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Abstract: High-speed rail (HSR) has been proven to drive the development of regional tourism.
However, few studies paid attention to the impact of HSR on future tourism land use. In this study,
points of interest (POI) were used to obtain the locations and types of tourism facilities, and high-
resolution remote sensing images helped us determine the spatial extents of the tourism facilities,
so that tourism land could be identified. A system dynamics (SD) model was coupled with the
patch-generating land use simulation (PLUS) model to simulate future tourism land by considering
two scenarios, including HSR-led development (HRD) and the historical development pattern (HD)
scenario. The SD model was employed to project the amount of tourism land and determine the
HSR effects via empirical analysis. The PLUS model was applied to simulate the spatial distribution
of tourism land and model the HSR effect by adopting a planned tourism area as the development
area. The study area is Xinxing County in Guangdong Province, China, a county dominated by rural
tourism, with the HSR expected to open in 2025. The results revealed that the SD-PLUS model has
great advantages in simulating tourism land use change, and the HRD scenario leads to major changes
in the sources of tourism land growth. This research provides new insights for policymakers on
making countermeasures for the sustainability of tourism and rural revitalization at the county level.

Keywords: high-speed rail; system dynamics; patch generating land use model; tourism land use;
rural tourism

1. Introduction

Over the past few years, the tourism sector has emerged as a significant driving force of
socioeconomic development [1]. Rural tourism can increase employment opportunities and
create business vitality, which offers an opportunity to achieve urban-rural integration and
revitalize rural areas [2–4]. To address the decline of rural areas, the Chinese government
has recently proposed a series of rural revitalization policies [5–7]. The Chinese urbaniza-
tion rate exceeded 60% in 2019, which means that rural-urban relations have entered a
new stage. The integrated urban-rural development strategy with the county as the basic
unit has also been proposed by the Chinese government [8]. Therefore, studies of tourism
development at the county level become academic, which can give guidance for boosting
the long-term growth of rural tourism and the integration of urban and rural China.

The rapid growth of tourism has resulted in significant changes in land use, which
further leads to profound effects on ecosystems [9–11]. The advancements in Remote
Sensing (RS) and Geographic Information Systems (GIS) have provided powerful tools to
reveal the spatio-temporal characteristics of land use changes in tourism regions. Some
indicators related to land use changes have been used to evaluate the spatio-temporal
impacts of tourism development on land development [12,13]. Additionally, some studies
focused on the driving mechanisms of tourism-induced land use changes to provide
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countermeasures [2,7,14]. However, these studies were based on historical changes to
explore the impact mechanisms of tourism development on land use change, which makes
it difficult to provide countermeasures for future policies [15–17].

Land use simulation is not only an effective approach to understanding how tourism
will affect future land use changes but also to providing implications for sustainable tourism
development [18]. The Cellular Automata (CA) model is a popular method for simulating
land use changes [19–21]. Some studies have analyzed the impact of tourism development
on land use change and simulated land use changes caused by tourism development using
the CA model [22,23]. Although these studies have improved our views of land use changes
driven by tourism activities, they cannot differentiate tourism land from other land use due
to a coarse land use classification method. This renders it impossible for them to simulate
the spatial variations of tourism land as a separate land type.

Previous studies have proven that the opening of the HSR could indeed expand
coverage to tourism destinations and stimulate the growth of local tourism in China [24–27].
Several studies have been carried out to investigate the influence of HSR on land use
patterns, urbanization, and rising land prices [28–30]. However, few studies have examined
the impact of HSR on tourism land use changes, limiting the ability to propose targeted
planning for future tourism growth.

This study proposes a framework to incorporate the opening of HSR in tourism land
development simulation. In this framework, the top-down system dynamics (SD) model
was coupled with the patch-generating land use simulation (PLUS) model to simulate the
spatial changes of future tourism land. The SD model has been widely used to project
land use demand in multiple scenarios since it is advantageous in predicting the non-
linear interactions between various elements in a complex system [31]. In this study, the
SD model incorporating the economy, population, agricultural production, and tourism
industry sectors was established to project the amount of tourism land and determine the
HSR effects via empirical analysis. The PLUS model, which has been demonstrated to
have advantages in modeling land use changes by considering planning rules at the patch
level [32], was applied to model HSR-led tourism land use expansion.

