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Abstract: Lack of maintenance can lead to ‘weedy’ spontaneous vegetation on green roofs. Aspects
of green roof design, including substrate depth and roof height, have been shown to influence the
composition of spontaneous vegetation. In drier climates, Sedum species are often planted on shallow
substrate ‘extensive’ green roofs and irrigated during summer to maintain cover. However, the
response of spontaneous vegetation to Sedum cover and water availability is unclear. Understand-
ing this relationship could help minimise maintenance and maintain Sedum vegetation cover. We
hypothesised that increasing Sedum (Sedum mexicanum) cover and reduced water availability would
reduce the abundance, biomass, species and functional richness, and the community weighted mean
specific leaf area (SLA; CWM by abundance) of spontaneous plant communities. We conducted
a 10-month experiment in green roof microcosms planted with S. mexicanum (0%, 25%, 50%, 75%
and 100% total cover), subjected to a well-watered or water-deficit irrigation treatment, and sown
with a mix of 14 plant species that commonly occur as spontaneous on green roofs. We measured
spontaneous species abundance, community biomass, and functional traits (specific leaf area, leaf dry
matter content, and relative growth rate), and calculated species and functional richness. Increasing
S. mexicanum cover reduced spontaneous species abundance and species and functional richness but
did not affect community biomass. Species richness was affected by the interaction of S. mexicanum
cover and watering treatment and was greatest in well-watered microcosms with 0% S. mexicanum
cover. Increased water availability increased spontaneous plant biomass but did not affect functional
richness. The SLA of spontaneous communities was affected by the interaction of S. mexicanum cover
and watering and was significantly greater in well-watered treatments where S. mexicanum cover
was <100%. Therefore, maximising Sedum cover and limiting water availability on green roofs will
likely limit the abundance, biomass, and diversity of spontaneous vegetation. Conversely, for green
roofs where substrate is left to be naturally colonised, increasing water availability could encourage
establishment and increase functional richness of spontaneous vegetation.

Keywords: biodiversity; irrigation; maintenance; plant cover; spontaneous; weeds

1. Introduction

On extensive green roofs, good vegetation coverage can enhance green roof function-
ality and the provision of ecosystem services, such as thermal insulation [1,2], stormwater
mitigation [3,4], habitat provision [5,6] and improved mental health and wellbeing [7–9].
However, fluctuating temperatures, high evaporation, wind exposure, and shallow (<20 cm)
substrate depths on extensive green roofs can limit plant growth and survival [10,11]. Green
roof practitioners therefore often select plant species with traits thought to improve plant
survival in extreme environments (i.e., trait approach) [12,13], or that originate from nat-
ural habitats analogous to green roofs (i.e., habitat template approach) [14]. Succulent
species from the genus Sedum are commonly planted on extensive green roofs due to their
low-growing habit, shallow root system, high leaf succulence, water use efficiency and

Land 2023, 12, 1239. https://doi.org/10.3390/land12061239 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12061239
https://doi.org/10.3390/land12061239
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0003-4153-831X
https://orcid.org/0000-0001-6291-9483
https://orcid.org/0000-0002-5822-7529
https://doi.org/10.3390/land12061239
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12061239?type=check_update&version=1


Land 2023, 12, 1239 2 of 16

drought tolerance [15–17]. In semi-arid Mediterranean climates, research demonstrates that
Sedum species, including Sedum album, S. sediforme, and S. sexangulare, can be successful on
green roofs when planted as seedlings [18], whereas their growth capacity is diminished
when they are seeded [19]. Yet, without routine maintenance, green roof plantings are
often replaced by spontaneous vegetation [6,20], a process encouraged on biodiverse green
roofs [21,22]. Spontaneous plants exist on green roofs without human intervention, suggest-
ing a level of short-term adaptation to the green roof environment. However, the longevity
of such adaptations under more extreme conditions remains an open question. Nonetheless,
understanding how green roof conditions affect their growth and establishment could help
inform green roof design, plant selection, and maintenance.

Existing green roof vegetation influences the success of spontaneously colonising
species. Increasing vegetation cover and planting density limits the availability of bare
substrate gaps that may otherwise provide microsites suitable for germination and estab-
lishment of spontaneous species (i.e., ‘safe sites’ [23]). However, the influence of estab-
lished green roof vegetation on the coverage, species richness, and functional diversity of
spontaneously colonising species, is inconsistent. For example, [24] showed greater func-
tional diversity of existing green roof vegetation decreased spontaneous vegetation cover,
whereas [25] showed a positive relationship between existing plant species richness and
spontaneous species richness. Notably, [26] demonstrated that varying densities of existing
plant species had a consistent negative effect on the abundance of spontaneous species.
These results suggest that existing plant coverage and density may be more important than
species richness in limiting spontaneous plants on green roofs.

