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Abstract: Pursuing sustainability in a challenging world and under the influence of numerous
natural and anthropogenic drivers of change presents one of the major global concerns. The transition
towards a more sustainable development requires a harmonious balance between human well-
being and environmental management. The concept of landscape is at the core of such a process.
Hence, evaluating the different aspects of the landscape and their components is crucial for policy
making, planning and management. In fact, landscape quality assessment has become a special
focus of interest, especially with the directives of the European Landscape Convention. This research
work aims to analyze the rural landscape of the Chania prefecture, West Crete, Greece, taking
into account its multifold dimensions. The analysis was carried out using a series of quantitative
spatial indicators. Consecutively, structural (mean patch area, contagion index, edge density and
percentage of landscape occupied by a class of the highest share), ecological (density of ecological
barriers, Modified Shannon diversity index), visual (share of positive land-cover forms, share of
negative land-cover forms, form and color disharmony index, shape disharmony index) and cultural
indices (historical monuments index) were estimated and analyzed in a GIS environment. The
overall methodology incorporated different land-use/land-cover data (multitemporal Corine data
and land use derived from the classification of Earth-observation (EO) data). The historical and
current analysis of the landscape within Chania revealed quite high structural and visual values. The
ecological dimension is rather stable, with a potential decrease by the year 2045. Additionally, the
structural dimension seemed to be sensitive to the spatial resolution of the data source. The spatial
extent, at which the landscape is evaluated, seemed to impact the landscape’s ecological, visual and
cultural values.

Keywords: landscape quality; remote sensing; indicators; GIS

1. Introduction

The word “landscape” dates back to the 13th century and derives from the Germanic
languages. It was first used in Dutch as landschap and lantscap to refer to a land, region
or environment. Later with the introduction of a new type of painting, the meaning of
landscape shifted to signify “scenery” [1,2]. In fact, the significance of the term varies
among the languages and the translations [1,3]. For instance, in Roman languages, this
term refers to a distinct region accentuating its social and historical aspects. However, it
is limited to the spatial facet to mean “place” in the modern Greek languages. In other
languages, namely Arabic, this word does not exist [3]. Unsurprisingly, the scientific
definition and knowledge of the term “landscape” carries much complexity and varies
widely in the literature [1,3–6], presenting in some cases contradictory meanings [7]. In fact,
several disciplines have been involved in landscape studies such as geography, archaeology,
architecture, ecology, anthropology, design, sociology and history [5,7–9]. The history of
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the different aspects of the landscape as a scientific object underlines its multiple meanings
and emphasizes the diversity of its concepts and theories among the disciplines [1,10] and
hence the absence of an evident notion [11].

Numerous researchers linked the quality of people’s daily lives to the quality of the
landscape [12,13]. Yet, a clear and formal definition of landscape quality is lacking in the
literature [14]. In this study, landscape quality is interpreted as “the state in which its
(landscape’s) spatial, functional and visual structure is found at a given time”, as elucidated
by Sowinska-Swierkosz and Michalik-Sniezek [14].

Nevertheless, several authors highlighted the need for a comprehensive and exten-
sive analysis of the landscape components and their interrelationships [13]. Numerous
approaches have been adopted for this aim, which could be regrouped under two mains
categories. The first category is fragmented and disengaged expert-based methods, which
concentrate on a specific aspect of the landscape and interpret the biophysical character-
istics holistically as design parameters. The second category is engaged approaches, also
called public perception-based methods, which consider these characteristics as stimuli
and evaluating the landscape as a whole while capturing the dynamic and multisensory
human experience and appreciation of the landscape [2,15,16]. Other researchers have
classified the adopted landscape evaluation methods by using an objective quantitative
approach that measures the different components of the landscape, the subjective quali-
tative approach that deals with the perception of the landscape as a whole [17–19], and a
combined approach linking the public preferences to the landscape components [18,19].
In the Greek context, a lack of landscape planning and studies has been underlined. The
marginalization and underprioritization of landscape matters have been accentuated with
the socioeconomic crisis. Thus, it is imperative to raise awareness and orient training and
interventions toward a more focused conscience on landscape [5]. In this context, this
study broadly aims to quantify the landscape components over the prefecture of Chania,
Crete, Greece, based on spatial indicators derived from Earth-observation data following
the general methodology developed by Sowinska-Swierkosz and Michalik-Sniezek [14].

Numerous studies pointed out indicators’ ability and effectiveness to analyze the
landscape [20] and highlighted the plethora of indicators developed and adopted for this
aim [4,12,20,21]. For instance, around 300 potential indices could be used to measure the
structural and ecological landscape state, 200 indices to assess the cultural state and more
than 200 spectral indicators dealing with the ecological state [20]. Previous studies have
attempted to select a manageable set of statistically effective and reliable indicators evaluat-
ing the different aspects of landscape quality [12,14]. In practice, the selection of landscape
indicators is driven by data availability rather than theory [22,23]. Different data sources
could be used for the aim of landscape analysis, namely photos, land-cover maps, satellite
images, orthophotos, field observations, census statistics and surveys results [2,12,20,21].
The employment of remote sensing data in landscape quality assessment enables signifi-
cant savings in terms of both labor and time compared to traditional survey methods [24].
According to Sowinska-Swierkosz and Michalik-Sniezek [14], four aspects of landscape
quality could be evaluated using remote sensing data, namely structural, ecological, visual
and cultural dimensions.

This study focuses on evaluating the landscape values within the prefecture of Chania
based on geospatial data, assessing the evolution of the components of the landscape’s
dimensions over time, comparing the potential of different land-cover datasets in estimating
the landscape indicators and examining the impact of scale in terms of both extent and
resolution on the performance of landscape’s indices.

2. Materials and Methods
2.1. Study Area

Located in southern Greece and covering an area of 8729 km2, Crete is the largest
Greek island and ranks fifth in size among Mediterranean islands. Crete represents a
cardinal point connecting Europe, Africa and Asia [25]. Like most Greek landscapes, the
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island’s topography is mostly mountainous. According to EL-STAT [26], more than 49% of
the total extent of Crete is characterized as mountainous terrain, 28.1% is semimountainous
and only 22.5% of Cretan lands are plains. The island is one of the biodiversity hot spots
thanks to its 1600 native plant species, among which 200 are classified as endemic. Like
the flora, Crete is also distinguished by its fauna, namely by its wild goat, wildcat, Cretan
badger and endemic invertebrates [27].