The proposed framework was implemented in Xinxing County, a typical tourist
county in Guangdong Province, China, where rural tourism is dominant. The tourism land
was identified using high-resolution remote sensing images and POI data. POI related
to the tourism industry were used to determine the location of tourism facilities, and
then high-resolution remote sensing images were applied to map the spatial extent of
the tourism facilities. We designed two scenarios to clarify the effect of HSR on tourism
land: the HSR-led development scenario (HRD) as an experimental target and a historical
development scenario (HD) as the control for comparative analysis. The integrated models
were employed to model tourism land use changes in two phases: from 2015 to 2020
for validating the model and from 2020 to 2035 for simulating tourism land use changes
influenced by HSR opening.

The remainder of the article is divided into the following sections: Section 2 summa-
rizes the existing related literature, and Section 3 presents the framework and introduces
the SD model and PLUS model. The study area and the datasets are described in Section 4.
The findings and discussion are shown in Section 5. Section 6 provides the conclusions.

2. Literature Review
2.1. Land Use Change with Tourism Industry

The exploration of the interactions between land use patterns and the tourism industry
can have policy implications for sustainable tourism development [33,34]. Previous studies
can be summarized as efforts in two main aspects. The first aspect primarily aims to
comprehend the spatio-temporal changes in land use in the context of tourism develop-
ment and the driving mechanisms triggered by tourism. For example, Wang and Liu (2013)
investigated land use changes driven by tourism on Hainan Island from 1991 to 2007, which
revealed that cropland is most significantly affected by tourism activities [35]. Marzuki et al.
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(2016) employed landscape indexes to measure the influence of coastal tourism activities on
land use changes [36]. Ma et al. (2020) studied the pattern of spatially complex morphologi-
cal changes in tourism resorts using two tourist locations that represent the mountain resort
type, and the seaside resort type respectively [37]. Furgala-Selezniow et al. (2021) employed
interpretable machine learning models to investigate the impact of tourism development
on the lakeshore zone in a typical post-glacial lakeland in Northern Poland [38].

The second aspect involves simulating the impact of tourism development on future
land use. Petrov et al. (2009) conducted a study using the MOLAND model to simulate
future urban land use changes under multiple scenarios, using the Algarve region in
Portugal as a case study. The aim was to analyze the impact of the tourism industry on
future land use changes [39]. Mao et al. (2014) used an SD-CA model to simulate potential
future land use changes influenced by tourism in the Lijiang River Basin in China [16]. The
results revealed that the land use landscape of the study area was spatially disturbed by
tourism activities. Boavida-Portugal et al. (2016) simulated land use patterns influenced by
tourism development in Portugal’s coastal regions using a CA model and Markov chain
transition probabilities [23]. However, these studies are macro-scale qualitative studies,
which make it difficult to explain the spatial effects of tourism.

2.2. Land Use Pattern with HSR Opening

HSR is an important transportation infrastructure to improve the city’s connectivity
to the outside community [40]. HSR plays a significant role in driving transformative
shifts in urban land use, surpassing the impact of other transportation infrastructure [41].
Some empirical studies have indicated that overall HSR positively impacts urban land use
intensity, but there is spatial heterogeneity in the impact on land use simulation [29,30]. In
addition, some studies have also focused on the impact of HSR station location choice on
influencing urban land use [42,43]. The results of these studies are empirical and hardly
support future planning at the fine scale.

Further, modeling the impact of HSR on future urban land use patterns has become a
concern for scholars. For instance, Basse (2013) used a constrained cellular automata model
to simulate the future land use changes in the trans-border region of France, Monaco, and
Italy (Côte d’Azur-Riviera) affected by HSR [44]. Shen et al. (2014) employed a cellular
automata-based model to analyze three scenarios with different assumptions regarding the
locations of HSR stations [45]. The study aimed to simulate the potential land use impacts
of future HSR services on Aveiro, Portugal, and its neighboring cities. Liang et al. (2018)
utilized a cellular automata (CA) model that incorporated the effects of transportation
planning update mechanisms to simulate the impact of high-speed rail planning on urban
land use. These studies are focused on the regional scale, and county-scale simulations
need to be further clarified [46].

2.3. Tourism Land Use Simulation

The concept of tourism land has yet to be clearly and uniformly defined [47]. Previ-
ous studies have typically calibrated land types associated with the tourism industry as
tourism land, which encompasses accommodations, catering, recreation, sightseeing, and
other related functions [48]. A critical technique for managing tourism and promoting its
sustainable development is to separate the land types associated with tourism and simulate
their future evolution.

