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Abstract: Recently, the demand for high-quality land use/land cover (LULC) information for near-
real-time crop type mapping, in particular for multi-relief landscapes, has increased. While the
LULC classes are inherently imbalanced, the statistics generally overestimate the majority classes and
underestimate the minority ones. Therefore, the aim of this study was to assess the classes of the 10
m European Satellite Agency (ESA) WorldCover 2020 land use/land cover product with the support
of the Google Earth Engine (GEE) in the Honam sub-basin, south-west Iran, using the LACOVAL
(validation tool for regional-scale land cover and land cover change) online platform. The effect
of imbalanced ground truth has also been explored. Four sampling schemes were employed on a
total of 720 collected ground truth points over approximately 14,100 ha. The grassland and cropland
totally canopied 94% of the study area, while barren land, shrubland, trees and built-up covered the
rest. The results of the validation accuracy showed that the equalized sampling scheme was more
realistically successful than the others in terms of roughly the same overall accuracy (91.6%), mean
user’s accuracy (91.6%), mean producers’ accuracy (91.9%), mean partial portmanteau (91.9%) and
kappa (0.9). The product was statistically improved to 93.5% ± 0.04 by the assembling approach
and segmented with the help of supplementary datasets and visual interpretation. The findings
confirmed that, in mapping LULC, data of classes should be balanced before accuracy assessment. It
is concluded that the product is a reliable dataset for environmental modeling at the regional scale but
needs some modifications for barren land and grassland classes in mountainous semi-arid regions of
the globe.

Keywords: quality assessment; imbalanced dataset; classification accuracy; cropland area; map
accuracy; image processing

1. Introduction

The Green Revolution caused widespread human interventions on the Earth’s surface
that had adverse impacts on local and global environmental ecosystems [1]. The authorities
permit the transformation of native ecosystems for agricultural cultivation to feed the
growing global population. A number of researchers and organizations now attribute
changes to deforestation, industrialization, urban expansion [2,3], gains in agriculture and
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losses in forests [4] and socio-economic development [5], primarily as a result of population
growth in recent decades.

Land cover is known as the observed biophysical coverage of the ground surface,
such as vegetation, bare soil, rock and built-up features on the Earth’s surface [6], while
land use is routinely derived from land cover and is related to local actions in the sur-
rounding environment [7,8]. Land use/land cover (LULC) and related dynamics have
been prioritized by the Global Land Project [9] as they essentially affect the biosphere,
hydrosphere, atmosphere and lithosphere [10]. Reliable LULC dynamic maps can provide
insight into human and ecosystem interactions [11,12] in an ever-changing world. Dynamic
LULC changes are complex processes that show a degree of nonlinearity that is traceable to
natural processes and anthropogenic activities [12]. Thus, such information is a preliminary
key input for modeling crop type detection and crop rotation dynamics, which is very
important for decision makers [13].

Data driven from any manual processing corrections is generally a time-consuming
task and analyzing vast amounts of timely data is hard to manage. Scientists have proven
that remotely sensed data is the best choice among other techniques to monitor LULC
dynamic changes, considering its high spatiotemporal resolution, ready availability and
wide coverage [14], as well as fast update speed [15]. Remotely sensed imagery needs
to be spatially, spectrally and radiometrically processed to at least Level 2B in areas with
low local relief. Ortho-rectification should also be accounted for in regions that are quite
mountainous to obtain consistently high position accuracies.

Unsupervised classification and clustering were the initial common methods for LULC
mapping at large-scales [16]. A wide variety of classification algorithms have been em-
ployed when researchers are faced with complex big data. The increasing availability of
remotely sensed data in an era of big and open data provides new opportunities to reach
an automated land cover classification [17]. Many of the current LULC maps have been
produced mostly based on Machine Learning (ML), e.g., CGLS-LC 2019 (Copernicus Global
Land Service) [18], IGBP DISCover (International Geosphere-Biosphere Program), UMD
1998 (The University of Maryland Department of Geography land cover classification),
MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover, Global Land Cover
(GLC 2000), GlobeCover 2009, and Global Land Cover by National Mapping Organizations
(GLCMNO), and among them, Global Land Cover Datasets at a 30 m Resolution (Glo-
beland30) [19] have the lowest spatial resolution (>100 m) at both continental and regional
levels [20].

In this sense, a novel cloud computing platform named the Google Earth Engine (GEE)
summarizes the data series that can be quickly recalled from Google servers with appli-
cation programming interfaces (APIs) based on JavaScript and Python languages [21,22].
Unlike conventional LULC studies, GEE has a convenient coding system and high com-
puting speed since it does not have the hardship of downloading raw satellite images
from archives. From another point, access to a novel LULC service was developed by the
advent of SAR imagery data, such as Sentinel-1. Therefore, optical and radar data fusion
would considerably increase the accuracy of LULC mapping [23,24] and the monitoring of
agricultural lands, starting with the launch of the ESA Earth observation mission in 2014.

Map producers need to assure potential users that their produced map is of high
quality and accuracy assessment is a metric to this process [25]. Recently, the European
Space Agency (ESA) WorldCover developed a land cover map V100 product at 300 m
and 10 m resolutions based on Sentinel-1 and Sentinel-2 images for 2020 [26,27]. This new
product on the GEE platform can significantly improve research efficiency by ensuring
LULC mapping accuracy and reducing redundant studies that require LULC for modeling
large-scale areas. In addition to the ESA product, FROM-GLC30 (Finer Resolution Obser-
vation and Monitoring of Global Land Cover) for 2017, Environmental Systems Research
Institute (ESRI 2020) and GLC (Environmental Systems Research Institute 2020 Global Land
Cover Map) maps are readily available. Finer Resolution Observation and Monitoring of
Global Land Cover (FROM-GLC30) produced by Tsinghua University, China, is based on a



Land 2023, 12, 979 3 of 22

random forest algorithm [28], while ESRI, 2021 benefits from a deep learning model that
was produced by the collaboration of ESRI and Microsoft [29].