As stated in Panagos et al. [28], Crete is dominated by natural grasslands and shrubs,
covering 46% of the land. Permanent crops of olives, vines and citrus also cover a critical
extent of the island. In addition, 15.2% of Crete is covered by heterogeneous agricultural
land. However, forests appear over less than 4% of the total area of Crete.

Due to its geographic location, the island is considered a melting pot of cultures
from Europe, Asia and Africa. Historically, the first advanced European civilization, the
Minoan civilization, was developed on Cretan land during the Bronze Age. Since then, the
island has been influenced by neighboring cultures, namely the Roman, Byzantine, Arab,
Venetian and Ottoman cultures [27]. This rich history is evident in the historical monuments
and cultural sites located all over the island. Administratively, Crete is divided into four
prefectures. The current research focuses on Chania prefecture (Figure 1), located in the
western part of the island, covering an area of 2376 km2 and with a resident population of
156,585 inhabitants, as stated in the census of 2011 [26]. Additionally, this study emphasizes
the area of the Keritis watershed located in the central part of Chania prefecture. Keritis
is a typical watershed of the broader area in terms of geomorphology, vegetation, extent
and land-use/land-cover regime. The region of Chania is well known for its natural
landscapes associated with mountains and the seaside [29]. Moreover, the prefecture of
Chania is distinguished by the concentration of remarkable historical and cultural heritage
sites belonging to different historical eras from the Minoan to the Greek periods [29,30],
contributing, hence, to the development of the tertiary sector. In fact, the economy of the
prefecture relies heavily on both tourism and agriculture.
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Figure 1. Location of the study area. Figure 1. Location of the study area.

2.2. Datasets
2.2.1. Corine Land Cover

The Corine program is part of the European flagship program on Earth observation
aiming to standardize data collection on land in Europe to support the development of
environmental policy. The Corine Land Cover (CLC) database presents the primary spatial
data source on land for the European Environment Agency and includes an inventory of
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44 classes. For this research, Corine Land Cover (CLC) status layers for the years 1990, 2006
and 2018 were downloaded from the European Environment Agency (EEA) database in
vector format [31]. These datasets were produced with a minimum mapping unit of 25 ha
for aerial features and a minimum width of 100 m for linear elements. The acquired vector
datasets were clipped to the extent of Chania, then rasterized to a cell size of 30 × 30 m and
transformed to the WGS 84/35N projection system in order to match the properties of the
other data used in this study. Concerning the prefecture of Chania, Corine datasets cover 28,
30 and 31 classes for 1990, 2006 and 2018, respectively. For the aim of this study, they were
converted to six classes (forest, water bodies, agricultural land, bare land, built-up land
and grassland and sparse vegetation) to harmonize the data for further analysis (Table 1).

Table 1. Corresponding LULC classes derived from Corine data source.

Corine Land-Cover Class Derived Class

Continuous urban fabric

Built-Up Land

Discontinuous urban fabric

Industrial or commercial units

Road and rail networks and associated land

Port areas

Airports

Mineral extraction sites

Dump sites

Construction sites

Sport and leisure facilities

Nonirrigated arable land

Agricultural Land

Permanently irrigated land

Vineyards

Fruit trees and berry plantations

Olive groves

Pastures

Complex cultivation patterns

Land principally occupied by agriculture, with significant
areas of natural vegetation

Broad-leaved forest

ForestConiferous forest

Mixed forest

Natural grasslands

Grasslands and Sparse Vegetation

Moors and heathland

Sclerophyllous vegetation

Transitional woodland–shrub

Sparsely vegetated areas

Beaches, dunes, sands

Bare LandBare rocks

Burnt areas

Water bodies
Water Bodies

Sea and ocean



Land 2023, 12, 999 5 of 24

2.2.2. Landsat Data

Taking into account the temporal availability of satellite data covering the time period
1990–2021, Landsat satellite images were selected to be adopted for this study. The first
Earth-observation optical satellite in the Landsat series was launched in 1972 by the Na-
tional Aeronautics and Space Administration (NASA). Since then, more satellites have been
launched within the Landsat program, providing the most extended continuous Earth-
observation data. The latest successful launch and data collection is the Landsat 9 satellite,
launched in September 2021. For this study, multitemporal, geo-referenced and radiometri-
cally calibrated Landsat images (path/row 182/35 and 182/36) were downloaded from the
United States Geological Survey (USGS) website [32]. Due to the extent of our study area,
two image tiles were acquired for each date to cover the total of the prefecture of Chania.
The imagery adopted in this study includes Landsat 5 data for 1990, Landsat 7 data for 2006
and Landsat 8 data for 2021. The dates of these images were chosen to be within the same
season for the three selected years (1990, 2006 and 2021) to minimize the spectral influence
resulting from the seasonal conditions while considering the availability of cloud-free
scenes. Clouds did not affect all the pixels within our study area.

2.2.3. PlanetScope Data

The PlanetScope mission operated by Planet was launched to enable a daily capture
of Earth’s extent with a high spatial resolution ranging between 3.7 and 4.2 m, depending
on the satellite orbit altitude, and resampled to 3 m. A PlanetScope classified image for the
year 2020 covering the extent of Keritis watershed has been used for this study.

2.2.4. Supplemental Data

Supplemental data of road networks in the Greek grid projection as well as data
related to the cultural heritage sites within Chania prefecture were acquired from the
digital archives of the Institute for Mediterranean Studies, Foundation for Research and
Technology Hellas (FORTH).

2.3. Methods
2.3.1. Image Analysis
Land-Use/Land-Cover Mapping

Land-cover/land-use mapping based on remotely sensed data presents a valuable
variable of Earth-observations studies. Digital image classification is defined as the process
of categorizing objects or pixels into a particular informational class type. Several classi-
fication techniques have been developed over the years due to the advancement of both
remotely sensed data acquisition and computer science. These methods fall into three main
categories, namely pixel-based, knowledge-based and object-based approaches [33]. In
this study, Landsat and PlanetScope images were classified using a supervised pixel-based
technique, considering each pixel as a separate entity, and performed using the Resources
Data Analysis System ERDAS IMAGINE 2015 software.