With the availability of high-resolution remote sensing datasets and the rise of big
data related to the tourism industry [49,50], two recent works by Liu et al. (2018) and
Shi et al. (2020) aimed to identify the tourism land use and simulate the spatio-temporal
changes [47,48]. In Liu et al. (2018)’s study, the tourism land use dataset was obtained by
remote sensing images and field calibration for modeling future spatial patterns, and the
determining factors for the spatial pattern of tourism land were also explored in the scenic
areas [48]. Field investigation was limited to scenic areas due to the high cost and time
required. Further, Shi et al. (2020) used POI data to obtain information on tourism-related



Land 2023, 12, 1170 4 of 18

service facilities and combined them with remote sensing images to obtain the tourism
land in Emeishan City, a typical mountain tourism city in China [47]. This methodology,
integrating POI data and remote sensing images, allows for efficient and comprehensive
identification of tourism land, facilitating the analysis and modeling of tourism land at the
regional scale.

Although the above studies filled the gap in modeling tourism land use in the future,
there remains a limitation in the following aspect: First, these studies applied Markov
chains to project future land use demand in the historical inertia of development, making
it challenging to model the demand for tourism land affected by planning and policy
scenarios such as the opening of the HSR. Second, the studies failed to simulate the tourism
land under the policy scenario and were affected by spatial effects. To address these gaps,
this study employs an SD model to simulate the demand for tourism land against the
background of HSR development. Additionally, the PLUS model is utilized to incorporate
the planned tourism areas and simulate the spatial effects induced by the HSR policy.

3. Methods
3.1. Study Framework

We proposed a framework: first, tourism land was identified using POIs and high-
resolution remote sensing images, then we simulated future tourism land use changes by
incorporating the top-down SD model with the bottom-up PLUS model (Figure 1). The
demand for tourism land in two scenarios is estimated by linking the economy, population,
agricultural production, and tourism industry sectors using the SD model. The PLUS model
was applied to simulate the spatial pattern of tourism land use changes. To reveal the
influence of HSR on tourism land changes, we set up two land use development scenarios,
including the historical development scenario (HD) in the existing development policy
inertia as a control and the HSR-led development scenario (HRD) as an experiment. The
living area of transit-oriented development (TOD) was planned as an area of accommoda-
tion for tourists brought by HSR; thus, we adopted it as the priority development area to
simulate spatial patterns of tourism land use changes influenced by HSR (see Section 4.1
for detailed descriptions).

3.2. SD Model for Land Use Demand Projection

The SD model is a powerful approach for simulating the intricate nonlinear relation-
ships among various components of a complex system [31,51]. By integrating feedback and
interactions between various aspects, it has been utilized to project land use demands under
different scenarios. Land use change is a complex system that is related to the economy,
population, agricultural production, and tourism industry sectors. In this segment, the SD
model to predict the amounts of each land use type was divided into four sectors (Figure 2).
The structure of the inventory and flow diagram was built based on the links between the
sections, and the system variables were established by the initial variables and change rates
of the parts. The model was divided into four sections, which are the economy, population,
agricultural production, and tourism industry sectors. Since previous studies have not
elucidated the linkages between tourism land and tourism-related elements, we treat the
tourism land sector as a separate subsystem. Based on analyzing the relationship between
sections and variables, the model of land use demand was established using Vensim PLE
x32. Changes in each land use type are governed by a combination of socioeconomic condi-
tions as well as interactions between the various land use types [51]. For example, tourism
land use is influenced by the GDP of the restaurant and transportation industries, which
directly affect changes in urban land use and rural settlements. The variables and stocks of
the model were determined, and then the causal feedback loop structure was constructed.
We collected the datasets of specific parameters from historical statistics yearbook data to
build the model. The unit of measurement used in the economic sector and the tourism
land sector is the Chinese yuan. The specific parameters of both scenarios are shown in
Table 1. The GDP growth rate (GGR), urban population growth rate (UPR), rural population
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growth rate (RPGR), food growth rate (FGR), the GDP of accommodation and catering
growth rate (GACGR), the GDP of transportation growth rate (GTGR), and the proportion
of construction land investment (PCLI), the proportion of agriculture, forestry, and fishery
investment (PAFFI) were selected as the variables. These parameters were obtained from
the statistical yearbook of the study area from 2015 to 2020 in the HD scenario. The changes
in parameters after the opening of HSR were obtained by calculating the changes in three
counties with the same level of development as Xinxing in the HRD scenario.
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Table 1. Parameter settings in the SD model in both scenarios from 2020 to 2035.