The validation of the ESA product using grid-based sampling found an overall accu-
racy (OA) of 74.4 ± 0.1% and 80.7% for all 11 classes at the global and Asian scales [30].
In addition, applying a grid sampling scheme may result in losing data points for classes
with a minimum area contribution and lead to an imbalanced training sample problem
with an insufficient sample [31] as bioinformatics datasets are inherently imbalanced [32].
Hence, it should be noted that a balanced dataset can better demonstrate the performance
of LULC classes. The findings showed that the ESA LULC CCI was the most accurate
product on global and continental scales. However, investigation is needed to adjust ESA
CCI LC 10 m spatial resolution via different sampling designs, i.e., balanced vs. imbalanced
datasets based on the LACOVAL [33–35] standard on a more detailed scale in particular
mountainous areas with high local relief variability employing an independent referenced
dataset. LACOVAL is a validation tool for regional-scale land cover and land cover change
that provides diverse accuracy metrics.

In view of the above, this research uses the ESA LULC CCI classification with support
from the GEE platform and aims to evaluate the ESA LULC CCI product by employing
four distinct spatial accuracy assessment strategies in the mountainous upper Karkheh
River Basin (KRB), west Iran. Specifically, our objectives were to (1) explore the effects
of a balanced dataset on the performance of LULC classes using the LACOVAL tool and
(2) assess whether the accuracy of the product is equal to or better than the global and
continental scales.

2. Materials and Methods
2.1. Study Area

The KRB has a semi-arid to arid climate and is one of the biggest rivers in Iran. The
Honam sub-basin is located in the mainstream of the KRB bounded by 33◦47′37” N to
33◦51′12” N latitudes, 48◦12′23” E to 48◦28′44” E longitude with a broad altitude diversity
ranged from 1519 m to 3575 m and an area of approximately 14,100 ha (Figure 1). The
study area was selected on the basis that it represents nearly all major landforms. The
heterogeneous landscape includes several types of land use, such as landscapes, which are
mainly characterized by natural resources and human activities.

The region is characterized by arid, mild winter, warm to very warm summer based
on agro-ecological zone (AEZ) of KRB according to De Pauw [36], meaning that it receives
relatively low rainfall of 493.1 mm y−1 (Alashtar synoptic meteorological station data
during 2000–2021). Rainy season typically falls between October and April, whereas the
dry season starts from April to September with negligible precipitation.

The region is generally an agriculture-based system in which livestock–food crop
production farming is the leading financial activity of the local population. Besides, high
quality agricultural lands have been converted and/or going to be converted to built-up
due to growing land prices impressed by inflation in recent decades.

The ESA LULC CCI product was recalled from the GEE online platform [21]. Then,
accuracy assessment was employed on independent ground truth to analyze the prelimi-
nary product. Since Gilmore Pontius Jr and Malizia [37] reported that map accuracy can be
reduced or increased by land use category aggregation, the preliminary LULC were opti-
mized based on ancillary data collected from several sources, taking into account temporal
and thematic consistency.

An overview of the study procedure, which uses several techniques, is shown in
Figure 2.
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2.2. Data Collection

European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) is one
of the most recent and detailed satellite products with 23 annual time series at the global
level, which was released in October 2021. It is a free access global LULC product at 10
m resolution for a time span of 1992–2018, principally through Sentinel-1 and Sentinel-2
satellite images, containing 11 separated LULC classes [30]; six out of 11 LULC classes
existing in the study region are summarized in Table 1. It should be pointed out that ESA
has been providing another product with lower spatial resolution (300 m) from 1992 to 2015
that uses AVHRR/SPOT-VGT/MERIS sensors. This dataset divides yearly global maps
into 22 classes, which have been defined based on the United Nations Food and Agriculture
Organization’s Land Cover Classification System (UN FAO-LCCS). The ESA WorldCover
project envisions providing high-quality products to various users. Consequently, we
expect that its developed novel services will be coming for accuracy assessment.
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2.3. Geospatial Uncertainty Assessment

The validation of satellite-driven products is needed during the remote sensing process
since it gives the ability of perceptiveness to control the product quality, as well as users’
confidence in using the satellite imagery products. In addition, the classification accuracy
worsens with increasing heterogeneity and decreasing patch size, especially at coarser
resolutions [38]. Therefore, the results of LULC classification need to be validated, as well
as calibrated, where necessary [6]. It can be reached through several validation assessment
methods, such as statistical, visual and spatial uncertainty assessment.

2.3.1. Statistical Assessment

Statistical assessment was carried out using the LACO-Wiki web-based framework
for LULC validation, which was developed by the ESA-funded LandCover Validation
(LACOVAL) standard [34,35] and the web architecture of GeoWiki [33]. LACO-Wiki has
been designed user-friendly to facilitate the LULC validation procedure and to share multi-
community users’ LULC maps and referenced datasets [34]. It offers a map accuracy tool
(tool.laco-wiki.net) that generates a square confusion matrix and similarly customized
report on exploring thematic map accuracy metrics, choosing from a set of different quality
indicators, including overall accuracy (OA), user’s accuracy (UA), producer’s accuracy
(PA), kappa (KA), average mutual information (AMI), portmanteau (PMA), partial port-
manteau (PMAP), allocation disagreement (All.Dis), quantity disagreement (Quan.Dis),
shift, exchange, average mutual information (AMI) and adjusted average mutual informa-
tion (Adj.AMI), except average user’s accuracy (AUA) average producer’s accuracy (APA),
and average partial portmanteau (Ave.PMAP). The details are summarized in Table 2.
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Table 1. Overview of the ESA LULC CCI product classes of our study based on the integration of FROM-GLC30 [28] and ESRI 2020 [29] Land Cover legends.