Water availability can shift the nature of competitive/facilitative interactions between
existing vegetation and spontaneous species [27,28]. Extensive green roofs can quickly
become water limited, owing to freely draining substrates with low water retention [29,30]
and high evaporative demand on rooftops [31]. Supplementary irrigation is often essential
to establish vegetation on extensive green roofs, particularly in hot and dry climates [32,33].
Although irrigation promotes the health and survival of existing green roof vegetation, stud-
ies have also shown that irrigation during establishment increases spontaneous plant cover
and richness on green roofs [34]. Greater water availability on green roofs located in higher
rainfall areas in Scandinavia also increases spontaneous plant cover [35]. While lower water
availability may limit spontaneous plant biomass and richness, the ‘stress-gradient’ hypoth-
esis [36,37] suggests existing plant cover may facilitate spontaneous plant coverage under
these conditions. On green roofs this was shown where Sedum album impeded the growth
of neighbouring herbaceous perennials (Agastache rupestris and Asclepias verticillate) when
water availability was high but facilitated their growth in hotter and drier conditions [38].

Competitive and facilitative effects of Sedum cover on green roofs are also likely to
differ according to growth and resource use strategies of spontaneous plant species. Due to
niche trade-offs, colonising spontaneous species that have different growth and resource
use strategies to existing Sedum cover are likely to be more successful than those with
functionally analogous traits [39]. Sedum species are typically stress tolerant, having high
leaf succulence and CAM (Crassulacean Acid Metabolism) or facultative CAM/C3 photo-
synthesis [40] and static, conservative water use strategies [12,41]. Therefore, spontaneous
species with resource acquisitive traits such as fast growth, high specific leaf area and
high water use strategies [42] should be more successful on green roofs with high Sedum
cover. This is consistent with [43] who showed most species colonising green roof plots
planted with Sedum mats in Malmö, Sweden, were fast-growing ‘ruderal’ [44] species such
as Erophila verna, Poa alpina and Cerastium pumilum. However, the effects of Sedum cover on
the traits of spontaneous green roof plant assemblages have not been investigated.

Functional traits, or features that indirectly impact growth, reproduction, and sur-
vival [45] of spontaneous green roof vegetation should reflect the green roof environment
where they establish. Specific leaf area (SLA) is a key functional trait in plant ecology as it
relates with plant fitness, growth, and photosynthesis [46]. Studies have shown that SLA
iVs lower in less productive habitats [47] and typically increases with greater precipitation
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and soil moisture [48]. Lower SLA indicates an increased investment in leaf structural
tissue that helps maintain leaf turgor under drought stress [49] and has been related to
greater water-use efficiency in Mediterranean vegetation [50]. For this reason, low values
of SLA have been used to select non-succulent plants for Mediterranean green roofs [13].
Studies have shown positive relationships between water use and SLA [12,51–53] and
higher SLA has been related to increased aboveground biomass and canopy density in
experimental green roof mixtures [54].

Extensive green roofs are commonly planted with Sedum spp. and provided sup-
plemental irrigation during establishment or during summer months in hot and dry cli-
mates3233. However, the influence of these factors on spontaneous plant species growth,
abundance, traits and both species and functional richness is unclear. Understanding these
factors could help predict and manage spontaneous community composition and inform
green roof design, plant selection and maintenance to either minimise or enhance spon-
taneous vegetation cover and diversity. Therefore, we conducted a green roof microcosm
experiment to determine how Sedum (Sedum mexicanum) cover and water availability influ-
ence the growth, abundance, traits and species and functional richness of fourteen common
spontaneous green roof plant species. We hypothesised that greater S. mexicanum cover and
lower water availability would reduce spontaneous green roof plant community biomass,
abundance and species and functional richness and reduce the community weighted mean
(CWM; by abundance) SLA.