Type GGR UPGR RPGR FGR GACGR GTGR PCLI PAFFI

HD 9.8% 2.5% −0.11% 0.171% 11.2% 6.0% 6.0% 2.7%
HRD 10.5% 2.7% −0.05% 0.175% 14.1% 7.2% 6.5% 2.9%
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3.2.1. Economy Sector

The economic development of a region as reflected by GDP influences fixed asset
investment, the amount of population, and food production, which also affects tourism
development. The annual average growth rate of GDP was calculated according to the
historical statistical yearbook from 2014 to 2019, which was used as the economic growth
rate in the historical scenario. Fixed asset investment, investment in agriculture, forestry,
and fisheries, and investment in construction land were determined according to the change
in GGR. Changes in these elements affect variables and stocks in other sectors, which has
an impact on the number of different types of land use. The increase in GGR leads to an
increase in fixed asset investment, which inevitably leads to an increase in the amount of
urban land, industrial land, cropland, grassland, and woodland as a result of the increase
in production factors in urban, agricultural, and industrial areas. It promotes population
growth and the shift from the rural population to the urban population, thus increasing the
demand for housing and the amount of urban land, as well as the amount of cropland due
to the increased demand for food.

3.2.2. Population Sector

Population growth can drive economic and tourism development and provide labor for
employment. In terms of population, we have divided it into urban and rural populations
as state variables due to the varying requirements of other sectors. Both state variables are
supplemented with GDP, population growth rate, and housing area per capita as auxiliary
variables to explore the changes in population size. The growth of urban populations
demands more residential properties, leading to an expansion of urban land. On the
other hand, rural population growth results in the establishment of more rural settlements,
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requiring an increase in food production to meet their needs. The overall population growth
leads to an increase in demand for food, which in turn increases the demand for cropland.

3.2.3. Agricultural Production Sector

The economy and population growth require more product supply, which is usually
provided by the agricultural production sector. The agricultural sector is an essential
component of economic development. Investment in agricultural productivity is crucial for
the growth of this sector, as it directly impacts agricultural production. In this subsystem,
we considered the amount of cropland, woodland, grassland, and water land as state
variables, while population growth and investment in agriculture, forestry, livestock, and
fishing were considered auxiliary variables. Any changes in these auxiliary variables would
directly impact the stock of land use, leading to changes in the amount of land use.

3.2.4. Tourism Industry Sector

The GDP of the accommodation and restaurant industry and the GDP of the trans-
portation industry are two parts of the economy sector, but both are closely related to the
tourism industry. Hence, we selected these two variables in the tourism industry sector
and performed a multiple linear regression analysis with the amount of tourism land.
We obtained the annual values and annual growth rates of these two indicators from the
statistical yearbook of Xinxing from 2014 to 2019. The annual average growth rate of the
previously mentioned indicators was calculated as the growth rate of HD. In the case of
HRD, three counties with HSR services at a similar level of development as Xinxing were
selected as references for parameter setting. The mean annual growth rates of the selected
variables were calculated separately for the five years before the opening of the HSR and
the three years after the opening of the HSR. We compared the differences between the two
results to determine the impact of HSR on the chosen index. The conclusions showed that
the growth rate of the two indicators after the opening of HSR was 1.2 times and 1.22 times
that before the opening of HSR, respectively. Thus, the growth rate under the HSR can be
calculated according to the historical situation.

3.3. PLUS for Land Use Changes Simulation

In current CA studies, two major strategies may be summarized from the methods
included to identify the causes of land use: transition analysis strategy (TAS) and pattern
analysis strategy (PAS). The PLUS model employs a novel data mining framework that
contains the benefits and addresses the drawbacks of both strategies. Therefore, a land
expansion analysis strategy (LEAS) with a CA model based on multitype random patch
seeds (CARS) was incorporated into the PLUS model to simulate the multiple land use
changes. Due to its benefits in the following two areas, this model is advantageous in
tourism land use simulation at the patch level [32,52]. First, the PLUS model could capture
the expansion of the tourism land use data over two time periods. In the LEAS module,
the random forest algorithm is employed to calculate the development probability of
tourism land use as well as the contribution of factors to tourism land development during
that time. Second, PLUS combines stochastic seed generation and threshold-decreasing
mechanisms to model the changes in tourism land under the threshold of development
probability. Additionally, a stochastic seed mechanism within the planned development
zone is integrated with the PLUS model, allowing the role of the HSR-planned TOD zone
on tourism land to be considered in the simulation process.