Class Code Description

Trees 10
Any significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of
dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water
underneath).

Shrubland 20
Shrubland is mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense
forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs, and tufts of grass, savannas with very sparse grasses, trees
or other plants. Its cover has a texture finer than tree canopies but coarser than grasslands. With a height between 0.3 and 5 m and cover percentage >15%.

Grassland 30
Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted
field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures;
grasslands for grazing, as well as natural grasslands; herbaceous cover percentage classification > 15%.

Cropland 40
Human planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land. Land that has clear traits
of intensive human activity. It varies from bare field, seeding, crop growing, to harvesting. Fruit trees are classified into forests. Pasture could be
transitional from croplands to natural grasslands. Lands for rice cultivation, arable and tillage lands, greenhouse farming.

Built-up 50 Human-made structures; major road and rail networks; large homogenous impervious surfaces, including parking structures, office buildings and
residential housing; examples: houses, dense villages/towns/cities, paved roads and asphalts.

Barren land 60

Lands with very sparse to no vegetation or not covered by vegetation or vegetation is hardly observable for the entire year, but dominated by exposed soil,
sand, gravel and rock backgrounds. Dry salt flats/pans occurring on the flat floored bottoms of interior desert basins; dried lake beds, mines; sandy areas
composed primarily of dunes; gravel land and bare rocks; other types of land not covered by vegetation or with no to little vegetation, such as lake/river
bottoms, in the dry season.
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Table 2. Statistics used in this study for validation of ESA LULC CCI map.

Statistics Acronym Definition Reference

Overall accuracy OA Calculated as the total number of correctly classified pixels
(diagonal elements) divided by the total number of test pixels. [39]

User’s accuracy UA The fraction of correctly classified pixels with regard to all pixels
selected as a given class. [40]

Producer’s accuracy PA The fraction of correctly classified pixels with regard to all pixels
of a given ground truth class. [40]

Kappa KA
A statistic that measures inter-rater agreement for qualitative
(categorical) items. It generally takes into account the agreement
occurring by chance.

[41,42]

Average mutual
information AMI

Measuring the dependence between two variables. AMI provides
a means of assessing the similarity of maps with different themes,
i.e., the amount of information that one map predicts of the other.

[43,44]

Portmanteau PMA
Describes the overall accuracy when the data are collapsed to two
classes, the land cover type of interest, and all other land cover
types combined into a single class.

[45]

Partial portmanteau PMAP Known as “figure of merit” and is robust to the source of bias. [45]

Allocation
disagreement All.Dis

The amount of difference between the reference map and a
comparison map that is due to the less than optimal match in the
spatial allocation of the categories, given the proportions of the
categories in the reference and comparison maps.

[46]

Quantity disagreement Quan.Dis
The amount of difference between the reference map and a
comparison map that is due to the less than perfect match in the
proportions of the categories.

[46]

Shift Shift

Exists for a pair of pixels when one pixel is classified as category
A in the first map and as category B in the second map, while
simultaneously the paired pixel is classified as category B in the
first map and as category A in the second map.

[47]

Exchange Exchange Exists for more than two categories of pixels, which are the
allocation differences that are not exchanged. [47]

Average mutual
information AMI The amount of information shared between a set of classified and

reference points. [43]

Adjusted average
mutual information Adj.AMI Normalized AMI to the theoretical maximum amount of

information possible given the distribution of categories in a map. [25]

Average user’s
accuracy AUA An average of the accuracy of individual categories of the user’s

accuracy. [48]

Average producer’s
accuracy APA An average of the accuracy of individual categories of the

producer’s accuracy. [48]

Average partial
portmanteau Ave.PMAP An average of individual categories of the partial portmanteau. -

2.3.2. Spatial Post-Classification Accuracy Assessment

Widely known statistical accuracy assessment values, such as kappa, or overall accu-
racy give a general idea about the accuracy of thematic maps [30]. It does not provide any
spatial interpretation against map quality. Spatial accuracy parameters inform users regard-
ing magnitudes of the source estimates [49] and degree of uncertainty in LULC mapping
across space. These types of spatially accurate estimates contribute to a better choice of the
most probable LULC maps for a region of interest. In addition, LULC product accuracy
should be estimated over a significant set of locations (typically > 30) with reference to in
situ data [50].
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The assembly of appropriate sampling design for the LULC referenced dataset was
one of the main challenges for the assessment of the product reliability as the assess-
ment procedure highly relies on quantity, quality and availability of reference points.
Given the imbalanced sampling density between and within classes, absence, over- and
under-sampling can considerably influence the outcomes, four separate sampling schemes
(Figure 3) for a total of 180 reference data points (Table 3) were investigated on map quality
as follows:
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Sampling scheme 1: Random sampling (RS)
A total of 180 points are randomly distributed over the study region, neglecting LULC

classes. Duplication is not possible.
Sampling scheme 2: Stratified random sampling (SRS)
A total of 180 points are randomly distributed over the six specified classes (known as

strata).
Sampling scheme 3: Equalized stratified random sampling (ESRS)
A total of 180 random points are evenly distributed in each LULC class (30 distinct

random referenced dataset for six classes).
Sampling scheme 4: Random sampling grid (RSG)
A total of 180 random points are distributed based on 873 × 873 m grids.
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Table 3. Distribution of the number and portion of reference points collected from different sampling
schemes.