2. Materials and Methods
2.1. Species Selection and Seed Collection

We selected 14 globally cosmopolitan plant species that spontaneously occur on green
roofs in Australia and across Europe (Table 1; Schrieke et al., unpublished) to maximise
the geographical relevance of our study. Seeds of the fourteen species were collected
from green roofs and green roof habitat analogues, to ensure species were suitably well
adapted to the green roof environment, located across metropolitan Melbourne, Australia
in August–September (winter–spring) 2019. Melbourne has a temperature oceanic climate
(Köppen climate classification Cfb) characterised by warm summers, cool winters, and
precipitation evenly distributed throughout the year. Fully mature seeds, indicated by
dehiscence, brown colouration or hardness, were harvested, and stored in brown paper
bags. Subsequent processing in the lab involved the removal of excess plant material,
chaff, and debris to minimise the risk of disease and pests. The seeds were then stored
at a consistent room temperature approximately 20–22 ◦C within the same brown paper
bags for a period of roughly six months. This period of storage ensured that the start of our
experiment matched with their typical germination season.

2.2. Seed Germination

To determine germination capacity (see Appendix A), five replicates per species, each
with 25 sterilised seed (submerged in 3% active chlorine solution for 90 to 120 s then rinsed
with distilled water) were placed evenly on 3 mm thick 1% agar solution (non-nutrient
enriched) in sterilised Petri dishes and sealed with parafilm in June 2020. Petri dishes were
placed in a growth cabinet (PGX −250, Ningbo Saifu Experimental Instrument Co., Ltd.,
Ningbo, China) with an alternating temperature regime of 20/10 ◦C (12/12 h light/dark
photoperiod) and checked for germination every day for the first two weeks and then
every other day for an additional three weeks. Germination was defined by emergence
of the radicle through the seed coat. At the end of the germination trial, ungerminated
seed was cut lengthways with a scalpel and examined under a dissecting microscope to
determine viability. Seed was considered potentially viable if the embryo was intact and
endosperm appeared white, turgid, and solid, and non-viable if the embryo appeared
damaged, detached, discoloured and/or shrinkage was visible. No ungerminated viable
seed were detected. Percentage germination was calculated as = (number of germinated
seed/total number of seed sown) × 100.
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Table 1. Information on the fourteen spontaneous species utilised in the green roof microcosm experi-
ment and the country where species presence on a green roof was recorded (Schrieke et al., unpublished).

Species Family Common Name Country

Epilobium parviflorum Onagraceae Hoary willowherb Australia, United Kingdom, France, Switzerland, Belgium
Euphorbia maculata Euphorbiaceae Spotted spurge Australia, France, Belgium
Euphorbia peplus Euphorbiaceae Petty spurge Australia, France, Belgium, New Zealand
Helichrysum luteoalbum Asteraceae Jersey cudweed Australia, United Kingdom, Germany
Malva neglecta Malvaceae Common mallow Australia, Germany
Nepeta cataria Lamiaceae Catnip Australia, Germany
Polycarpon tetraphyllum Caryophyllaceae Four-leaf allseed Australia, France, Sweden, United Kingdom
Portulaca oleracea Portulacaceae Common purslane Australia, France
Rumex crispus Polygonaceae Curly dock Australia, France
Solanum nigrum Solanaceae Black nightshade Australia, France

Sonchus oleraceus Asteraceae Common sowthistle Australia, France, Sweden, Switzerland, New Zealand,
United Kingdom

Stellaria media Caryophyllaceae Chickweed Australia, France, United Kingdom

Taraxacum officinale Asteraceae Dandelion Australia, Belgium, Germany, New Zealand, Switzerland,
United Kingdom

Trifolium repens Fabaceae White clover Australia, Belgium, France, Switzerland, United Kingdom

2.3. Relative Growth Rate

The relative growth rate (RGR) of the 14 species used in the microcosm experiment
was quantified as a metric in our assessment of functional diversity within the vegetation
communities. Relative growth rate (see Appendix A) was determined on individual plants
sown into pots and grown in a glasshouse at the Burnley Nursery, The University of
Melbourne (37◦49′42.9′′ S 145◦01′13.8′′ E), from October (spring) to December (summer)
2019. Ten seeds of each species were sown into 1.9 L (155 × 150 mm) pots (25 pots
per species) filled with seed raising mix (10% washed coarse sand, 10% sieved coir peat, 80%
medium pine bark) and thinned to the most central germinant. Once four ‘true leaves’ fully
emerged, seedlings were blocked into numbered pairs by biomass (i.e., plants of similar
size). One seedling per pair was randomly selected and harvested to determine initial
shoot dry weight after oven drying whole plant mass at 70 ◦C for two days. Remaining
seedlings were grown on until flowering (approximately three to four weeks), at which
point plants were harvested to determine whole plant dry weight after oven drying at
70 ◦C for two days. Relative growth rate was calculated from these measurements per [55]
as = (ln W2 − ln W1)/(t2 − t1), where ln W1 is the natural logarithm-transformed mean of
the initial harvest whole plant dry mass (g) and ln W2 is the natural logarithm-transformed
mean of the final harvest whole plant dry mass (g).

