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Abstract: We employed publicly available user-generated content (UGC) data from the website
Tripadvisor and developed an autoregressive integrated moving average (ARIMA) model using the R
language to analyze the seasonality of the use of urban green space (UGS) in Okinawa under normal
conditions and during the COVID-19 pandemic. The seasonality of the use of ocean-area UGS is
primarily influenced by climatic factors, with the peak season occurring from April to October and the
off-peak season from November to March. Conversely, the seasonality of the use of non-ocean-area
UGS remains fairly stable throughout the year, with a relatively high number of visitors in January
and May. The outbreak of the COVID-19 pandemic greatly impacted visitor enthusiasm for travel,
resulting in significantly fewer actual postings compared with predictions. During the outbreak, use
of ocean-area UGS was severely restricted, resulting in even fewer postings and a negative correlation
with the number of new cases. In contrast, for non-ocean-area UGS, a positive correlation was
observed between the change in postings and the number of new cases. We offer several suggestions
to develop UGS management in Okinawa, considering the opportunity for a period of recovery for
the tourism industry.
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1. Introduction

The Okinawa region in the southern part of Japan is a popular tourist destination
known for its natural and cultural landscapes that showcase the maritime area. The
region comprises the main island of Okinawa and numerous outlying islands; it draws
many tourists, who visit for leisure and sightseeing and to experience Okinawa’s unique
culture [1]. As tourism has been the most important economic pillar of the region for many
years, the development of tourism has significantly boosted the local economy, generating
numerous jobs and substantial revenue [2].

The Okinawa region has 11 cities, including Naha, Ishigaki, and Ginowan, which
are home to many local residents and are popular among tourists because of their easy
accessibility to transportation and amenities (Figure 1) [3]. The most common areas of
access for local residents and tourists fall under the category of urban green space (UGS),
such as beaches, bays, parks, and traditional gardens in or around cities. These locales are
characterized by their diversity, relative accessibility, and salient geographic features [4].
Scholarly studies and government reports indicate that Okinawa is highly regarded for its
unique culture, cuisine, and historical sites. The beautiful maritime landscape and abundant
marine activities are the primary reasons for which most tourists visit Okinawa and are
the biggest selling points for tourism [5–7]. Owing to the special geographic environment,
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Okinawa’s UGS can be broadly classified into two sub-dimensions: ocean-area UGS and
non-ocean-area UGS (Tables A1 and A2). Their common landscapes and support services
play a vital role in shaping tourists’ impressions and local quality of life [8].
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Seasonal variability is a universal socio-economic phenomenon and one of the most
critical aspects of the growth of the tourism sector [9]. Seasonality in tourism is influenced
by both natural and man-made factors, the former being related to climatic variations and
seasonal changes, and the latter being tied to a combination of social elements, such as
customs and culture or unexpected events that directly or indirectly lead to systematic,
cyclical, or irregular changes in various tourism indicators [10]. By understanding the sea-
sonal patterns of tourists’ use of Okinawa’s UGS, we can better understand their behavioral
patterns, and city managers can anticipate the flow of tourists in different types of areas at
different times to deploy the necessary staff in advance, allocate materials and equipment
appropriately, and devise more scientific and rational tourism development plans to better
meet the needs of tourists and improve the efficiency of urban management. The results of
this study could enable city managers to enhance Okinawa’s image and reputation as a
tourist destination, and thereby promote the tourism economy.

However, because of the outbreak of COVID-19, the Japanese government imple-
mented stringent entry restrictions and quarantine measures to contain the spread of the
virus. Combined with other components such as the temporary closure of public places, re-
strictions on business hours, and safety concerns for tourists visiting public sites, Okinawa’s
tourism industry suffered an unprecedented blow. In 2020 alone, the year the outbreak
began, Okinawa’s tourism revenue plummeted by 64% [11]. Consequently, most tourists
cancelled their planned trips to Okinawa, leading to a significant decrease in the number of
visitors. The use of UGS also declined during this period, and some activities and services
were either postponed or cancelled, making it impossible for visitors to enjoy their trips as
planned. This situation may have affected their use of UGS to a great extent [12].