Scheme
LULC Class

Tree Shrubland Grassland Cropland Built-Up Barren Land Total

1
No. of samples 0 1 120 52 0 7 180

Portion (%) 0 0.5 66.7 29 0 3.8 100

2
No. of samples 13 10 95 35 11 16 180

Portion (%) 7.2 5.6 52.8 19.5 6 8.9 100

3
No. of samples 30 30 30 30 31 29 180

Portion (%) 16.7 16.7 16.7 16.7 17.1 16.1 100

4
No. of samples 0 0 129 46 1 4 180

Portion (%) 0 0 71.7 25.6 0.6 2.1 100

2.3.3. Visual and Survey Assessment

The ESA LULC CCI product was compared visually using a variety of reference
layers, including VHR satellite and aerial imagery from Google and Bing, as well as
OpenStreetMap (latest version of LACO-Wiki of March 2020). For this purpose, GeoWiki
provides an online platform for users to upload the LULC map, choose sampling design
of random point, random pixel, random polygon, polygon at random point, stratified
random point, stratified random pixel and stratified random polygon (LACO-Wiki quick
start guide). The LACO-Wiki validation procedure contains a simple four-step process: (1)
upload dataset, (2) generate validation samples, (3) validate the map and, and (4) create a
report.

Sampling schemes 3 and 4 were added manually in ArcGIS 8 since LACO-Wiki does
not represent equalized and grid-based sampling schemes in its supported sampling
methods. In addition, several field revisits were conducted during 2020–2021 to identify
all suspicious points of each class via in situ reference data. In some areas, additional
existing historical Google Earth images and other suitable referenced datasets were also
used to improve the quality of the final map. In the case of any change in LULC classes, the
information was updated accordingly.

2.3.4. Post-Processing and Map Validation

Following the accuracy assessment of the LULC product, post-processing was carried
out to check and correct the LULC map for further studies. For this purpose, pixels in the
LULC classification map were converted to a vector format to relabel the values. The map
was then validated by confirming the class or by changing those classified incorrectly in
LACO-Wiki (Merged matrix tool). Finally, existing peer-reviewed ancillary datasets were
integrated with raw ESA LULC CCI product to improve the accuracy of the final classified
map; this is specifically suggested for identifying missed categories and/or classes with
less area portion, such as roads and rural buildings. These rules-based corrections were
applied based on the fact that certain LULC classes match with that of the historical ones.

3. Results
3.1. Preliminary LULC

The ESA LULC CCI thematic map was exported from GEE. The output 10 m resolution
map depicts 6 out of 11 LULC CCI classes as trees, shrublands, grasslands, croplands, built-
up and barren lands. This was in agreement with field survey results, to a significant extent,
except for river as water body class. An overview of the output map is given in Figure 4,
whereas individual calculated components of LULC are registered in Table 4. Official data
refer to the year 2020, in which 94% of the sub-basin area, already disregarding other land
uses, belongs to agricultural activities and livestock use.
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Table 4. Land use and land cover distribution of the Honam sub-basin derived from ESA LULC CCI.

LULC Class Extent (ha) Portion of Area (%)

Tree 72 0.5
Shrubland 37 0.3
Grassland 9775 69.8
Cropland 3411 24.2
Built-up 91 0.6

Barren land 654 4.6

Figure 4 shows that croplands are present in central/south-west regions of the sub-
basin, where the elevation ranges from 1519 m to 2875 m. This exactly matches the purple
regions of the digital elevation model (Figure 1). The tree class is dispersed around water
resources, such as the Honam perennial river, which is regularly located at the lowest parts
of the sub-basin (Figure 4b). Most of the shrubland class is found in the southern mountains
of the study area (Figure 4c) at the lower elevation range limits, compared to croplands.
Urbanization mainly developed along the river and roads (Figure 4a).

The results from the classified map indicated that 69.8% of the sub-basin area was
covered by grassland, followed by cropland (24.2%), barren land (4.6%), built-up (0.6%),
tree (0.5%), and shrubland (0.3%).
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3.2. Spatial Accuracy Assessment
3.2.1. Random Sampling (RS)

Accuracy estimates of the random sampling scheme can be found in Table 5. On a
regional scale, the overall map accuracy was 87%. In terms of class-specific accuracies,
grassland and cropland had high accuracies according to UA and PA. Shrubland and barren
land classes had moderate accuracies, while tree and built-up had zero accuracy due to the
lack of reference data within the classes (Figure 3a). In general, there was an overestimation
of the grassland compared to the random validation dataset.

Table 5. Confusion matrix and quality indicators of the random sampling scheme for the ESA LULC
CCI product.

Observation

Predicted Trees Shrubland Grassland Cropland Built-Up Barren Land UA

Trees - - - - - - 0%
Shrubland - 1 - - - - 100%
Grassland - 9 101 4 - 6 84.2% ± 0.065
Cropland 2 - - 50 - - 96.2% ± 0.052
Built-up - - - - - - 0%

Barren land - - - 2 - 5 71.4% ± 0.36

PA 0% 56.9% 100% 89.21% 0% 60.87% 87%

PMA 98.79% 95.74% 91.02% 95.13% 100% 95.4%

PMAP 0% 10% 84.17% 86.21% 0% 38.46%

Note: correct classifications are on the matrix diagonal; misclassifications are off-diagonal [51], UA: user’s accuracy,
PA: producer’s accuracy, MAP: portmanteau, PMAP: partial portmanteau.

The calculated portmanteau (PMA) values were other than zero for classes in which no
sample exists. Surprisingly, the values for the remaining classes were almost the same for
various UA and PA, ranging from 56.9% to 96.2%. The partial portmanteau (PMAP) metric
was more robust than the PMA to the source of bias that OA has nothing to do with the class
of interest [45] because PMAP eliminates true negatives from the calculation unlike PMA.
This has been meaningful in our study with 0% PMAP of no-sampled classes. The results
of the PMAP showed that the values were close to the UA estimates. In addition, cropland
and grassland obtained a high accuracy of 86.21% and 84.17%, respectively. However, the
accuracy was strongly adjusted for shrubland (from 56.9% to 10%) and barren land (from
60.87% to 38.46%).