2.4. Experimental Design

The 10-month green roof microcosm experiment ran from 24 November 2020 (spring)
to 20 September (spring) 2021. Sixty green roof microcosms (HDPE boxes, 55 × 35 × 20 cm)
were filled with 15 cm green roof substrate (60% scoria < 8 mm, 20% 7 mm scoria, and
20% coir; [12]). This substrate has a water retention capacity of 46% and a bulk density
measuring 1.26 g/cm3 [12]. Microcosms were arranged in a complete randomised block
design in a fully enclosed poly-tunnel at the Burnley Nursery, the University of Melbourne
(Figure 1). Other than rainfall and wind, modules were exposed to ambient conditions (see
Appendix B). Controlled slow-release fertiliser (Osmocote® Pro, Everris Australia Pty Ltd.,
Sydney, Australia: 15 N:1.3 P:10 K) was added to the substrate surface of each microcosm
(30 g m−2) after filling with substrate to replicate a newly established green roof. Cuttings
of Sedum mexicanum were then placed evenly across the soil surface and left to establish
for two months until 100% coverage was achieved. Irrigation was applied for one minute
twice daily (3.30 L d−1 microcosm−1) with an automatic irrigation system consisting of six
shrubblers® 360◦ adjustable flow spikes (Antelco Pty Ltd., Adelaide, Australia, 33 L h−1
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flow rate) evenly spaced within each microcosm to ensure even watering. This watering
regime is designed to mirror a summer ‘establishment’ watering pattern for Sedum on green
roofs and promote rapid growth of S mexicanum.
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Figure 1. Clockwise from top left, images showing green roof microcosms shortly after sowing of
spontaneous species community and just before harvest.

Upon reaching a full (100%) surface coverage of S. mexicanum, each microcosm was
assigned to one of five coverage treatment categories: 0, 25, 50, 75, or 100% (10 microcosms
per cover treatment). These treatments represent different proportions of the module
covered by S. mexicanum. In the 0% coverage treatment, all S. mexicanum biomass, both
above and below ground, was completely removed from the microcosm. For the 25,
50 and 75% coverage treatments, a rectangular area of S. mexicanum was removed from
the centre of each microcosm while the outer edge was left with 100% S. mexicanum
coverage. The 10 microcosms in each coverage treatment were then assigned one of
two watering treatments: well-watered (WW) or water deficit (WD), with five replicates of
each cover x watering treatment. Well-watered microcosms were irrigated twice daily for
one minute (3.30 L d−1 microcosm−1) which was sufficient achieve field capacity (i.e., water
holding capacity of 46% [12]). Whereas WD microcosms received 50% of the irrigation of
WW microcosms, applied once daily (i.e., 1.65 L d−1 microcosm−1) which resulted in an
average daily soil water content of 16% (determined gravimetrically on unplanted modules).
Temperature (◦C) and relative humidity (RH) within the poly-tunnel were recorded at
30 min intervals using an iButton® Hygrochron Temperature/Humidity Logger (DS1923,
Maxim Integrated Products™) and daily averaged (18 ◦C, 68% RH; see Appendix B).
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2.5. Seed Sowing in Microcosms

Sixty seed mixes (one per microcosm) of the 14 spontaneous green roof plant species
were made based on each species seed mass and percent germination, so that each species
had the same potential germination (i.e., species with low germination rate had a higher
ratio by weight of seed in mixtures), with a final sowing rate equivalent to one germinant
per 5 cm2. Seed mass (see Appendix A) was measured as the weight of seed after removing
all accessories and drying in an oven at 80 ◦C for three days [56]. Seed mixes were
individually blended into 100 mL fine sand to assist spreading and sown evenly across
each microcosm surface (24 November 2020; spring) leaving a 5 cm buffer unsown around
the perimeter of the microcosm to limit edge effects.