Generally, algorithms under pixel-based methods are divided into parametric and
nonparametric approaches. The main difference is that parametric classifiers assume a
normal distribution of the data, unlike the nonparametric ones that are not based on any
statistical assumption [33,34]. A supervised classification using the parametric Maximum
Likelihood Classifier (MLC) was performed to map Chania as well as the Keritis land-
use/land-cover regime. This classifier is derived from the Bayes theorem algorithm, which
assumes a normal distribution of the cells in each class, and hence, each class is defined by
its mean vector and covariance matrix [34]. Every pixel is assigned to the class to which
it has the highest likelihood of belonging. For each preprocessed Landsat image and for
the PlanetScope image, all the pixels were assigned to a particular predefined class among
Built-Up Land, Agricultural Land, Forests, Grasslands and Sparse Vegetation, Bare Land
and Water Bodies. The spectral signature of each class was determined from training
samples acquired from Google Earth historical images.
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Prior to their classifications, Landsat images were first preprocessed. Preprocessing
of remote sensed data is necessary to remove the noise, prepare the data and improve
their capability for further analysis. For this research, the scanline corrector anomaly
of Landsat 7 ETM+ was corrected using the Focal Analysis tool in ERDAS IMAGINE.
This technique consists of filling the data gap by replacing the missing pixels with useful
neighboring ones [35]. The radiometric quality of Landsat Level 1 products in Collection
2 has been updated and improved. Hence, the downloaded images for this study were
not subjected to radiometric correction. However, the Level 1 products are provided at
top-of-atmosphere radiance. Thus, the atmospheric correction has been performed in
order to reduce the influences of atmospheric effects and seasonal disturbances for reliable
temporal comparison. In this study, the atmospheric correction was performed using
the Dark Pixel Subtraction technique, supposing that the existence of dark pixels in the
image have zero reflectance. Hence, the minimum reflectance number is assumed to be
atmospheric scattering signals that must be subtracted from the spectral bands [36]. Finally,
layer stacking of the visible NIR and SWIR bands was performed. Every two adjacent
images (path 182, row 35/36) acquired in the same date were mosaicked and clipped to the
extent of the study area.

To assess the accuracy of the produced thematic maps, a total of 300 random pixels,
with 50 pixels for each class, was randomly selected from each classified image and verified
with the historical imagery in Google Earth for 1990, 2006 and 2021. The classification
quality was evaluated by computing the overall accuracy, user’s accuracy, producer’s
accuracy and kappa statistics. The Kappa coefficient evaluates the performance of the
classification compared to the arbitrary attribution of values. The Kappa coefficient varies
between −1 and 1. The closer the Kappa coefficient is to 1, the better the classification
compared to random.

Land-Use/Land-Cover Prediction

Future land -use and land-cover maps for 2030 and 2045 were computed using IDRISI-
TerrSet Geospatial Monitoring and Modeling System software for both Corine and Landsat
datasets. Markov-Chain and Cellular Automaton (CA-Markov) was integrated for this
aim. The Markov chain model is a stochastic process that predicts the probability of
LULC change from one time to another. It uses the past LULC change trend at different
spatiotemporal scales to estimate the future [37]. According to Li et al. [38], the Markov
model succeeds in computing the quantities of the dynamic changes of LULC patterns from
the latest date to the predicted date; however, it has some issues concerning the spatial
pattern of landscape change. To solve this problem related to the spatial location of the
prediction, a combination of the Markov-Chain model and a Cellular Automata model
has been implemented in several studies [39]. In fact, the Cellular Automata is a dynamic
process model that uses the LULC information of the latest states as well as its neighboring
pixels [40]. However, despite the spatial character added to the dynamic prediction, Rocha
et al. [41] find that the Cellular Automata faces problems related to both the definition of
transition rules and the model structure. Hence, combining Cellular Automata (CA) and
the Markov-Chain, integrating the benefits of the two models, provides a robust and more
reliable future prediction.

In this study, for each dataset, 1990 and 2006 LULC maps were used as a baseline
from which the 2018 map (in the case of Corine data) and the 2021 map (for the Landsat
data) were predicted. The background value was set to 0 and the proportional error value
was set to 0.15 in order to produce the future prediction with an accuracy of 85%. After
validating these simulated maps with the existing ones, future LULC for 2030 and 2045
were computed using the same defined parameters. The LULC map for 2030 was produced
using the 2006 and 2018 maps as baselines in the case of the Corine data source and the 2006
and 2021 maps in the case of classified Landsat images. The maps of 2045 were estimated
based on 2018 and the estimated 2030 map for Corine and 2021 and 2030 maps for the
Landsat dataset.
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2.3.2. Landscape Quality Analysis

Considering the literature analysis, the availability and the characteristics of the Earth-
observation data, a set of 11 landscape quality indicators, covering its structural, ecological,
visual and cultural dimensions, have been selected. Among them, 10 indices were derived
from the LULC state and hence analyzed for Corine, Landsat and PlanetScope data sources.
The specific indicators adopted and measured for this study were selected based on their
effectiveness and considering the availability of data.

Structural Dimension

Knowledge of landscape patterns enables a better understanding of the landscape
functions [42] and a better evaluation of the efficiency and sufficiency of management and
planning decisions [43]. Numerous landscape indices have been developed to analyze
and quantify landscape structure in terms of composition (e.g., richness, evenness) and
configuration (e.g., shape, core area, contagion). They could be determined for three
spatial levels, namely patch, class and total landscape, and they are easily computed using
tools such as FRAGSTATS [44,45]. Landscape metrics, given their simplicity, have been
widely applied to assess both landscape functions and land-use/land-cover patterns and
changes [42]. Other indices have also been tested in quantifying landscape pattern and
structure [46,47].

The structural characteristics of the landscapes of Chania and Keritis were evaluated
for the different datasets and for the different studied years using four landscape metrics
computed with FRAGSTAT software (version 4.2.1). Landscape metrics are an efficient
tool for quantifying landscape structure and complexity. Generally, landscape metrics
are algorithms enabling the description and measurement of the spatial composition and
configuration of the landscape.

• Mean patch area (MPA): MPA presents one of the simplest indicators of the landscape,
enabling the evaluation of the degree of fragmentation within the studied landscape.
MPA was analyzed at the landscape level:

AREAMN = mean (AREA [patchij]) (1)

where AREA [patchij] is the area of each patch in hectares.
• Edge Density (ED): ED can be used to evaluate the aptness of the analyzed landscape

for wildlife, mainly its suitability as a habitat for edge species. ED was determined at
the landscape level in order to describe its configuration:

ED =
E
A
× 10000 (2)

where E is the total landscape edge in meters and A is the total landscape area in
square meters.