3.2.2. Stratified Random Sampling (SRS)

The square confusion matrices and class-specific accuracies for the SRS sampling
scheme are listed in Table 6. Similar to RS, OA reached 87%. It happened on occasion that
often-neglected classes, i.e., tree, built-up and shrubland, had around 10 samples per class
since strata were formed based on classes’ shared attributes in SRS.

The accuracy of the most prevalent class of the study region, i.e., grassland (see Table 4),
increased by 9.48%, while the accuracy of cropland decreased by 10.49% in terms of UA.
However, the PA metric tended to be improved for these classes.

According to PMAP, built-up and grassland could achieve reasonable accuracy, while
tree, cropland and shrubland classes had moderate accuracy; barren land again had low
accuracy.

3.2.3. Equalized Stratified Random Sampling (ESRS)

The RS and SRS sampling schemes suggest unequal sample inclusion probabilities with
fixed sample size [52,53]. A key factor for the accurate assessment of LULC classification
is a sufficient amount of high-quality reference data, spanning all detectable classes with
relatively balanced observations and distribution [31,32]. Since the ESA LULC CCI detected
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six classes for the region of interest, ESRS allows for the spatial distribution of the reference
data with a roughly equal set of 30 in situ locations for each class according to the suggestion
of Bayat [50].

Table 6. Confusion matrix and quality indicators of the stratified random sampling scheme.

Observation

Predicted Trees Shrubland Grassland Cropland Built-Up Barren Land UA

Trees 9 - - 3 - 1 69.23% ± 0.26
Shrubland - 8 2 - - - 80% ± 0.26
Grassland - 2 89 3 - 1 93.68% ± 0.05
Cropland - - 4 30 - 1 85.71% ± 0.11
Built-up 1 - - - 10 - 90.91% ± 0.17

Barren land - - 9 - - 7 43.75% ± 0.25

PA 88.39% ±
0.2

78.51% ±
0.24

89.25% ±
0.04 84.66% ± 0.1 100% 60.2% ± 0.3 87%

PMA 97.79% 97.67% 89.83% 94.04% 99.49% 95.27%

PMAP 64.29% 66.67% 80.91% 73.17% 90.91% 36.84%

Note: correct classifications are on the matrix diagonal; misclassifications are off-diagonal [51], UA: user’s accuracy,
PA: producer’s accuracy, MAP: portmanteau, PMAP: partial portmanteau.

Half of the LULC classes received exactly 30 reference data points; grassland, tree
and built-up classes were over-sampled, while barren land was under-sampled (Table 7).
This can be attributed to the proximity of tree and built-up samples that had a very low
area contribution as compared to remaining 98.6%, which concerns the high probability of
neighboring samples replacing within the neighboring classes (Figure 3c). The shrubland
did not follow over- and under-sampling due to its geographical distance from other classes.
The ESRS sampling scheme resulted in an accuracy as high as 91.6%.

Table 7. Confusion matrix and quality indicators of the equalized stratified random sampling scheme.

Observation

Predicted Trees Shrubland Grassland Cropland Built-Up Barren Land UA

Trees 30 - - - - - 100%
Shrubland - 27 3 - - - 90% ± 0.1
Grassland - 2 26 1 - 1 86.67% ± 0.12
Cropland - - 1 29 - - 96.67% ± 0.065
Built-up 1 - - - 30 - 96.77% ± 0.063

Barren land - 1 2 - 3 23 79.31% ± 0.15

PA 96.88% ±
0.06 89.6% ± 0.1 82.21% ±

0.11
96.45% ±

0.067
90.91% ±

0.09
95.57% ±

0.08 91.6%

PMA 99.45% 96.65% 94.39% 98.87% 97.81% 96.14%

PMAP 96.77% 81.82% 72.22% 93.55% 88.24% 76.67%

Note: correct classifications are on the matrix diagonal; misclassifications are off-diagonal [51], UA: user’s accuracy,
PA: producer’s accuracy, MAP: portmanteau, PMAP: partial portmanteau.

By balancing the dataset specifically for barren land, it was possible to reach a higher
accuracy of 98%, the highest accuracy of our study. We point out that cropland accuracy
became very ideal according to both high PA and UA values. Tree classification accuracy
alone reached approximately 97%, whereas the accuracy of this sampling scheme was
slightly higher than that of RS and SRS.

As reported by PMAP, accuracy was sharply increased, with 17.5% and 39.8% improve-
ment for shrubland and barren land classes, respectively, in the ESRS sampling scheme.
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This could be related to either a higher sample size compared to the previous or PMAP
true negative elimination.

3.2.4. Random Sampling Grid (RSG)

The gridded 873 × 873 m sampling scheme covers similar 180 reference points and
showed a reasonable spatial distribution pattern (Figure 3d) over the study area. The RSG
yields a considerably higher accuracy than RS, SRS and ESRS, only referring to UA and
PA. However, it reaches 98% accuracy; the classes occupying only a small proportion of
a landscape outperform zero accuracy for the same reason as stated for RS (Table 8). The
PMAP values also demonstrated this.

Table 8. Confusion matrix and quality indicators of the random sampling grid.

Observation

Predicted Trees Shrubland Grassland Cropland Built-Up Barren Land UA

Trees - - - - - - 0%
Shrubland - - - - - - 0%
Grassland - - 127 1 - 1 98.45% ± 0.02
Cropland - - - 46 - - 100%
Built-up - - - - 1 - 100%

Barren land - - 1 - - 3 75% ± 0.49

PA 0% 0% 99.21% 97.93% 100% 75.15% 98%

PMA 100% 100% 98.34% 99.45% 100% 98.89%

PMAP 0% 0% 97.69% 97.87% 100% 60%

Note: correct classifications are on the matrix diagonal; misclassifications are off-diagonal [51], UA: user’s accuracy,
PA: producer’s accuracy, MAP: portmanteau, PMAP: partial portmanteau.