With the increasing availability of vaccines and growing awareness of COVID-19,
many countries are now gradually easing their travel restrictions. The Japanese government
is expected to fully lift its strict policies by the summer of 2023, leading to a potential surge
in the number of tourists [13]. However, to ensure a sustainable recovery of the tourism
sector, a comprehensive approach, by reviewing past experiences and addressing new
challenges, is required. This includes analyzing both actual and predictive value data
to gain a better understanding of visitor behavior during the outbreak prevention and
control period. This will provide a scientific reference for future decisions in the tourism
industry [14].
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Time-series modeling using past data and applying mathematical rules is currently the
most popular method for quantitatively forecasting tourism demand [15]. Qin Hongyao [16]
used tourism flight, traffic, and tourist data from a tourist city as research material to discuss
the predictive effects of three methods—exponential smoothing, the seasonal autoregres-
sive moving average (SARIMA), and the Elman artificial neural network technique—on
the economic impacts of tourism in tourism demand forecasting. Using annual tourism
industry statistics published in the China Statistical Yearbook of 1994–2015, Liu Ruyu [17]
conducted a time-series analysis and constructed an autoregressive integrated moving
average (ARIMA) model to forecast the number of domestic tourists in China for the next
three years. Park [18] compared the correlation between news media topics in China and
the US and the number of tourists traveling to Hong Kong from both countries and em-
ployed a SARIMA with exogenous factors (SARIMAX) model to forecast tourism demand
from selected news topics and arrivals of tourists. In analyzing the impact of unexpected
events, such as the COVID-19 outbreak on tourism, the analytical approach of annual data
tends to ignore seasonal, cyclical, and stochastic factors in tourism, and, therefore, requires
the use of monthly data with a high temporal resolution to provide a more comprehen-
sive, in-depth understanding of the impact [19]. Laeeq Razzak [20] selected a dataset of
international tourist arrivals in Thailand at the beginning of the COVID-19 outbreak and
built an ARIMA model based on a four-step B-J method to predict the extent of the future
recovery of Thailand’s tourism economy. Prilistya [21] used web search trends as a dataset
to predict the impact of the COVID-19 outbreak on the number of tourists traveling to
Indonesia. However, the impact of outbreaks often radiates regionally, and the inherent
patterns are difficult to capture simply by examining a region as a whole; hence, we need a
comparative study with a control group. Furthermore, while the above studies are helpful
in understanding the impact of emergencies on the overall tourism industry, businesses,
and destinations, they neglect to focus on tourists, whose feelings during an emergency are
more real, urgent, and accurate than after it has occurred. Thus, when studying the impact
of an outbreak on tourism, observations and analysis should be centered on tourists [22]. It
is worth exploring tourists’ potential willingness to travel during an outbreak and whether
the intensity of this willingness is different compared to normal times. By investigating
tourists, we can better understand the impact of an outbreak on the tourism industry and
provide a reference point for the future development of appropriate targeted measures.

User-generated content (UGC), which has increasingly been considered a trusted form
of information dissemination in recent years, can be viewed as a data source. UGC has
timeliness, diversity, and wide regional coverage compared with traditional data, and is
more advantageous in capturing individual visitor behavior, predicting passenger flow
trends, and conducting in-depth research on potential intentions [23]. Recent studies using
UGC to explore the use of UGS during the COVID-19 pandemic include the study by Jato-
Espino [24], who collated data about on-site use to investigate the beneficial social effects
provided by green infrastructure during a strict blockade in Spain. Zhu [25] used correlation
analysis based on Sina Weibo check-in data to assess the use of UGS in Beijing during
COVID-19. Notwithstanding the above research, studies predicting changes in tourists’
demand for UGS by collating UGC as a dataset are scarce. After careful consideration, we
harnessed publicly available UGC from a travel review website (Tripadvisor) as a data source.
We collected data on the number of visitor postings for ocean-area UGS and non-ocean-area
UGS in the Okinawa region for a quantitative analysis using a time-series model.

2. Methods
2.1. Study Objects

We collected data on attraction sites across 11 cities in the Okinawa region, including
Naha, Ginowan, Ishigaki, Urasoe, Nago, Itoman, Okinawa City, Tamagusuku, Uruma,
Miyakojima, and Nanjo, from Tripadvisor, the world’s largest travel review site. Tripadvisor
has accumulated a vast amount of UGC from tourists worldwide and is widely used in
Japan, where it is the most popular travel website in terms of user activity [26]. Tripadvisor
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has also partnered with the Japan Tourism Association in recent years, making its data an
industry standard and a reference for content, destination marketing, and trends in Japan’s
tourism industry [27].

Furthermore, official statistics on the number of visitors are only available for a few
well-known attractions in the Okinawa region. For many free attractions that do not
require tickets, official statistics may not provide comprehensive coverage. However,
by utilizing the UGC data from Tripadvisor, we included 224 attractions in this study,
most of which would be difficult to cover with official visitor statistics. This approach
enabled us to indirectly assess visitor utilization trends for these attractions, which is a
more advantageous method because it has a broader coverage of the study area compared
to relying solely on official visitor count statistics. However, we used Tripadvisor as the sole
data source for this study to prevent statistical bias arising from variations in the number of
users across multiple travel websites and duplication of posts by the same user on different
platforms [28,29]. This approach ensured that our data remained consistent and reliable.

