rehabilitation Using Upscaled Geomorphology

Although river rehabilitation has been developing for over 20 years, practical difficul-
ties in planning projects remain, despite the current incentive and institutional frameworks.
Many rehabilitation projects were decided upon and implemented on an opportunistic
basis; they started as experiments from which much has been learnt, both in terms of
success and failure [98]. Following this initial period within which river rehabilitation
emerged, there is a current call for river managers to move from opportunistic to strategic
projects. Upscaled geomorphology supports rehabilitation planning and prioritization
because it provides information for evaluating river conditions (e.g., levels of pressures
and alterations, available room for a river within the valleys) and potential river responses
to passive or active rehabilitation measures. This knowledge can help planners prioritize
operations and identify potential benefits where a given rehabilitation measure should
prove efficient or valuable.

Geomorphological understanding of river processes provides an organizing principle
for long-term river management and improvement. As an example, Kline and Cahoon
(2010) [99] reported how geomorphology has been incorporated within the Vermont State
(USA) conservation strategy designed to create an effective long-term river management
framework. In Europe, the Water Framework Directive adopted in 2000 set challenging
river rehabilitation goals that have required a systematic mapping of hydromorphological
conditions within European member states. Gaining a broader perspective allows for a
better understanding of the context of (and more accurate) geomorphic interpretations
of the landscape [93], because the characteristics of the watershed govern river processes.
Jain et al. (2020) [100] demonstrated that lithological and topographical variability, which
strongly influence the erosion rate, sediment supply, and channel shape at the catchment
scale, play a major role in defining stream hydrogeomorphic characteristics. A large-scale
analysis of these controls is therefore a means of predicting a river’s characteristics. Knehtl
et al. (2018) [101] found similar results in the prediction of habitat conditions between
methods using remote sensing data and field survey data. The use of a nested hierarchical
framework to improve geomorphological assessment is recommended by several authors
(e.g., [102]), particularly concerning the impact of anthropogenic pressures. Multi-scale
approaches can lead to the integrated understanding of fluvial processes that are necessary
to assess the sensitivity of rivers to anthropogenic pressures and in turn enhance the
effectiveness of rehabilitation projects. The integration of the concept of connectivity,
particularly between sedimentary sources and rivers [103], is an important way to improve
the effectiveness of these approaches. Schmitt et al. (2019) [104] used a combination of
connectivity modelling and geomorphic regionalization to determine mean sediment yield
and estimate the impact of future dam construction on sediment fluxes. This kind of
contribution provided stakeholders with a strategic vision at the basin scale and opened the
way to a more sustainable development of hydro-power in the Mekong basin. Diagnostic
tools, such as the River Style Framework [102,105], are now widely used to forecast a
part of the geomorphic response in multi-scale analyses. Using this framework, Marçal
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et al. (2017) [106] were able to produce a geomorphic understanding of several Brazilian
rivers at the catchment scale, which served as a basis for forecasting future adjustments for
different management scenarios. Such diagnostic tools can also be used as management
tools to gain an understanding of the geomorphic trajectories of streams and to forecast the
effectiveness of rehabilitation projects [94]. Bizzi et al. (2019) [107] provided an example of
an assessment of potential human-induced alterations at the network scale based on low-
resolution regional LiDAR data combined with aerial photographs and hydraulic scaling
laws from channel geometry. They were able to determine a range of conditions of channel
depth and width observed in the Po River network of the Piedmont region in Italy, and to
compare them with references. Wheaton et al. (2018) [108] upscaled site-scale ecohydraulic
models to provide information for population-level salmonid life cycle restoration within
the Columbia basin (Figure 9). They characterized each site’s geomorphic reach type,
habitat condition, geomorphic unit assemblage, primary production potential, and thermal
regime, and produced drainage network-scale models to estimate these same parameters
from coarser remotely-sensed data available across entire populations within the Columbia
River Basin. In a further example, Alber and Piégay (2017) [109] assessed potential lateral
erosion using stream power, land-use maps, and a potential sediment supply map estimated
from the local maximum active channel width. From such analysis, it is possible to identify
reaches that are still potentially responsive within alluvial valleys/contexts where lateral
shifting is not hindered or may be restored. Such combinations of data and models provide
practical information for targeting actions and selecting sites that are good candidates for
process-based conservation or other forms of intervention such as rehabilitation.
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In conclusion, the use of a multi-scale framework improves the understanding and in-
terpretation of geomorphological structures and processes, notably by integrating sediment
transfer processes, network connectivity, and existing (or future) pressures. The availability
of remote sensing data allows these analyses to be performed in a more automated manner,
at the most relevant scales, and from anywhere. The upscaling of geomorphology therefore
offers managers the possibility to better target where to act, and to prioritize actions to be
carried out according to their potential success by considering different evolution scenarios.
By using these types of tools, real integrated management/rehabilitation strategies at the
watershed scale are now at hand.

7. Conclusions

This contribution provides a series of examples illustrating how geomorphology can
be used to maximize river rehabilitation success. Knowledge can be theoretical or practical,
at both local and large scales. Geomorphology is part of the emerging environmental
engineering that is applied to river conservation, mitigation, and rehabilitation. It is
needed to promote sustainable river management and nature-based solutions founded
on process-based understanding of systems. There is a need to clearly establish robust
diagnoses based on river trajectory and river capacity to adjust to changing conditions.
Such responsiveness is important for identifying the best rehabilitation measures over a
range of solutions, from active to passive. If the potential contribution of geomorphology
to rehabilitation is now demonstrated, the practical field is evolving very quickly thanks to
technological developments (e.g., new sensors for sediment transport monitoring; drone
imaging) and improved/generalized monitoring facilities that generate new continuous
real-time data on river processes and conditions. These data offer new opportunities for
the development and validation of physical response models, and even ecological response
models. Within this favourable context, upscaled geomorphology emerges as a new critical
research and application field: the integration of new data fluxes, such as regional LiDAR
and images with increasing temporal and spatial resolution, requires new algorithms,
computer interfaces, and data platforms that support semi-automated expert-driven river
analyses and interpretations that include field insights. Tight integration between scientific
and operational concerns on data usage should be regarded as a condition required to
‘advance our understanding of river systems, translate information into knowledge, and
raise the standards of river management practices’ [92].
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