Better characterization of the ESA LULC CCI product at a regional scale compared to
global validation [30] might be related to its inherent level of high spatial resolution, which
will surely be neglected at a global scale. High overall accuracy seems to be misleading
when additional points not in that category are correctly classified. We expect that more
reference data were placed for tree, shrubland and built-up classes in RSG, especially
against RS and ESRS designs, because sample inclusion probability is bounded to squared
873 m in this approach.

We found that a high correlation existed between the number of reference data and
the share of the area. For example, 127 out of 180 grassland reference data were equal to
69.8% of area (for more information on this data, see Table 4). This approved that RSG
allocated samples into classes according to the corresponding area’s share. The accuracy of
barren land was comparable to those previously calculated sampling schemes, except for
ESRS, in terms of UA and PA metrics. However, PMAP represented 16.67% lower accuracy
in RSG than ESRS. In the case of adding the PMAP metric to the quality indicators by
Tsendbazar [30], the non-random geographical distribution was more apparent.

4. Discussion

For individual LULC classes, PA and UA provided partly related perspectives on
category-level accuracy. Interestingly, in an accuracy metric intensive environment, the
proposed equalized design, i.e., ESRS, seemed to be much more efficient in the accuracy
assessment of individual LULC classes (see red lines in Figure 5), as our intuitive sense was
raised. This is in consistent with Mallah [32] who reported that the use of balanced data
in-creases the OA and Kappa metrics of soil texture classes.

It had higher accuracy than others, except for built-up. Although the built-up class
had lower accuracy compared to other LULC classes, the prediction results of Fitton [54]
showed an accuracy of 72% for the road class
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Radar pattern of accuracy metrics noted that ESRS performed better for cropland
(Figure 5d) and grassland (Figure 5c) compared to other sampling schemes of this study;
RSG was at the lowest level of precision, mainly due to their much higher sample size.
For instance, SRS and RSG embraced 70.5% and 57.7% of the total reference data in grass-
land class, while there were no differences between the sampling schemes for built-up
(Figure 5e). Inspecting the individual sampling design, accuracy metrics had a tendency
toward worsening when the reference data were more randomly distributed among classes,
notably for trees (Figure 5a) and built-up (Figure 5e) land uses, due to their small width
relative to the tile size [54].

Map producers are regularly interested in RSG sampling design because they desire
to create multi-purpose thematic maps. As demonstrated below, highlighting a simple
accuracy assessment would result in misinterpretation or misuse, but a comprehensive
approach will give deep insight to the users for the benefits of detailed LULC information.
Specifically, map users who focus on one or a few LULC classes are seriously recommended
to apply class-level rather than map accuracy metrics.

During our visual comparisons, we found that, despite the relatively rational differen-
tiation between the nearest LULC classes (see Figure 6b,d), there was some anomalies in the
product. For example, visible rocks were mostly misclassified as barren land (see the yellow
lines in Figure 6c). This land-use class is mainly considered rocks and outcrops in agricul-
tural and natural resource terminologies of arid and semi-arid mountainous regions [55].
No vegetation can grow on rocky outcrops because it is an exposure of underlying bedrock
or ancient consolidated deposits on the Earth’s surface.
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Shrublands are not believed to be a major category of LULC in Iran, but their applica-
tion is quite dissimilar to grassland and forest. The shrubs of the study area are typically
sparse coarse-textured hawthorn covers that are normally smaller than mature trees (see
description of Table 1). We realized that shrubs have geographically distributed patterns.
Distance between two shrubs ranged from 10 m to 12 m (Figure 6a). However, the formed
clusters were mostly farther apart.

Similar to rocky outcrop anomalies, grassland and barren land classes have different
definitions in drylands, which are not compatible with the context of the local community.
Due to frequent drought, grass is established only in the three months of spring, and lands
are usually bare in other seasons. Thus, experts replaced those with rangeland LULC
classes. Rangelands are characterized as vast natural landscapes where livestock and
wildlife graze on natural vegetation or climax with complex functional interactions [56]. It
is differentiated from pasture that cattle are kept basically in managed agricultural lands
for feeding.

Each quality indicator has particular advantages and drawbacks. Likewise, the type
of class-specific metrics is complicated, particularly when one or more samples over class
under consideration are rare. Generally, the accuracy increases when more data are added
to a specific class. In our study, RSG and ESRS had reasonable accuracy based on OA
and KA metrics (Table 9). Fitton [54] could not reach accuracy greater than 90% for each
class using the developed convolutional neural network (CNN) model, while Jin and
Mountrakis [23] provided the maximum OA of 83% for different land cover types by
combining spectral, scattering and vertical structural information.



Land 2023, 12, 979 16 of 22Land 2023, 12, x FOR PEER REVIEW 18 of 25 
 

Figure 6. Comparison of real true-color composition satellite image with ESA LULC classes: (a) a 

screenshot of a Google image taken from areas with typic shrubland LULC class as a sample for 

interpretation; A, B and C are the groups of shrubland, (b) shrubland classification map of ESA 

LULC, (c) a screenshot of Google image taken from areas with typic barren land LULC class as a 

sample for interpretation; red polygon is barren land, while yellow polygon is rock, and (d) barren 

land classification map of ESA LULC. Green points are mostly Hawthorn shrubs; circles are clusters; 

blue lines are distances between shrubs and clusters; red polygons are rangeland in spring and bare 

land at the remaining time of the year; yellow polygons are rock and outcrop. 

Shrublands are not believed to be a major category of LULC in Iran, but their appli-

cation is quite dissimilar to grassland and forest. The shrubs of the study area are typically 

sparse coarse-textured hawthorn covers that are normally smaller than mature trees (see 

description of Table 1). We realized that shrubs have geographically distributed patterns. 