2.6. Spontaneous Species Abundance, Biomass, and Trait Measures

Vegetation surveys were conducted to count and identify spontaneous species at
roughly month intervals from 3 March 2021 (summer) until the end of the experiment
(20 September 2021; spring). Following the final species survey, each spontaneous plant
species found in microcosms was harvested and divided into leaves and stems. Leaf
area was measured per [57] by randomly selecting, stripping, and weighing two fully
expanded leaves from each individual plant within each microcosm, then photographed
from a height of 20 cm (2nd generation Apple iPhone SE, Apple Inc., Cupertino, CA,
United States of America) and imported into Image J to measure leaf area [58]. All samples
were then oven dried at 70 ◦C until weight was constant to determine aboveground species
and community biomass, and leaf mass fraction. Leaf dry matter content was calculated as
leaf dry mass (g) divided by leaf fresh weight (g). Specific leaf area (SLA, m2 kg−1 leaf) was
calculated as the one-sided leaf area, divided by oven dry mass.

2.7. Data Analyses

Data were checked prior to analysis to ensure univariate normality; no transformations
were necessary. Species richness, functional richness, and community-level weighted means
of specific leaf area (by abundance; CWM) were calculated using the FD package [59] in
R 4.1.1 [60]. Functional richness, defined as the amount of functional space filled by the
community, was determined by coordinating and linking trait values (specific leaf area, leaf
dry matter content, and relative growth rate). We included ‘block’ as a random factor in our
analyses to account for any potential variation between blocks. One-way ANOVA was used
to identify significant differences in species abundance between watering treatments within
each S. mexicanum cover treatment, accounting for the block effect. Two-way ANOVA
was used to identify interactions between S. mexicanum cover and watering treatments
for spontaneous species community biomass (total microcosm biomass), species richness
and CWM SLA, with ‘block’ as a random factor. Tukey’s HSD was used for post hoc tests.
We examined the residuals from our final models to ensure they meet the assumption of
normality and homoscedasticity All statistical analyses were performed in R 4.1.1 [58].

3. Results
3.1. Species Abundance

Total abundance of spontaneous vegetation was significantly affected by Sedum mexi-
canum cover (p < 0.001) but there was no effect of watering (p = 0.22) and no interaction
between treatments (p = 0.69; Figure 2). Microcosms with 0% S. mexicanum cover had the
greatest mean total abundance (32 ± 10), followed by those with 25% (18.6 ± 7.5) and
50% S. mexicanum cover (16 ± 4.2). Microcosms with 75% (7 ± 3.6) and 100% (4.2 ± 1.8)
S. mexicanum cover had significantly lower mean total abundance than microcosms with
0% cover.
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Figure 2. Mean abundance of spontaneous species present in green roof microcosms at the end of
the experiment. Asterisks indicate significant (p ≤ 0.05) differences in species abundance between
watering treatment within Sedum cover class (two-way ANOVA). Dissimilar letters indicate significant
differences between species abundance within Sedum cover class (Tukey’s post hoc test; p ≤ 0.05).

In the 0% S. mexicanum cover treatment with the greatest abundance of spontaneous
species, Euphorbia peplus was the most abundant species (well-watered; WW 2.6± 0.6; wa-
ter deficit; WD 4.2 ± 1.6). However, this species was absent in microcosms with 50, 75 and
100% S. mexicanum cover, regardless of watering treatment. Similarly, Euphorbia maculata
was highly abundant in WW microcosms with 0% S. mexicanum cover (3.6 ± 0.6) but was
absent in microcosms with 50, 75 and 100% S. mexicanum cover, regardless of watering treatment.

When present, the abundance of P. tetraphyllum, R. crispus, and S. oleraceus was not
significantly different in any of the S. mexicanum cover or watering treatments. Total
abundance of Trifolium repens did not change significantly with S. mexicanum cover but in
75% S. mexicanum cover (p < 0.05) the abundance of T. repens was greater in WW microcosms.
Despite having the same theoretical germination capacity, Portulaca oleracea, Stellaria media
and Taraxacum officinale were absent from all microcosms. Several species, including Nepeta
cataria, Malva neglecta and Epilobium parviflorum were only present at 0% S. mexicanum cover.

3.2. Biomass and Species Richness of Spontaneous Plant Communities

Overall, total biomass of the spontaneous plant community was not significantly
affected by S. mexicanum cover (p = 0.11) but was affected by watering treatment, with
increased total biomass in WW microcosms (p < 0.001; Figure 3). Mean total biomass of
the spontaneous plant community in WW microcosms (121.41 g) was 160% greater than in
WD microcosms (46.61 g). In all treatments, Trifolium repens accounted for >90% of the total
biomass (see Appendix C).



Land 2023, 12, 1239 8 of 16Land 2023, 12, x FOR PEER REVIEW 9 of 17 
 

 
Figure 3. (a) Aboveground biomass (g) of the spontaneous species community and (b) spontaneous 
community species richness in green roof microcosms at the end of the experiment. Dissimilar let-
ters indicate significant differences between watering treatment and Sedum cover class (Tukey’s post 
hoc test; p ≤ 0.05). 