2.2. Data Sources

The data sources included the following: (1) postings on Tripadvisor by tourists who
matched the criteria for participants in the study; (2) statistics on the number of tourist
arrivals in Okinawa published on the official website of the Okinawan government [30];
and (3) data on new cases of COVID-19 in Okinawa published by the Ministry of Health,
Labour, and Welfare [31].

We obtained data from tourists’ postings on Tripadvisor using a web crawling method.
First, based on the Python 3.7 language, we employed the Scrapy crawler framework
to view the source code of Tripadvisor to find the target data location that matched the
research object, and we analyzed the webpage’s source code structure. Subsequently, we
used the Python library requests and the Beautiful Soup library to document the webpage
for data collection, and we used the PyMongo library to read the data cyclically. We divided
and stored the page number intervals in the database with the help of the range function
and set a cyclic threshold for crawling. Finally, we de-weighted and filtered the acquired
data; we generated an Excel table to obtain the raw data and carried out reasonable data
cleaning and processing for future research [32]. All the above data are public information
that do not involve personal privacy and will not affect normal use of the website.

2.3. Modeling the ARIMA

In this study, we took into consideration Okinawa’s unique maritime nature and official
tourism reports. We distinguished the collected data on the basis of two categories—ocean-area
UGS and non-ocean-area UGS—based on the attraction information provided in the original
data and with reference to previous studies on tourism demand in Okinawa, as well as the
composition of Okinawa’s landscape. To predict trends in visitor use, we employed the R
language (hereafter called R) to develop separate seasonal ARIMA models for different types of
UGS, assuming they were not affected by the pandemic.

The ARIMA model is a very accurate method among time-series forecasting models
with high forecasting accuracy; it is suitable for solving linear model forecasting problems.
The trend of visitor usage of UGS (which is highly influenced by irregular shocks) is
long-term, seasonal, and non-stationary. Forecasting using the ARIMA model can reduce
forecasting errors. The basic principle of the ARIMA model is to convert a time series into a
stationary time series and fit a forecasting model via autoregression and the moving average
of this series. The formula of the ARIMA model comprises three parts: (1) autoregression
(AR); (2) the moving average (MA); and (3) the difference (differential treatment of the
data). The general form of the ARIMA model can be expressed as p (the number of AR
terms), d (the number of differences), and q (the number of MA terms) [33].

The process of building the ARIMA model using R included: (1) loading the time-
series data of the number of visitor postings and using the read.csv function to read the CSV
file (which stored the number of visitor postings) in R; (2) plotting the time series of the data,
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observing the characteristics of changes in the data, and determining the smooth white
noise series that the data are in; (3) plotting the autocorrelation function (ACF) and partial
ACF (PACF) graphs and observing them to determine the order of the ARIMA model;
(4) fitting the ARIMA model using the ARIMA function in R and using the forecast function
to make a 24-period forecast; (5) using the ts.diag function in R to test the significance of the
model and the box.test function to test the independence of the model residuals to verify
that the ARIMA model fits the data series well; and (6) using the fitted ARIMA model to
predict visitor usage assuming no impact from the pandemic [34].

Subsequently, we compared proportional changes between the actual values during
the pandemic prevention and control (PPC) period and the predictive values obtained
through the ARIMA model. We plotted a line graph of the proportional changes to evaluate
the magnitude of changes in the pandemic’s impact on past visitor use based on seasonality.
Finally, we used the trend of new COVID-19 cases in Okinawa during the same period to
measure the change in the trend of tourists’ use of Okinawa’s UGS before and after the
pandemic. The goal of these analyses was to elucidate the intrinsic patterns and shifting
trends in Okinawa’s tourism industry. This information will be valuable for future crisis
response and resource management regulations in the tourism recovery process.

3. Results
3.1. Results of Crawling the Research Data

The collected visitor data included information on travel time (year and month),
attraction nomenclature, and attraction type. After removing invalid data on advertising
content and missing information, we obtained 20,573 pieces of valid raw data, of which the
earliest piece dated back to June 2008; further, to ensure uniformity in the time-seasonal
variables of the data, we took the complete annual data after January 2009. As shown in
Table 1, the posting numbers from 2009 to 2013 among the raw data show a small base
and a multiplicative increase in the overall number of visitors, with little change in official
statistics; thus, we can deduce that this time period is in the accumulation phase of user
enthusiasm on the website, and the posting numbers exceeded 2000 for the first time in
2014. Subsequent data did not exhibit significant changes before the outbreak. In addition,
the Japanese government announced the first case of COVID-19 in Okinawa on January 15
2020, and issued several states of emergency, restricted commercial activities, and imposed
a strict quarantine entry policy. After 2022, the Japanese government gradually stopped
issuing states of emergency and lifted the quarantine entry policy for some countries and
regions [35]. Thus, the period from early 2020 to early 2022 can be considered the time
when the Japanese government implemented a strict PPC policy.