Distance between two shrubs ranged from 10 m to 12 m (Figure 6a). However, the formed 

clusters were mostly farther apart. 

Similar to rocky outcrop anomalies, grassland and barren land classes have different 

definitions in drylands, which are not compatible with the context of the local community. 

Due to frequent drought, grass is established only in the three months of spring, and lands 

are usually bare in other seasons. Thus, experts replaced those with rangeland LULC clas-

ses. Rangelands are characterized as vast natural landscapes where livestock and wildlife 

graze on natural vegetation or climax with complex functional interactions [55]. It is dif-

ferentiated from pasture that cattle are kept basically in managed agricultural lands for 

feeding. 

Each quality indicator has particular advantages and drawbacks. Likewise, the type 

of class-specific metrics is complicated, particularly when one or more samples over class 

under consideration are rare. Generally, the accuracy increases when more data are added 

to a specific class. In our study, RSG and ESRS had reasonable accuracy based on OA and 

KA metrics (Table 9). Fitton [53] could not reach accuracy greater than 90% for each class 

Figure 6. Comparison of real true-color composition satellite image with ESA LULC classes: (a) a
screenshot of a Google image taken from areas with typic shrubland LULC class as a sample for
interpreta-tion; green points are mostly Hawthorn shrubs; A, B and C circles are the groups of
shrubland; blue lines are distances between shrubs and clusters, (b) shrubland classification map of
ESA LULC, (c) a screenshot of Google image taken from areas with typic barren land LULC class as a
sample for interpretation; red polygons are rangeland in spring and bare land at the remaining time
of the year; yellow polygons are rock and outcrop, and (d) barren land classification map of the ESA
LULC.

Table 9. Error metrics comparison of the sampling scheme.

Sampling
Scheme

Indicator

OA KA AUA APA Ave.PMAP All.Dis Shift Exchange Quan.Dis AMI Adj.AMI

RS 0.87 ± 0.046 0.76 ± 0.085 58.6% 51.2% 36.47 0.029 0.028 0 0.08 1.1 ± 0.157 1.08
SRS 0.87 ± 0.045 0.76 ± 0.08 77.2% 83.5% 68.8 0.098 0.026 0.07 0.03 1.16 ± 0.22 1.15

ESRS 0.91 ± 0.039 0.91 ± 0.04 91.6% 91.9% 91.9 0.056 0.01 0.04 0.026 2.13 ± 0.16 2.13
RSG 0.98 ± 0.018 0.96 ± 0.04 62.2% 62% 59.3 0.011 4.3 × 10−5 0.01 0.005 0.91 ± 0.15 0.91

RS: random sampling, SRS: stratified random sampling, ESR: equalized stratified random sampling, RSG: random
sampling grid, OA: overall accuracy, AUA: average user’s accuracy, APA: average producer’s accuracy, Ave.PMAP:
average partial portmanteau, All. Dis: allocation disagreement, Quan.Dis: quantity disagreement, AMI: average
mutual information, Adj.AMI: adjusted average mutual information, KA: kappa.

The ESRS worked more efficiently due to the fact that the lower the OA and KA
differences, resulted in a higher precision. Researchers attempt to solve this problem by
introducing the kappa metric for the chance agreement of observed versus referenced
datasets [42]. Indeed, OA is a map-level metric, while portmanteau and kappa under
certain circumstances are the category-level statistics by collapsing the confusion matrix
into a binary matrix for each class [25].
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We criticized that the OA could not appropriately describe the accuracy of the LULC
map, in which OA is the proportion of the sum of the confusion matrix diagonally divided
by the sum of the total confusion matrix. Actually, overall accuracy is not a good quality
indicator for the reason that rare-sampled classes i.e., built-up, tree and shrubland, are
not entering into calculation. OA is a suitable metric to make a fairly simple comparison
between competing maps whenever competing maps share a common class’s type and
number of categories [53], such as land cover change detection maps.

The average weighted UA is equal to OA when the values are weighted by the
classified (user’s) frequencies [25]. Here, we found that the equally weighted average UA
and PA, known as average user’s (AUA) and average producer’s (APA) balanced accuracy
rates [44,57–59] better explain biases for a simple reason that involves zero accuracy classes
in the calculation.

Although KA is not encouraged for many reasons, such as not adding any fundamen-
tal information to basic accuracy assessment, Pontius and Millones [46] proposed novel
metrics named allocation disagreement (All.Dis) and quantity disagreement (Quan.Dis),
as alternatives to KA, which is a disagreement measure between reference points and
corresponding classified one. Accordingly, RSG showed better results since All.Dis and
Quan.Dis of RSG obtained the least values (Table 9).

Overall, the accuracy calculation is highly dependent upon the chosen validation
points. Specifically, if the samples are not representative of the whole landscape, the
calculated value will be biased [60]. However, inspecting the error metric values, calculated
KA, MPA, AUA and Ave.PMAP were found to be approximately the same as the overall
accuracy of 0.91; this implies appropriate sampling design selection.

Validated Map

As stated by Pontius and Millones [46], the OA of the newly produced map must be
at least equal or better than the original once, our combination of grassland and barren
land categories also proven that all accuracy metrics improved significantly. For a given
combination of grassland-barren land, there is no way for correcting reference points to
become incorrect [25].

Overall, accuracy increased from 91% ± 0.039 in the original ESA LULC CCI map, up
to 93.5% ± 0.04 in the validated map (Table 10). Our assessment revealed that the OA of
ESA LULC CCI tended to be improved once downscaled from the global to continental
level (Asia) by 6.7% ± 0.1 [30], from the continental to regional level by 12.8 ± 0.06 and
from the global to regional level by 19.1% ± 0.06. However, Gong [28] published a lower
OA of 72.76% for 10 common LULC classes, and ESRI 2021 product reported a higher OA
of 86% for eight LULC classes, excluding snow/ice class and persistent cloud cover areas.
Hermosilla [17] had proven that regionalization of the model ensured locally relevant
descriptors and resulted in improved classification outcomes from OA of 70.3 ± 2.5%
nationwide to 77.9 ± 1.4% at the local level.