Species richness of spontaneous plant communities was significantly affected by S. 
mexicanum cover (p < 0.001), watering treatment (p = 0.003) and the interaction between S. 
mexicanum cover and watering treatment (p = 0.03; Figure 3). Species richness was greatest 
in microcosms with 0% S. mexicanum cover and within this cover class WW microcosms 
had 52% greater species richness (7.6 ± 0.6) than WD microcosms (5.0 ± 0.5). Species rich-
ness in WD microcosms with 0% S. mexicanum cover was greater than in microcosms with 
75 and 100% S. mexicanum cover, regardless of watering treatment. At greater levels of S. 
mexicanum cover (25, 50, 75 or 100%), species richness was not significantly different be-
tween WW and WD microcosms.  

3.3. Spontaneous Plant Community Leaf Traits and Functional Richness 
Community weighted mean (by abundance; CWM) specific leaf area (SLA) of the 

spontaneous species community was significantly affected by S. mexicanum cover (p < 
0.001), watering treatment (p < 0.003) and the interaction between S. mexicanum cover and 
watering treatment (p = 0.001; Figure 4). Community weighted mean SLA was greater in 
WW than WD microcosms in all S. mexicanum cover treatments with less than 100% cover. 

Figure 3. (a) Aboveground biomass (g) of the spontaneous species community and (b) spontaneous
community species richness in green roof microcosms at the end of the experiment. Dissimilar letters
indicate significant differences between watering treatment and Sedum cover class (Tukey’s post hoc
test; p ≤ 0.05).

Species richness of spontaneous plant communities was significantly affected by
S. mexicanum cover (p < 0.001), watering treatment (p = 0.003) and the interaction between
S. mexicanum cover and watering treatment (p = 0.03; Figure 3). Species richness was greatest
in microcosms with 0% S. mexicanum cover and within this cover class WW microcosms
had 52% greater species richness (7.6 ± 0.6) than WD microcosms (5.0 ± 0.5). Species
richness in WD microcosms with 0% S. mexicanum cover was greater than in microcosms
with 75 and 100% S. mexicanum cover, regardless of watering treatment. At greater levels
of S. mexicanum cover (25, 50, 75 or 100%), species richness was not significantly different
between WW and WD microcosms.

3.3. Spontaneous Plant Community Leaf Traits and Functional Richness

Community weighted mean (by abundance; CWM) specific leaf area (SLA) of the spon-
taneous species community was significantly affected by S. mexicanum cover (p < 0.001),
watering treatment (p < 0.003) and the interaction between S. mexicanum cover and watering
treatment (p = 0.001; Figure 4). Community weighted mean SLA was greater in WW than
WD microcosms in all S. mexicanum cover treatments with less than 100% cover.
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Figure 4. (a) Abundance weighted community mean (CWM) specific leaf area (m2 kg−1) and (b) func-
tional richness of spontaneous vegetation in green roof microcosms at the end of the experiment.
Dissimilar lowercase letters indicate significant differences between watering treatment and Sedum
cover class (Tukey’s post hoc test; p ≤ 0.05). Dissimilar capital letters indicate significant (p < 0.001)
differences between Sedum cover class (two-way ANOVA).

Functional richness was significantly affected by S. mexicanum cover (p < 0.001) but
there was no significant effect of watering treatment (p = 0.31) and no interaction between
treatments (p = 0.23). Functional richness was greatest at 0% S. mexicanum cover, followed
by 25% cover. There were no significant differences in Functional richness among 50, 75
and 100% S. mexicanum cover.

4. Discussion

We hypothesised that increasing Sedum (S. mexicanum) cover and lower water avail-
ability would reduce the abundance, biomass and species and functional richness of spon-
taneous green roof plant communities. We also hypothesised that increasing S. mexicanum
cover and lower water availability would decrease the specific area (SLA; CWM by abun-
dance) of spontaneous green roof plant communities. Increasing S. mexicanum cover
reduced abundance and functional richness, whereas decreased water availability de-
creased biomass of spontaneous communities. However, species richness and SLA of
spontaneous communities was influenced by an interaction between S. mexicanum cover
and watering treatment.