• Percentage of landscape occupied by a class of the highest share (PLAND): The
percentage of the landscape belonging to each class was calculated at the class level,
as shown in Equation (3). The PLAND index as given in Sowinska-Swierkosz and
Michalik-Sniezek (2020) corresponds to the highest computed percentage:

PLAND =
∑n

j=1 aij

A
× 100 (3)

where aij is the area of each patch and A is the total landscape area.
• Contagion index (CONTAG): This index evaluates the overall clumpiness of the

landscape by assessing both dispersion and interspersion within the analyzed area.
An increase in value of this index refers to a landscape characterized by contiguous
and fewer large patches. On the other hand, a decrease in the CONTAG index indicates



Land 2023, 12, 999 8 of 24

an increase in the subdivision and interspersion of patches. CONTAG was measured
at the landscape level in order to evaluate its aggregation:

CONTAG = 1 +
∑na

q=1 pq× ln(pq)

2× ln(t)
(4)

where pq is the adjacency table for all classes divided by the sum of that table and t is
the number of classes in the landscape.

Ecological Dimension

The ecological dimension of the landscape is a complex system encompassing the
interrelated natural and environmental features as well as the anthropogenic disturbance
related to human activity, such as noise and pollution [43]. The use of ecological indica-
tors simplifies the understanding of the ecosystem components and functions as well as
their evolution. Thus, they have been helpful for several studies dealing with ecological
planning, assessment and monitoring [48]. Three sets of ecological indices have been
found in the literature, namely geo-morphometric indices, spectral variability-based in-
dices and landscape metrics [14]. In addition, numerous authors’ remote sensing-based
ecological indicators have been developed and tested to assess the ecological state of the
landscape [43,49–52].

Two indicators were selected to assess the ecological state of the landscape in both
Chania and Keritis:

• Density of ecological barriers (ECOLBAR): Several studies highlighted the ecological
impact of the transportation infrastructure on wildlife mortality, habitat fragmentation
and destruction, soil erosion, hydrological network and microclimate change [53,54].
In this research, the effect of the road network on the ecological quality of the landscape
has been evaluated using the ECOLBAR index based on the methodology of Sowinska-
Swierkosz and Michalik-Sniezek [14], as given in Equation (5). Only paved roads
crossing natural and seminatural land-cover forms have been examined as ecological
barriers [22]. As natural and seminatural land-cover forms, the classes of Forests,
Grasslands, Sparse Vegetation and Water Bodies were considered:

ECOLBAR =
(Lroad + Lrail)

Area
(5)

where Lroad and Lrail are lengths of rail and road networks in km and Area is the total
area of the landscape in km2.

• Modified Shannon diversity index (MSDI): This index was calculated based on the
methodology of Sowińska-Świerkos [43], consisting of relating the normalized Shan-
non diversity index, considering the abundance and evenness of the land-cover forms,
to their ecological significance, as given in Equation (6):

MSDI =
−∑s

i=1 Pi× ln(Pi)× I1
ln(s)

(6)

where Pi is the percentage of a given class, S is the total number of LULC classes and
I1 is the land-cover quality score. The latest was determined as specified in Table 2.

Table 2. LUCL quality score.

Land-Cover Forms as Defined by Sowińska-Świerkos [26]
Land-Cover/Land-Use Forms
Used in This Research

Land-Cover
Quality Score (I1)

Natural land-cover forms: areas where the vegetation is in balance with
the abiotic and biotic forces of its biotope Forests 1

Seminatural land-cover forms: areas where the vegetation is not planted
by humans and does not need human intervention to be maintained;
however, human actions influence it

Grasslands and Sparse
Vegetation 0.75
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Table 2. Cont.

Land-Cover Forms as Defined by Sowińska-Świerkos [26]
Land-Cover/Land-Use Forms
Used in This Research

Land-Cover
Quality Score (I1)

Anthropogenic land cover Type 1: areas where the natural vegetation has
been removed or modified and replaced with other types of vegetation Agricultural Land 0.5

Anthropogenic land cover Type 2: Complex settlements Built Up 0

Areas without vegetation Bare Land 0
Water Bodies 0

Visual Dimension

Despite the value of this aspect, visual indicators are poorly developed compared
to structural and ecological indices [18,23]. Nevertheless, several approaches have been
developed to evaluate the aesthetic perception of the landscape, namely expert-based
theories, perceptual and experimental theories and humanistic theories [13].

The literature highlights two contradictory paradigms: an objective model assuming
that the aesthetic value occurs on the landscape properties and a subjective one considering
the aesthetical value as an evocation through “the eye of the beholder” [15]. A wide range
of indices has been reviewed and identified in the literature. Yet, the visual quality has
been reduced in other studies to the concept of naturalness. Thus, the visual value of the
landscape increases with the absence of visible human impact [55]. Other authors designed
their visual quality indices in order to evaluate the landscape’s visual state [55,56]. Some
demonstrated their effectiveness in other contexts after careful adjustments, taking into
account the landscape’s differences and specificity [16].

For this study, a set of four indicators has been selected to evaluate the quality of the
landscape’s visual aspect.

• Share of positive land-cover forms (PLCF) and negative land-cover forms (NLCF)
were calculated to assess the landscape’s aesthetic quality over Chania and Keritis.
The classification of the LULC forms based on their impact on the visual quality was
performed based on Sowinska-Swierkosz and Michalik-Sniezek [20] and is clarified in
Table 3.

Table 3. Impact on perceiving visual quality of LULC classes.

LULC Classes Adopted in This Study Impact on Visual Quality

Forests Positive
Grasslands and Sparse Vegetation Positive
Agricultural Land Neutral
Built-Up Land Negative
Bare Land Neutral
Water Bodies Positive

• Form and color disharmony index (FCDHI): Form and color disharmony are assumed
to be related to the anthropogenic elements (man-made objects) and thus to the anthro-
pogenic land-cover forms. The integrity of natural objects is considered harmonious
in terms of color and form [57]. Sowinska-Swierkosz developed this index to evaluate
the harmony in terms of colors and forms of anthropogenic objects. It was calculated
as given by Sowinska-Swierkosz and Michalik-Sniezek [14]:

FCDHI = 0.5 × (2− 1√
(1 + log2(N))

) (7)

where N is the share of land-cover forms visually perceived as negative (Table 4). If
N < 1, then FCDHI = 0.
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Table 4. Percentages of area coverage of land-use/land-cover classes.