4. Study Area and Datasets
4.1. Study Area

Xinxing County (111◦57′–112◦31′ E, 22◦22′–22◦50′ N) is located in the west of Guang-
dong Province, southern China (Figure 3). It covers an area of approximately 1521.68 km2,
and most of the land is mountainous and hilly. Although Xinxing County has the advan-
tage of being adjacent to the Pearl River Delta area, one of the most developed regions
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in China, there is still a considerable gap in economic development compared with the
Pearl River Delta area. The county is rich in tourism resources, with more than 10 tourist
scenic spots that are famous for Buddhist culture and hot springs, mainly located in rural
areas. This provides the county great potential for rural tourism development. Additionally,
the HSR station under construction in the county will open in 2025. It will improve the
connection between Xinxing County and other regions in Guangdong Province, which
may offer opportunities for rural tourism development and revitalization. TOD is a public
transportation-oriented development pattern that is gradually being extended to HSR in
China. To maximize the effect of HSR on tourism, the Xinxing government has proposed
TOD planning surrounding the HSR station, including performing arts areas, living areas,
production exhibition areas, service areas, and ecological agricultural experience areas. As
the living area of TOD is an area that provides accommodation and catering for tourists, it
is considered a development area for tourism land. Therefore, Xinxing is a good case study
area to investigate the demand and spatial pattern of future tourism land use changes
driven by HSR planning in tourism counties, which aims to propose targeted policies for
rural tourism development and contribute to rural revitalization.
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4.2. Datasets

In this study, POIs and remote sensing datasets were combined to obtain tourism
land use data. We used the API interface of Baidu Map to obtain POIs of catering service
facilities, hotel service facilities, amusement parks, farmhouses, and hot spring resorts. POI
data were displayed in Google Earth Pro, then visually interpreted with remote sensing
images to capture the vector data of tourism land in 2020. Since we lacked POI data in 2015,
we assessed the tourism land data of 2015 by combining the 2020 tourism land data with
historical image data from 2015. We judged it as tourism land because it was construction
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land in 2015; otherwise, it is recognized as other land use. The historical land use datasets
were from the Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, and were divided into cropland, woodland, grassland, water, urban
land, rural settlement, and industrial land. The living area of TOD as the development
area was from the Xinxing government. Historical land use datasets and tourism land use
data were merged and converted to realize land use data, including tourism land use. The
statistical data was from the local government’s statistical yearbooks. The nighttime light
data was from the Earth Observation Group (EOG), and this paper adopted the monthly
cloud-free DNB composite. There were 12 factors considered for the driving forces of
spatial changes in land use (Figure 4), including transportation factors, location factors,
human activity factors, and terrain factors [32,53] (Table 2). The TUD dataset was from
Tencent Location Service Platform, which can precisely represent spatio-temporal human
activities, and the mapping method referred to Huang’s (2021) study [54].
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Table 2. Data description.

Category Data Year Resolution Source

Identification of
tourism land

Satellite image 2015 and 2019 4 m Google Earth Pro

Tourism POIs 2020 / Baidu Map

Development area Living area in planned TOD 2020 / From Xinxing government

Distance to railways 2019 30 m
Distance to provincial roads 2019 30 m

Transportation factors Distance to expressways 2019 30 m Authors’ calculation based on
Amap

Distance to county roads 2019 30 m
Distance to common roads 2019 30 m

Distance to the county center 2020 30 m

Location factors Distance to scenic spots 2020 30 m Author’s calculation based on
POI from Baidu Map

Distance to town centers 2020 30 m

Human activities

Tencent user density (TUD) 2019 500 m https://cloud.tencent.com/
solution/lbs

Night-time lighting 2019 500 m
https://eogdata.mines.edu/
download_dnb_composites.
html