4.1. Spontaneous Community Abundance and Biomass

Consistent with our hypothesis, spontaneous species abundance declined with increas-
ing S. mexicanum cover. We suggested that S. mexicanum cover would reduce the availability
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of microsites suitable for germination and establishment of spontaneous species (i.e., ‘safe
sites’ [23]) and it is likely that the S. mexicanum used in our experiment physically prevented
seed from reaching the substrate surface and limited light for germination. However, con-
trary to our hypothesis, abundance of spontaneous species was not influenced by water
availability. We expected lower water availability would reduce the abundance of sponta-
neous species, as establishment irrigation increases spontaneous plant cover and richness
on green roofs in Berlin [34] and greater water availability on Scandinavian green roofs due
to higher rainfall increases spontaneous plant cover [35]. However, S. mexicanum cover may
have improved water availability in the water deficit treatment by ‘mulching’ substrate and
reducing evaporation. This is consistent with other pot-based green roof experiments. For
example [61], showed pots planted with Sedum acre and S. reflexum held more moisture than
those with more upright species including S. kamtschaticum ‘Ellacombianum’, S. scoparium,
Coreopsis lanceolata or unvegetated control pots under identical watering regimes, due
to greater shading at the substrate surface reducing evaporation. [62] also showed that
pots planted with S. acre lost significantly less water than 13 other plant species under an
‘intermediate’ (watered to field capacity every 11 days) watering regime, due to S. acre’s con-
servative water use strategy and shading of the substrate surface. In addition to mulching
reducing the loss of water from water-deficit microcosms, the lack of an effect of watering
on species abundance may also have been due to increased competition in well-watered
microcosms [63], reducing the benefit of greater water availability for some species [36,37].

Contrary to our hypothesis, biomass of the spontaneous plant communities was not
significantly affected by increasing S. mexicanum cover, but was affected by water availabil-
ity, with greater biomass in well-watered microcosms. In all treatments, Trifolium repens
accounted for >90% of spontaneous plant biomass and likely masked differences in biomass
amongst cover treatments due to its ability to grow well, regardless of S. mexicanum cover.
The dominance of T. repens may have exerted competitive pressures on other spontaneous
species, reducing their germination and growth. The low organic matter content of the
green roof substrate used in our study [64] likely gave the nitrogen fixing T. repens [65] a
competitive advantage over other species. Additionally, the leaves of T. repens have long
petioles, reducing the competitive effect of S. mexicanum cover on light availability for
photosynthesis. Competition between S. mexicanum and T. repens was also likely reduced by
the ability of T. repens to root at nodes across the microcosm surface and its greater rooting
depth (up to 20 cm) [66] than S. mexicanum (<5 cm) [67]. While T. repens growth has been
shown to be limited by water availability in pot experiments with green roof substrates [42],
this was not the case in our water deficit microcosms with S. mexicanum cover. Potentially,
the deeper roots of T. repens were able to access water that infiltrated deeper into the
substrate profile of microcosms, beyond the shallow substrate depth typically utilised by
Sedum species [67] such as S. mexicanum.

4.2. Spontaneous Community Species and Functional Richness

Species richness of spontaneous communities in microcosms was influenced by the
interaction between S. mexicanum cover and watering, with greater species richness in
well-watered microcosms with no (0%) S. mexicanum cover. It is likely that increased water
availability and the lack of S. mexicanum cover maximised the availability of ‘safe sites’ in
our experiment [23]. However, species richness was not significantly different between
well-watered and water deficit microcosms with 25, 50, 75 and 100% S. mexicanum cover.
This may reflect differences in competition and facilitation, with greater S. mexicanum cover
increasing competition and limiting species richness in well-watered microcosms, whereas
in water deficit microcosms greater S. mexicanum cover facilitated species richness. This
is consistent with other green roof studies looking at the effects of S. mexicanum cover on
other plants. For example, when water availability was high on a 13 cm deep green roof
in Medford, Massachusetts, Sedum album reduced the growth of neighbouring herbaceous
perennials (Agastache rupestris and Asclepias verticillate), whereas it facilitated their growth
in hotter and drier conditions [40]. Species richness was also influenced by differences
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in longevity and germination of the spontaneous plant species sown into microcosms.
Taraxacum officinale did not germinate in any of the microcosms and both Nepeta cataria
and Malva neglecta did not grow beyond the seedling stage in the 10-month experiment;
whereas Portulaca oleracea and Stellaria media completed their life cycle and set seed prior to
the end of the experiment (see Supplementary Materials).