Year 1990 2006 2021

Forest 7.37% 6.73% 5.88%
Water bodies 0.05% 0.03% 0.02%
Agricultural land 31.39% 32.08% 32.50%
Bare land 7.02% 6.57% 6.58%
Built-up land 1.42% 2.31% 2.53%
Grassland and sparse vegetation 52.74% 52.27% 52.49%

• Shape disharmony index (SDHI): This index, elaborated by Sowinska-Swierkosz [57],
combines both the ecological and aesthetic values of the landscape in order to evaluate
the harmony degree of its shape:

SDHI =
|1− [

(
Sn×FRACn2

100%

)
+
(

Ssn×FRACsn
100%

)
]|

3
(8)

where Sn is the share of natural LULC forms (%), Ssn is the share of seminatural
LULC (%), FRACn is the fractal dimension index computed using FRAGSTAT for
natural land-cover forms and FRACsn is the fractal dimension index computed using
FRAGSTAT for seminatural forms.

The shape of the different patches forming the land-cover forms is reflected by the
FRAC index with FRAC = 1 in the case of simple shapes (squares for example) and
FRAC = 2 in the case of irregular shapes.

Cultural Dimension

The landscape’s historical-cultural aspect covers tangible and intangible values [14,
58,59]. The concept of cultural heritage focuses on heritage in terms of buildings and
architecture, territory and culture and historical value. However, most of the published
indicators in this field deal with the quality of the built heritage [60].

Sowińska-Świerkosz [59] and Volpiano [60] reviewed the published indicators dealing
with the historical-cultural components. The literature shows numerous qualitative and
quantitative indicators applied for the characterization, transferability, enhancement and
assessment of the cultural dimension. Yet, this facet is considered marginalized due to the
underdevelopment of operational standards and international cultural indices [60].

For this study, the Historical Monuments index (PROTAP) was used to evaluate the
cultural heritage values within the regions of Chania and Keritis based on the methodology
of Sowinska-Swierkosz and Michalik-Sniezek [14].

PROTAP =
Nmonuments

Area
(9)

where Nmonuments is the number of cultural monuments and Area is the total area of the
analyzed landscape (km2).

2.3.3. Statistical Analysis

A statistical analysis using Student’s t-test at the 95% confidence interval (p = 0.05)
was conducted to investigate whether there are statistically significant differences among
the measured landscape indicators’ values between the two data sources.

3. Results and Discussion
3.1. Image Analysis
3.1.1. Land-Use/Land-Cover Mapping from Landsat Data

Supervised classification using visible, NIR and SWIR band combinations of the three
Landsat imageries for 1990, 2006 and 2021 was carried out using the Maximum Likelihood
algorithm. These images were classified into six land-use/land-cover classes, namely
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forest, water bodies, agricultural land, bare land, built-up land and grassland and sparse
vegetation. The outcomes of the classification are given in Figure 2 and Table 4.
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The results showed that the dominant land-use/land-cover types in 1990, 2006 and
2021 were grassland and sparse vegetation, with around 52% of the total extent of the
prefecture followed by agricultural land with more than 30% of the total area. These
findings align with the general characteristics of land use/land cover in Crete as stated in
Panagos et al. [30]. Additionally, the results revealed a gradual decline in forest coverage by
nearly 1.5% from 1990 to 2021. On the other hand, the agricultural lands and the built-up
areas each experienced a 1.1% increase in percentage cover for the same period. Minimal
changes (less than 0.5%) were recorded for water bodies and bare land classes for the same
study period. Viewed as a time series, the outcomes did not reveal a critical spatiotemporal
change in the land-use/land-cover pattern regime of the region under study in the last three
decades. Similarly, the findings of Polykretis et al. [61] showed a low level of land-cover
change within the island of Crete between 1990 and 2019. To conclude, these outcomes
follow the predominant trend of the land-use/land-cover dynamic in Crete, where the
magnitude of change is manifested in terms of intensity rather than in the change of the
class type [28].

This study generated land-use/land-cover maps based only on satellite data imagery
to identify the ground features. The validation of the three produced maps for 1990, 2006
and 2021 was done by producing error matrices. For each map, 300 random points equally
distributed among the six categories have been validated using Google Earth imagery
corresponding to the closest possible image to the captured Landsat data. The results
showed an acceptable level of accuracy for use in the next stages of this research, exceeding
75% for the three produced maps. The lowest achieved accuracy was recorded for 1990
in terms of both overall (76%) and kappa statistics (0.71). This was mainly due to the low
resolution of Google Earth imagery used as reference data for this time period. The quality
of the reference satellite data improved the classification accuracy for the 2006 and 2021
produced maps, reaching 84% and 85.33%, respectively.

3.1.2. Land-Use/Land-Cover Mapping from PlanetScope Data

The classification of the PlanetScope image has been produced using the Maximum
Likelihood Classifier algorithm. Six classes (forest, water bodies, agricultural land, bare
land, built-up land and grassland and sparse vegetation) have been identified within the
region of the Keritis river basin. The outcome of the image classification revealed that land
use/land cover within the Keritis watershed is dominated by agricultural lands, grasslands
and forest, covering, respectively, 32.85, 32.79 and 32.63% of the total area of the region.
Additionally, the results showed a satisfying accuracy of the classification procedure with
an overall accuracy of 0.879 and a kappa accuracy of 0.823.

3.1.3. Land-Use/Land-Cover Prediction

Based on the classified Landsat images and the Corine data, the future land-use/land-
cover maps, at the mid and long term, were generated using the combined Markov and
Cellular Automata (CA-Markov) model (Figure 3). The area of coverage of each class by
percentage for the years 2030 and 2045 are illustrated in Table 5. The results showed a
difference in the coverage area between the generated maps derived from the two datasets.

Table 5. Predicted coverage areas of land-use/land-cover classes.