Terrain factors
Elevation 2019 30 m

Slope 2019 30 m Calculation by slope analysis of
elevation in QGIS3.16

5. Results and Discussion
5.1. Model Validation

In this study, the model validation was divided into two parts: the validation of the
predicted demand in the SD model and the validation of the spatial simulation in PLUS.
It was applied to the period from 2015 to 2020, and the simulations for future scenarios
to the period from 2020 to 2035. We employed the quantity of land used in 2015 as the
setpoint and the SD model to project the demand for each kind of land use in 2020. The
projected demand for land use in 2020 was compared with actual quantities to validate the
SD model’s accuracy. As shown by Table 3, the accuracy of the SD model is trustworthy for
predicting the demand for tourism land, as evidenced by the relative error of 2.44% between
the simulated and real amounts of tourism land. As for simulation validation, the land use
spatial distribution in 2020 was modeled based on that in 2015. The kappa coefficient and
overall accuracy had been utilized to explain the accuracy of land use simulation, and user
accuracy was employed to estimate the simulation performance of tourism land use. The
overall accuracy was 94%, and the Kappa coefficient was 0.88. Additionally, the tourism
land’s user accuracy is 0.93. These results suggest that the PLUS model is advantageous for
simulating tourism land use with other land use types at the county level.

Table 3. The simulated area and actual area of each land use in 2020.

Land Use
Types Cropland Woodland Grassland Water Urban

Land
Rural
Settlement

Industrial
Land

Tourism
Land

Simulation 363,781 1,138,377 52,437 28,083 18,752 55,037 30,806 2099
reality 365,118 1,136,803 53,241 27,949 18,094 54,184 30,907 2049
Error (%) −0.37% 0.14% −1.51% 0.48% 3.64% 1.57% −0.33% 2.44%

https://cloud.tencent.com/solution/lbs
https://cloud.tencent.com/solution/lbs
https://eogdata.mines.edu/download_dnb_composites.html
https://eogdata.mines.edu/download_dnb_composites.html
https://eogdata.mines.edu/download_dnb_composites.html
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5.2. Future Tourism Land Use Changes Considering the Opening of HSR
5.2.1. Demand Projection and Spatial Simulation of Tourism Land

The validated SD model was then applied to simulate the future tourism land use
growth in 2035 based on the tourism land use pattern in 2020. The projected land use
demand and changes in both scenarios in 2035 are shown in Table 4. The projected demand
for tourism land was 4.431 km2 and 5.369 km2 in HD and HSR scenarios, respectively. It
showed that the projected demand for tourism land impacted by HSR is 21.12% higher
than that of the HD scenario. As shown in Figure 5, starting in 2025, the impact of HSR
development becomes evident, leading to a growing disparity in the quantity of tourism
land between the HRD scenario and the HD scenario without HSR influence. Further, the
projected demand for tourism land and other land use types was put into the PLUS model
to obtain the simulation results of spatial distribution in 2035 based on the land use in 2020
(Figure 6). The tourism land was mainly distributed in the county center area and nearby
the HSR station and scenic spots in the HSR scenario.

Table 4. The projected land use demand and change in 2035 under two scenarios (km2).

Land Use Type Cropland Woodland Grassland Water Urban
Land

Rural
Settlement

Industrial
Land

Tourism
Land

HD demand 316.485 968.957 48.843 23.376 22.557 47.308 46.138 4.431
change −8.583 −18.641 1.546 −0.372 6.273 −0.402 18.774 2.633
HRD demand 314.458 968.976 47.607 22.455 26.043 47.096 46.092 5.369
change −10.611 −18.621 −0.917 −1.293 9.758 −0.614 18.728 3.571
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5.2.2. Spatial Distribution of Tourism Land Use Changes

Four sub-regions, including the county center area, scenic spots of Buddhism, hot
springs, and farmhouses, were chosen to explore the role of HSR in the spatial changes of
tourism land (Figure 7). The county center area and the development area surrounding the
HSR station revealed significant growth in tourism land in 2035 as compared to tourism
land in 2020 and the simulation result of the HSR scenario (Figure 7(a1,a3,b1,b3)). In the
county center area, tourism land was scattered in the HRD scenario but highly concentrated
in the HD scenario (Figure 7(a2,a3)). This is probably because the TOD is planned to
be located at the HSR station, and the opening of the HSR affects the surrounding area,
resulting in a strong driving effect on the surrounding tourism land. The county center
area is not the primary choice for tourists for accommodation and catering. Additionally,
the development area was located in Liuzu town, where the tourism resources are mainly
attributed to Buddhism. The mixture of tourism resources and the HSR station carries
great power over tourism land development in the HRD scenario. This area was most
significantly affected by HSR opening, with tourism land experiencing explosive growth
(Figure 7(b2,b3)).