Functional richness of the spontaneous plant community was significantly affected
by S. mexicanum cover but not water availability in our experiment and microcosms with
0% S. mexicanum cover had the greatest functional richness. This may be due to ‘limit-
ing similarity’ [68], whereby the spontaneous species which are most functionally like
the S. mexicanum are less likely to establish and grow due to niche overlap [69,70]. For
example, two species that failed to germinate and grow when S. mexicanum coverage was
greater than 25% were Euphorbia maculata and Euphorbia peplus, both species are relatively
slow growing species that exhibit conservative water use [42] and facultative CAM/C3
photosynthesis [71]. The presence of S. mexicanum, which has similar conservative water
use and a facultative CAM/C3 photosynthetic pathway as E. maculata and E. peplus, may
have impacted the germination and growth of E. maculata and E. peplus through resource
limitation, increased competition, and alterations in the microenvironment [72,73]. This
is likely the reason for the absence of E. maculata and E. peplus in microcosms with >25%
S. mexicanum cover.

4.3. Spontaneous Community Specific Leaf Area

We also hypothesised that increasing S. mexicanum cover and lower water availability
would decrease the specific area (SLA; CWM by abundance) of spontaneous green roof
plant communities, as low SLA is associated with less productive habitats [74]. Spontaneous
plant community SLA was lower in water deficit than well-watered microcosms with less
than 100% S. mexicanum cover. The lower SLA for spontaneous communities in water
deficit microcosms reflects greater investment in leaf structural tissue which is likely to
improve leaf turgor under drought stress [50] and is consistent with research showing
lower SLA in drier habitats [48,51]. Greater SLA in well-watered microcosms with 25,
50 and 75% S. mexicanum cover may also suggest that S. mexicanum cover increased soil
moisture content and facilitated the spontaneous plant community [62,75,76]. At 100%
S. mexicanum cover there was no difference in CWM SLA between well-watered and water
deficit microcosms, but this likely reflects the dominance of T. repens, which has a relatively
high SLA, in both watering treatments. Vegetation surveys of established green roofs
show that fast growing species with traits such as high SLA are generally found on newly
installed green roofs [25,34,77,78]; whereas slower growing, stress tolerant species, such
as E. peplus, become increasingly abundant as green roofs age [20]. This indicates that
the traits of spontaneous green roof communities are likely to change over time, which is
something we could not determine in our 10-month experiment.

5. Conclusions

This research contributes valuable insights into how management of spontaneous
plants and water availability on green roofs can impact their biodiversity and functionality.
This study shows that active management through manipulation of Sedum mexicanum
cover, and water availability can significantly influence spontaneous plant community
characteristics. For example, spontaneous species biomass, abundance, and richness can be
limited by maintaining at least 25% S. mexicanum cover and minimising water availability.
However, our findings also indicate that some spontaneous species (e.g., T. repens) can
become dominant on green roofs regardless of existing plant coverage (i.e., S. mexicanum
cover) or water availability. Therefore, periodic maintenance including hand-weeding may
still be necessary to avoid loss of original planted vegetation through competition. In addi-
tion to maintenance considerations, our research has implications for urban biodiversity.
For example, where green roof substrates are left to be colonised by spontaneous species,
such as on green roofs designed for biodiversity conservation in London [21], our results
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show that spontaneous plant species abundance, richness and functional diversity will
be improved with irrigation on bare substrates. However, the longer-term outcomes on
green roofs require further research as our experiment was a 10-month study in controlled
experimental conditions.
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Appendix A

Table A1. Mean seed weight (mg), germination (%), viability (%) and relative growth rate (RGR mg g−1 day−1)
of spontaneous species used in this experiment.

Species Seed Weight
(mg)

Seed
Germ (%)

Seed
Viability (%)

Relative Growth
Rate (mg g−1 day−1)

Epilobium parviflorum 0.4 92 96 121
Euphorbia maculata 1.3 0 95 106

Euphorbia peplus 4.8 80 92 90
Helichrysum luteoalbum 0.4 45 90 153

Malva neglecta 10 36 65 124
Nepeta cataria 5.4 52 85 200

Polycarpon tetraphyllum 0.3 83 95 118
Portulaca oleracea 4.4 90 100 217

Rumex crispus 10.5 96 100 180
Solanum nigrum 8.5 57 88 194
Sonchus oleraceus 1.6 100 100 218

Stellaria media 2.9 21 95 190
Taraxacum officinale 3.8 87 95 164

Trifolium repens 5.4 94 100 198

http://dx.doi.org/10.6084/m9.figshare.20472123
http://dx.doi.org/10.6084/m9.figshare.20472123
http://dx.doi.org/10.6084/m9.figshare.20472123
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