Dataset Prediction from Landsat Prediction from Corine

Year 2030 2045 2030 2045

Forest 5.56% 4.97% 7.95% 7.75%
Water bodies 0.01% 0.01% 0.29% 0.24%
Agricultural land 32.74% 33.31% 32.96% 34.02%
Bare land 6.47% 6.35% 1.35% 0.69%
Built-up land 3.10% 3.92% 2.79% 3.10%
Grassland and sparse vegetation 52.11% 51.44% 54.65% 54.18%



Land 2023, 12, 999 13 of 24Land 2023, 12, x FOR PEER REVIEW  14 of 26 
 

 

Figure 3. Land-use/land-cover prediction derived from (A) Landsat data and (B) Corine data for 

(a) 2030 and (b) 2045. 
Figure 3. Land-use/land-cover prediction derived from (A) Landsat data and (B) Corine data for
(a) 2030 and (b) 2045.



Land 2023, 12, 999 14 of 24

The grassland and sparse vegetation class would continue to dominate more than
half of the total extent of Chania. Moreover, the outcomes showed a continued loss in
forest areas, quantified by 0.9% in the case of Landsat-based predictions and by 0.2% in
the case of Corine-based predictions. Additionally, the outcomes revealed a continued
increase in the agricultural and built-up lands for both datasets. The results derived from
Landsat classified images demonstrated that the speed of urbanization would slightly
increase with a susceptible extension in built-up areas by 1.4% in the next 24 years (from
2021 to 2045) compared to 1.1% in 21 years (from 1990 to 2021). This could result from
the gradual increase in both population and tourism activities. However, the outcomes of
the predictions based on Corine maps show a decline in the speed of urbanization from
0.94% (from 1990 to 2018) to 0.57% (from 2018 to 2045). Similarly, the predicted increase
in the coverage of the agricultural area varied between the two datasets; it is two times
more important for Corine-based than Landsat-based maps. Generally, no dramatic change
would be observed in the trend characterizing the temporal evolution of the land use/land
cover within the prefecture of Chania in the horizon of 2045.

It is necessary to highlight that the future land-use/land-cover maps were generated
based on historical land-use/land-cover data without considering any physical, political
or socioeconomic factors (e.g., population growth, environmental policies, etc.). The
consideration of such variables would improve the reliability of the prediction. In this
study, these factors were overlooked due to the lack of data.

3.2. Landscape Quality Analysis
3.2.1. Landscape Quality within Chania Prefecture
Structural Dimension

The structural quality within Chania was assessed based on the results of the selected
landscape metrics computed using the FRAGSTATS software. According to the results
of Student’s t-test, four selected structural landscape indicators—namely percentage of
landscape occupied by a class of the highest share (PLAND), mean patch area (MPA), edge
density (ED) and contagion index (CONTAG)—were statistically sensitive to the land-
use/land-cover dataset, with p-values of 0.0044, 0.0017, 0.0002 and 0.0002, respectively.

In accordance with the results of the image analysis section, the outcomes of PLAND
values (Figure 4a) confirmed that for both datasets, the highest share of the landscape was
occupied by sparse vegetation and grassland for the three studied years and remained valid
for the projected years of 2030 and 2045. Even though the type of the class of the highest
share was the same for both Landsat classified images and Corine maps, a statistically
significant difference was recorded in the percentage of landscape occupied by this class,
ranging between 52.74% and 51.44% in the case of Landsat and between 57.4% and 54.1%
in the case of Corine. Similarly, mean patch area values (Figure 4b) were 87 to 109 times
higher according to Corine compared to Landsat classified images. This result derived
from the differences in terms of spatial resolution and minimum mapping units between
the two datasets. Analogously, a similar trend was observed for the edge density results
(Figure 4c), with a statistically significant difference between the two datasets. Moreover,
the results showed that CONTAG values (Figure 4d) were significantly higher in the case of
the Corine dataset compared to Landsat. In fact, a higher mapping unit and a lower spatial
resolution of the Corine dataset resulted in higher values of CONTAG, indicating a more
compact structure of land cover with fewer and larger patches.
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Figure 4. Landscape structural indicators: (a) PLAND, (b) MPA, (c) ED and (d) CONTAG.To sum
up the outcomes of the landscape metrics revealed a relatively high structural quality within the
prefecture of Chania. However, no specific trend characterizing the diachronic evolution of the overall
structural value for our study area exists.

Ecological Dimension

The ecological aspect of the landscape was evaluated based on two indices dealing
with the fragmentation and the diversity of the landscape, namely the density of the
ecological barriers (ECOLBAR) and the modified Shannon diversity index (MSDI).

Ecological barriers were regarded as fragments of paved roads crossing natural and
seminatural land-cover forms. The results showed a low density of the ecological barriers
(Figure 5a) for both datasets (<0.3 km/km2). A slight decrease in the values of this index,
meaning an improvement in the ecological quality, has been observed over the years for
both datasets. Given that the road network did not experience an essential historical
change and that we maintained this trend when assessing the future ecological quality,
this decline in ECOLBAR values could be explained by the loss of natural and seminatural
areas (e.g., due to forest fires). From this perspective, the decrease in ECOLBAR should
be understood not as an amelioration of the ecological values but instead as a result of
slight land-use/land-cover deterioration. Additionally, a statistically significant difference
at the 95% confidence interval has been recorded between the results derived from the two
data sources.

The outcomes of the modified Shannon diversity index, taking into account the degree
of ecological significance of different land-cover forms, showed relatively low values of
MSDI (Figure 5b), ranging between 0.35 and 0.33 in the case of Landsat and between
0.39 and 0.4 in the case of Corine. Given that MSDI = 0 when all the landscape is covered
by only anthropogenic land-cover forms and MSDI = 1 when natural land-cover forms
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cover all the landscape, the distribution is perfectly even. The results of Student’s t-test
showed that the difference between the outcomes derived from the Corine database and
the Landsat classified maps was not statistically significant.
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Generally, the time series of the ECOLBAR and MSDI values analysis revealed a quite
stable ecological quality within Chania. However, some studies [62,63] highlighted the
extinction likelihood of endemic flora species in Crete, challenging hence the island’s plant
diversity and thus the landscape’s ecological aspect.

Visual Dimension

For both datasets, more than 50% of the area of Chania prefecture was covered by
elements positively impacting the visual landscape quality, namely water bodies and
natural and seminatural vegetation. According to the Landsat classified maps, the share
of the positive land-cover forms (Figure 6a) declined by 1.8% from 1990 to 2021 and −t is
susceptible to recording a 2% decrease between 2021 and 2045. Based on the results derived
from the Corine database, the historical quantified loss in the land-cover forms perceived
as positive is two times more important than the predicted loss by 2045.