Our results showed a huge enhancement in characterizing all individual ESA LULC
CCI categories, specifically for the challenging shrubland class with the lowest PAUA of
18.5 ± 1.2 and 9.7 ± 06, respectively. One reason might be the 10-m resolution of the ESA
LULC CCI product, which is more compatible with regional rather than global scale. In
addition, assembling approach enables substitution that improved accuracy of the last class
whose prediction is the least accurate [54].

Quan.Dis and All.Dis metrics showed a similar pattern to overall accuracy, which
decreased from 0.026 to 0.016 and from 0.056 to 0.049, respectively (see Tables 9 and 10).
However, KA has not notably changed. Adjusted AMI decreased much below the original
map, i.e., the mapping errors did not have a random origin [43]. The adjAMI score would
be highly increased in our validated map if the irrelevant classes merged. We used adjusted-
AMI rather than AMI in our interpretations, given that the adjusted-AMI only considers
the positives of the on-diagonal of the confusion matrix. The UA and PA for the affected
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class, i.e., rangeland, were slightly improved (Table 10), emphasizing the importance of
site-specific validation on the LULC preliminary map.

Table 10. Confusion matrix and quality indicators after merging classes over the ESRS sampling
scheme.

Observation

Predicted Trees Shrubland Rangeland Cropland Built-Up UA

Trees 30 - - - - 100%
Shrubland - 27 3 - - 90% ± 0.1
Rangeland - 3 52 1 3 88.1% ± 0.08
Cropland - - 1 29 - 96.7% ± 0.07
Built-up 1 - - - 30 96.8% ± 0.06

PA 96.7% ± 0.06 90% ± 0.09 92.5% ± 0.07 96.8% ± 0.06 91.8% ± 0.08 93.5% ± 0.04

PMA 99.4% 96.8% 94.1% 98.9% 97.8%

PMAP 96.8% 81.8% 82.5% 93.5% 88.2%

Note: correct classifications are on the matrix diagonal; misclassifications are off-diagonal [51], UA: user’s
accuracy, PA: producer’s accuracy, MAP: portmanteau, PMAP: partial portmanteau. Overall accuracy: 93.5% ±
0.04; allocation disagreement: 0.049; shift: 0.007; exchange: 0.04; quantity disagreement: 0.016; average mutual
information: 1.91 ± 0.16; adjusted average mutual information: 1.91; kappa: 0.915 ± 0.05.

Following the map statistical improvement, the validated map was optimized, employ-
ing different ancillary datasets, such as national road and river datasets, streams derived
from DEM 10 m, as well as livestock, poultry, fishery and byproduct unit GIS-ready data
sets taken from the local agricultural center. As can be seen in Figure 7, the final LULC map
of the sub-basin was produced following the recently added datasets and was given official
approval from local experts and authorities.
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5. Conclusions

Since 2020, the validation of land use and land cover products has been standardized
via the broad qualitative metrics LACOVAL online platform. The novel ESA LULC CCI
product has not been previously assessed through diverse statistics at regional scales,
specifically in mountainous drylands.

The accuracy of the ESA LULC distinguishes the area of cropland, which is the most
important one with at least 73.17% accuracy for 24.2% of the whole Honam sub-basin and
is reliable for application. In general, our investigation proved that well-known accuracy
alone is not a good quality guideline, and the reasons why broader information-based
metrics and sampling scheme should be considered specifically for class-level accuracy
assessment were discussed. Actually, each accuracy metric has its own advantages and
drawbacks. Therefore, map users should be aware of how the balanced approach and, in
particular, the choices of LULC classes in map legend that are consistent with ground truth,
impact accuracy assessment results.

The balanced ESRS worked more efficiently among sampling schemes, as it geograph-
ically distributes equal samples among different land use classes. OA is a proper metric for
LULC change detection, while AUA and APA can better explain biases. We found that if the
sampling scheme is appropriately selected, the calculated KA, MPA, AUA and Ave.PMAP
is similar. Rangeland is a well-known land cover class in arid and semi-arid regions that is
green for only 3 months and bare in other months of the year. Therefore, the barren land
class of ESA LULC CCI product should be relabeled as rock/outcrop, and additionally
grassland and barren land classes of the product should be merged and then relabeled as
rangeland in mountainous arid and semi-arid regions. In addition, our assessment revealed
that the ESA LULC CCI product greatly improved by 19.1% ± 0.06 once downscaled from
the global to the regional level.

Although our findings suggest some insight into land use and land cover classification
using several sampling designs at the regional scale, the limitations of a globally organized
approach should be more investigated. In addition, the classes explored in this study
were slightly poor. It would be interesting to investigate the ESA LULC CCI potential of
classification through a similar methodology in a more diverse watershed for certain usage
on regional scales. This could also be extended to full LULC classes, which provide many
more possibilities for deriving landscape features. Another key point is the question of
whether FROM-GLC10 and ESRI 2020 Land Cover products at such a high 10 m resolution
are reliable LULC sources of data for regional scale.

Data on agricultural land cover can join water productivity data, enabling the com-
parison between different crop types within a region, or the same crop between different
regions regarding physical, socio-economic and water resource aspects. Thus, a precise
LULC base map would extend our analysis to further studies with an evaluation of crop
type classification potential and the possibility of reviewing its change detection and syner-
gic impacts. By the methodology investigated in this study, several active end users from
different disciplines can provide a substantial benefit to various user communities to use
well-verified products, as the primary input for all engineering aspects.
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