In both future scenarios, the tourism land expanded significantly around the roads,
especially the road intersections (Figure 7(c2,c3)), mainly located in Dongcheng town,
Shuitai town, and Niancun town with rich tourism resources (Figure 7). In the HD scenario,
tourism land around the provincial roads increased noticeably, while there were few
changes in tourism land around the county roads. However, tourism land has grown
considerably around provincial and county roads in the HRD scenario. This phenomenon
illustrates that transportation is more critical to the development of tourism land in the
HRD scenario. Therefore, connectivity has a significant impact on the development of rural
tourism led by HSR, and priority needs to be given to constructing and maintaining roads
in rural areas.
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5.2.3. Source of Tourism Land Use Transfer

The source of tourism land expansion was computed from 2020 to future scenarios
in 2035 (Figure 8). In the HRD scenario, woodland was the main source of tourism land
expansion, accounting for almost 56.8% of the total amount of tourism land inflow in
2035. The following sources of tourism land expansion were rural settlement (25.4%),
cropland (9.7%), and urban land (7.2%), respectively. Whereas cropland (64.2%) was the
main source of tourism land in the HD scenario, urban land (20.9%) and woodland (13.6%)
were the important sources of tourism land in 2035. This indicates that the opening of
HSR will cause the sources of tourism land expansion to be different, and the effect is
mainly on the woodland, not the cropland, in the study area. Since the tourism resources
of the study area are in rural areas, the purpose of HSR planning is to stimulate rural
tourism development. The station of HSR and the planning of TOD were set in rural areas,
surrounded by woodland, rural settlements, and cropland. Especially the living area of
TOD as a development area is a considerable area of woodland in 2020, which shifts to
tourism land in 2035. Thus, it leads to the result that tourism land in the HRD scenario
occupies the above-mentioned land use types, and the main source is woodland.
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In the HD scenario, cropland was the major source of tourism land growth, which
is similar to a previous study in the Li River basin in Guilin, China, which showed that
changes in land use in tourism regions mainly put pressure on cropland [16]. Similarly,
the recent case of Hainan Island, a tourist island in China, indicated that cropland is the
type of land use most significantly affected by the tourism industry [55]. However, the
main pressure from tourism land was shifted to woodland in the HRD scenario due to the
features of rural tourism land and the development area of the location. Moreover, it is
somewhat different from other studies where Shi’s study’s tourism land is mainly located
in urban areas and the development of tourism land is achieved by encroaching on urban
land, as in the case of mountain vacations [47]. Thus, the planning for tourism development
and the situation of local tourism should be highlighted in the simulation of tourism land
affected by policies.

5.3. Driving Force Analysis and Policy Implications

Future tourism planning may benefit from analyzing the factors that influence how
land changes due to tourism. It is common to combine the driving mechanisms of tourism
land development to inform policy development [38]. The contribution of driving factors
to tourism land use changes was quantitatively accessed based on expansion in historical
land use and driving forces by using the LEAS module in the PLUS model. As shown
in Figure 9, the distance to scenic spots is the primary factor affecting the tourism land
changes, followed by the transportation factors, including distance to provincial roads,
distance to expressways, distance to railways, and distance to county roads. Night light
and the distance to town centers have little effect on explaining the expansion of tourism
land. It is worth noting that different levels of roads have different impacts on tourism land,
which is consistent with a study on tourism land use [48]. The distance to provincial roads
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and the distance to county roads have a much greater impact on tourism land than other
transportation factors. This implies that the demand for tourism land along the provincial
and county roads surrounding the scenic spots that have great potential for development
should be considered. Similarly, a study on tourism and land use change in Guilin, China,
showed significant impacts of land use change in distance to roads and distance to tourist
areas [16], which is similar to our findings.

Land 2023, 12, x FOR PEER REVIEW 15 of 19 
 

roads and the distance to county roads have a much greater impact on tourism land than 
other transportation factors. This implies that the demand for tourism land along the pro-
vincial and county roads surrounding the scenic spots that have great potential for devel-
opment should be considered. Similarly, a study on tourism and land use change in Gui-
lin, China, showed significant impacts of land use change in distance to roads and distance 
to tourist areas [16], which is similar to our findings. 