Additionally, elements having a negative impact on the visual landscape quality were
regarded as buildings and roads. Unsurprisingly, the share of land-cover forms perceived
as negative (NLCF) (Figure 6b) experienced a historical increase of about 0.9% for both data
sources. The future prediction revealed a continued increase in NLCF values by 0.6% in the
case of Corine (from 2018 to 2045) and 1.3% in the case of Landsat-derived maps (from 2021
to 2045).

The form and color disharmony index (FCDHI) (Figure 6c) deals with the anthro-
pogenic objects perceived as negative elements for visual landscape quality. For both
datasets, FCDHI values were expected to increase from 0.6 in 1990 to 0.7 in 2045. The rather
high values recorded for FCDHI indicate quite a degraded state of the landscape in terms
of form and color.

The shape disharmony index (SDHI) (Figure 6d) involved the proportion of areas
with different levels of anthropogenic transformation and the shape index calculated by
means of the Fractal Dimension Index (FRAC). For both datasets and for the different years,
the results showed low values of SDHI of around 0.1 (approaching 0), indicating a high
harmony of shapes.

The statistical analysis at the 95% confidence interval revealed a statistically significant
difference between the two data sources when measuring the share of positive land-cover
forms and the form and color disharmony index. On the contrary, a statistically insignificant
difference has been observed between the two datasets when measuring the share of
negative land-cover forms and the shape disharmony index. The two analyzed data
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sources are derived from medium-resolution satellite data; hence, the statistical difference
occurred only for indicators dealing with natural and seminatural land-cover forms, which
are better classified than anthropogenic land-cover forms (e.g., road infrastructure). To sum
up, the use of the land-cover dataset enabled the evaluation of the landscape as a whole.
However, it is likely to misinterpret the impact of land-cover change on the visual value
due to the limitation of such datasets in capturing the visible features of the landscape.
In other words, the effectiveness of land-cover data in assessing the visual aspect of the
landscape depends on how detailed the classification is. Thus, it is advised to diversify
and combine the data sources to expand and diversify the indicators used for more reliable
results [26].
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Cultural Dimension

The historical monuments index assessed the cultural facet of the landscape, showing
a low cultural value of 0.1 within the Chania prefecture. Figure 7 presents the spatial
distribution of the 263 historical monuments located within our study area. It is necessary
to highlight that according to the literature, cultural quality is assessed through tangible
values dealing with built heritage, man-designed gardens and parks and intangible cultural
heritage [14,57,58]. Given that intangible values could not be captured and evaluated based
on Earth-observation data and the missing data quantifying the man-designed greenery
within Chania, a confirmation of this result requires both additional analysis and data.
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3.2.2. Impact of Scale
Spatial Resolution

In order to better investigate the impact of spatial resolution on the landscape indices,
the results of the measured indicators derived from the high-resolution dataset, namely
the PlanetScope satellite, was compared to those derived from medium-resolution data
sources, specifically Landsat and Corine. Landscape indicators were measured for the
Keritis watershed located within Chania prefecture (Figure 8).

The results (Table 6) confirmed the previous findings, showing that landscape struc-
tural indicators are sensitive to the land-use/land-cover data. For instance, for both
PlanetScope and Landsat data sources, the highest share of the Keritis landscape according
to the PLAND index was occupied by agricultural land, with a notable difference in the
percentage of land occupied by agricultural areas of 14.7% between the two datasets. In
the case of Corine, the highest share was occupied by a different land-cover form, namely
sparse vegetation and grasslands.

Additionally, mean patch area (MPA) values were greatly higher in the case of the
Corine dataset compared to both Landsat and PlanetScope. The lowest value was recorded
in the case of PlanetScope (0.17 ha), which was 15 times lower than Landsat and 1735 times
lower than Corine. In the case of the Corine dataset, the smallest mapped spatial feature
covers 25 ha, meaning that the patch area is equal to or greater than 25 ha. On the other
hand, for the classified satellite images, the patch area is equal to or greater than the pixel
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size (30 × 30 m for Landsat and 3 × 3 m for PlanetScope), which explains the critical
difference in the mean patch area’s values.
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Table 6. Landscape indicators: Results of the different spatial resolutions.

PlanetScope Landsat Corine

PLAND 32.848 47.546 48.534
MPA 0.170 2.507 294.993
ED 519.009 129.865 15.856
CONTAG 53.541 45.932 65.998
ECOLBAR 0.239 0.120 0.064
MSDI 0.459 0.363 0.329
PLCF 0.655 0.471 0.533
NLCF 0.010 0.014 0.010
FCDHI 0.499 0.595 0.486
SDHI 0.091 0.169 0.143
PROTAP 0.069 0.069 0.069

Similarly, a considerable difference has been observed in the edge density (ED) values
between the three datasets. The ED value in the case of PlanetScope was 32.8 times greater
than in the case of Corine and 4 times greater than for Landsat images. These differences
derived also from the differences in the spatial resolution and the minimum mapping units
between the different datasets’ data sources.

Concerning the ecological state, the results showed a low density of ecological barriers
for the three datasets (ECOLBAR) (<0.3 km/km2). We notice an increase in ECOLBAR
values with a decrease in the minimum mapping units. Unfortunately, we could not
evaluate the statistical significance of these findings due to the availability of PlanetScope
data. Similar results have been observed for the modified Shannon diversity index (MSDI).

The results of the visual value indicators showed different values between the three
datasets. However, there is no trend characterizing the relationship between these indices
and the spatial resolution of the data sources. The cultural dimension index was not affected
by the spatial resolution of the satellite data, since it was not acquired from land-use/land-
cover maps.

Spatial Extent

For this study, the extent of Chania prefecture has been considered as the landscape-
level unit for the analysis. Given the broad geographic area, such an extent could comprise
several landscape subunits of variable qualities and impact the relevance of the observed
elements corresponding to the different aspects. Thus, in order to evaluate the effect of the
scale at which the landscape is investigated in the assessment, the results of the landscape
indices calculated for Chania prefecture have been compared to those measured for the
Keritis watershed, presenting a subunit of the total extent (Table 7).

The 95% confidence interval statistical analysis revealed a statistically significant
difference in PLAND values between the two spatial extents for the two data sources.
In the Corine dataset case, both Chania and Keritis were mostly occupied by grasslands
and sparse vegetation. On the other hand, in the case of the Landsat classified images,
the highest shares of Chania and Keritis were occupied by different land-use/land-cover
forms, namely grasslands and agriculture, respectively. The mean patch area index seemed
to be independent from the spatial extent. However, we cannot conclude whether there
is a correlation between edge density and contagion indicators and the spatial extent of
the landscape. The difference in edge density values between Chania and Keritis was
statistically significant in the case of Corine and nonsignificant in the case of the Landsat
data source. A similar outcome has been observed for the contagion index, where the
difference between the two studied spatial extents was significant only for the Landsat
classified images.