In China, rural tourism is mainly regarded as an economic tool for rural development 
in the modernization process of the country, and the government is the main driver of 
rural tourism development [6,56]. The simulation results of future tourism land by incor-
porating planning and policy scenarios can offer insights for policymakers to guide the 
tourism development in tourism counties, thus supporting rural tourism development 
and rural revitalization. The potential influence of HSR on tourism land changes can be 
simulated with the opening of HSR as the transit dividend policy, which can provide a 
case for proposing management policies for tourism counties confronted with the intro-
duction of HSR. In the HRD scenario, the woodland was under the most pressure, and the 
government needs to assess ecological values to prevent ecological risks during tourism 
planning. In the central area of the county, tourism land is scattered, and there is a need 
for the government to enhance its management and improve the performance of enter-
prise services. The expansion of tourism land outside the central area of the county was 
significant, indicating the need for improved infrastructure for rural tourism, including 
transportation and accommodation. The government should guide and promote the sus-
tainable development of tourism land around scenic spots. Additionally, the living area 
of TOD planning was situated in a rural region, necessitating better transportation links 
between this area and tourism scenic spots. 

 
Figure 9. Contribution of driving factors to tourism land. Figure 9. Contribution of driving factors to tourism land.

In China, rural tourism is mainly regarded as an economic tool for rural development
in the modernization process of the country, and the government is the main driver of rural
tourism development [6,56]. The simulation results of future tourism land by incorporating
planning and policy scenarios can offer insights for policymakers to guide the tourism
development in tourism counties, thus supporting rural tourism development and rural re-
vitalization. The potential influence of HSR on tourism land changes can be simulated with
the opening of HSR as the transit dividend policy, which can provide a case for proposing
management policies for tourism counties confronted with the introduction of HSR. In the
HRD scenario, the woodland was under the most pressure, and the government needs to
assess ecological values to prevent ecological risks during tourism planning. In the central
area of the county, tourism land is scattered, and there is a need for the government to en-
hance its management and improve the performance of enterprise services. The expansion
of tourism land outside the central area of the county was significant, indicating the need
for improved infrastructure for rural tourism, including transportation and accommodation.
The government should guide and promote the sustainable development of tourism land
around scenic spots. Additionally, the living area of TOD planning was situated in a rural
region, necessitating better transportation links between this area and tourism scenic spots.
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6. Conclusions

This study designed a novel framework that considers the effects of HSR planning on
tourism land use simulation by coupling the SD model and the PLUS model. A tourism
county in China with HSR construction, Xinxing County, became able to take advantage
of the integrated model. The objective is to provide policy suggestions for supporting
sustainable tourism development by conducting an HRD scenario. The major contributions
and findings from this study are the following: First, the user accuracy of the tourism land
indicated that the performance of the coupled SD-PLUS model in simulating tourism land
change was satisfactory. This study selected a county for rural tourism, and the application
of this case can provide a reference for similar counties that are planning for HSR in the
future or are underway. Policymakers should notice the impact of HSR opening on tourism
land and model the trend of tourism land affected by HSR to better promote the rational
development of tourism via the SD-PLUS model.

Second, the study investigated the contribution of driving forces to tourism land
changes using the PLUS model. The findings indicated that the primary factor determining
the tourism land change is the distance to scenic spots, followed by transportation factors.
Knowledge of the driving mechanisms of tourism land use can provide a reference for
future policymaking for tourism land development. This enlightens policymakers to focus
on the demands of tourism land development along the provincial and county roads
surrounding the scenic spots. This has inspired policymakers to attend to the demand
for tourism land development around scenic spots and in areas with high accessibility,
managing the conflict between ecological land and tourism land.

Third, the study revealed that the spatial change of tourism land is mainly related to
the planning policy supporting HSR, especially in the area neighboring the HSR station.
The location of tourism planning areas can lead to changes in the sources of tourism
land growth, which requires the ecological protection of their surroundings. This can
provide insights for counties that have opened or will open HSR in formulating tourism
development policies in China.

Despite the merits of this study, several aspects of the current work warrant further
study. First, we were able to predict the tourism land demand in the SD model using only
two variables: the GDP of the accommodation and restaurant industry and the GDP of
the transport industry, as there was a lack of data to measure the tourism industry sector.
Therefore, we appeal that the government establish a database of tourism-related indicators
in an attempt to be supportive of the development of tourism land use studies. Second,
this study failed to examine the impact on tourism during the COVID-19 pandemic due to
a lack of available data to support it. These issues should be addressed in future studies.
Third, the planned HSR route was not included as a driving factor as the detailed HSR
route was not available. Fourth, this paper simulated the tourism land from 2015 to 2020
for the purpose of validating the model, which fails to consider the effect of HSR opening.
Since the sample of similar counties with dominant rural tourism is small and there are no
related datasets, there remains a gap in the validation for future studies to fill.
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