Concerning the ecological state, the results of both ECOLBAR and MSDI demonstrated
a significant difference between Chania and Keritis, thus proving the relationship between
the landscapes’ indicators and the spatial scale at which the ecological quality is evaluated.
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In addition, the visual aspect seemed to be related to the landscapes’ spatial extent. For
both datasets, the outcomes of the visual indicators (except the FCDHI index in the case
of Landsat) revealed a statistically considerable difference between the two analyzed
landscape scales. The outcome of the cultural dimension has also been affected by the
spatial extent.

Table 7. Landscape indicators: Results of the different spatial extents.

Year 1990 2006 2021 2030 2045

Extent Chania Keritis Chania Keritis Chania Keritis Chania Keritis Chania Keritis

Landsat Data Source
PLAND 52.745 41.246 52.273 45.339 52.491 47.546 52.113 48.252 51.439 48.563
MPA 4.130 3.836 6.233 7.328 3.091 2.507 3.824 3.042 4.397 3.451
ED 101.614 108.137 79.909 75.661 116.449 129.865 102.186 113.577 92.591 104.676
CONTAG 52.903 50.669 54.978 51.993 51.286 45.932 52.468 47.684 53.233 49.109
ECOLBAR 0.208 0.106 0.238 0.106 0.199 0.120 0.184 0.104 0.177 0.100
MSDI 0.350 0.397 0.345 0.382 0.337 0.363 0.334 0.359 0.329 0.353
PLCF 0.602 0.501 0.590 0.491 0.584 0.471 0.577 0.463 0.564 0.460
NLCF 0.014 0.003 0.023 0.001 0.025 0.014 0.031 0.016 0.039 0.016
FCDHI 0.592 0.000 0.664 0.000 0.673 0.595 0.692 0.616 0.710 0.617
SDHI 0.124 0.158 0.126 0.160 0.130 0.169 0.132 0.171 0.135 0.171
PROTAP 0.112 0.069 0.112 0.069 0.112 0.069 0.112 0.069 0.112 0.069

CORINE Data Source
PLAND 57.413 52.794 54.091 48.749 54.844 48.534 54.655 48.414 54.185 47.753
MPA 480.062 470.394 272.078 294.993 288.238 294.993 264.806 322.307 273.643 341.266
ED 11.437 8.806 18.692 16.418 18.611 15.85.62 17.256 15.436 15.368 13.264
CONTAG 68.080 71.858 64.142 65.726 65.347 65.998 66.187 66.452 67.083 67.531
ECOLBAR 0.161 0.072 0.149 0.066 0.139 0.064 0.138 0.063 0.124 0.061
MSDI 0.344 0.302 0.353 0.329 0.352 0.329 0.352 0.328 0.352 0.326
PLCF 0.654 0.558 0.624 0.535 0.631 0.533 0.631 0.532 0.622 0.523
NLCF 0.016 0.010 0.022 0.009 0.025 0.010 0.026 0.010 0.031 0.010
FCDHI 0.613 0.500 0.659 0.477 0.673 0.486 0.674 0.488 0.692 0.511
SDHI 0.105 0.133 0.106 0.142 0.103 0.143 0.103 0.143 0.111 0.146
PROTAP 0.112 0.069 0.112 0.069 0.112 0.069 0.112 0.069 0.112 0.069

These findings confirm the extreme importance of the spatial extent on the relevance
of the landscape’s elements corresponding to the different facets and thus the landscape
assessment [21,58,60,64].

4. Conclusions

The combination of Earth-observation data and Geographic Information Systems (GIS)
with the application of landscape indicators proved to be a useful tool for a rather rapid and
low-cost diachronic landscape assessment. Moreover, both Corine and Landsat classified
images seemed to be efficient in measuring these indices. However, the outcomes revealed
a significant difference between the two datasets, especially when assessing the structural
facet of the landscape. The important difference between the two datasets, especially for the
mean patch area and edge density indicators, results mainly from the important difference
in the minimum mapped unit varying from the pixel size of 30 × 30 m for Landsat to 25 ha
for Corine. The ecological state within the prefecture is quite stable for our study period,
especially because Chania had not experienced a colossal extension in its road network
during the last few years. Furthermore, the visual quality within Chania is quite high, with
around 60% of its total area covered by land-use/land-cover forms perceived as visually
positive. However, a susceptible decrease in the visual quality is likely to be observed
by 2045, resulting mainly from a susceptible potential increase in anthropogenic land-
use/land-cover forms. Finally, despite the presence of numerous historical monuments
(263 monuments) located in Chania, the cultural quality of the prefecture has been evaluated
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as low with a cultural value of 0.1, which requires further assessment. To sum up, the Corine
program presents a very potential data source to use when evaluating the landscape’s
ecological and visual dimensions, given its easy accessibility and its direct usefulness and
taking into account the similar general evolution trends between the two datasets (Landsat
and Corine) when assessing these landscapes’ aspects. Yet, the coarse spatial granulation of
the Corine land cover poses a limitation when assessing the landscape’s structural values.

The analysis of the impact of the scale on the landscape quality assessment revealed
that the landscape’s structural indicators are significantly affected by the spatial resolu-
tion of the data source. On the other hand, the ecological and visual aspects seemed to
be statistically related to the spatial extent at which the landscape quality is evaluated.
Moreover, the cultural aspect is independent from the spatial resolution of the data source
but is affected by the spatial extent of the landscape and the corresponding number of
cultural sites, with a lower cultural value observed within Keritis compared to the total
area of Chania.

Even though the general aim of this study has been achieved, there are some limitations
that need to be highlighted. Most of the applied indicators are derived from land-use/land-
cover data, so improving the image classification accuracy is necessary. Additionally,
this study was mainly based on Earth-observation data, which to some extent could be
insufficient in evaluating the landscape in all its complexity, especially when studying the
cultural components. Moreover, landscape as understood nowadays as being highly related
to its complex social and economic context. Hence, the incorporation of socioeconomic
variables is crucial for more reliable results.
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