Table 1. Volume of raw data and visitor statistics between 2009 and 2019.

Years Volume of Data Number of Tourists

2009 87 5,690,000

2010 221 5,717,900

2011 284 5,528,000

2012 575 5,924,700

2013 995 6,583,000

2014 2034 7,169,900

2015 3187 7,936,300

2016 3442 8,769,200

2017 3398 9,579,900

2018 2942 10,004,300

2019 2310 10,163,900
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In summary, we selected the data for the study from the pre-outbreak period (January
2014–December 2019) and the strict PPC period (January 2020–December 2021); we obtained
17,313 entries for the pre-outbreak period, and 1098 for the strict PPC period.

3.2. Results of Collating the Time-Series Dataset

We collated the time-series dataset of the number of visitor posts (Table 2). In the
pre-pandemic period, 11,070 posts were about ocean-area UGS and 6243 posts were about
non-ocean-area UGS. In the strict PPC period, 565 posts were on ocean-area UGS and
533 posts were on non-ocean-area UGS.

Table 2. Time series of the posting numbers about ocean-area UGS and non-ocean-area UGS.

Time (Month and Year) Ocean-Area UGS Non-Ocean-Area UGS

January 2014 68 57

February 2014 56 58

March 2014 111 57

April 2014 108 69

May 2014 104 54

June 2014 105 44

July 2014 170 56

August 2014 175 50

September 2014 170 58

October 2014 100 52

November 2014 88 68

December 2014 84 72

January 2015 104 95

February 2015 96 93

March 2015 105 83

April 2015 161 98

May 2015 181 103

June 2015 205 91

July 2015 265 97

August 2015 236 86

September 2015 214 88

October 2015 213 110

November 2015 122 78

December 2015 135 128

January 2016 130 133

February 2016 129 107

March 2016 156 106

April 2016 253 116

May 2016 225 110

June 2016 195 84

July 2016 286 112

August 2016 236 94
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Table 2. Cont.

Time (Month and Year) Ocean-Area UGS Non-Ocean-Area UGS

September 2016 201 74

October 2016 192 85

November 2016 115 73

December 2016 124 106

January 2017 160 126

February 2017 104 86

March 2017 136 124

April 2017 261 147

May 2017 214 92

June 2017 205 84

July 2017 284 89

August 2017 237 81

September 2017 166 78

October 2017 267 99

November 2017 97 71

December 2017 104 86

January 2018 112 119

February 2018 104 108

March 2018 123 110

April 2018 160 120

May 2018 173 94

June 2018 156 67

July 2018 182 77

August 2018 234 109

September 2018 160 92

October 2018 148 79

November 2018 132 86

December 2018 103 94

January 2019 123 106

February 2019 97 80

March 2019 121 86

April 2019 123 83

May 2019 141 95

June 2019 150 61

July 2019 164 62

August 2019 125 57

September 2019 97 62

October 2019 134 68

November 2019 88 52

December 2019 67 68
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3.3. Results of the Time-Series Modeling

We wished to build on the historical time-series data from before the outbreak to predict
seasonality of use assuming no impact of the pandemic. We took the following steps based
on Box–Jenkins’ approach [36]. First, we analyzed the time-series data, including the pre-
processing of the data, making graphs, and determining the trend, periodicity, and seasonality
of the data. Subsequently, depending on the characteristics of the historical data, we selected
two to three potential models for model identification, as well as for the strength of correlation
between the predictor variables and the explanatory variables [37]. Following that, we calcu-
lated the model’s parameters and assessed the model’s fit. Finally, in the process of estimating
and testing the models, if there were deficiencies, we carried out model optimization and
improvement and applied the trained model data for comparative analysis.

3.3.1. An ARIMA Model for Ocean-Area UGS

(a) Modeling

First, we plotted the time-series data of ocean-area UGS before the outbreak, as seen
in Figure 2. From the time-series plot, we can deduce that the data series has a certain
increasing trend and a large cyclical feature; therefore, we deemed the series to be non-
stationary. Since the model is a non-stationary series with seasonality, we calculated
the differences in the data series according to the first-order 12 steps; the differenced
time series is plotted in Figure 3. The data series of ocean-area UGS before the outbreak
fluctuates around the value of 0 after the first order of 12-step differencing, and there is no
obvious trend.
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To further determine the smoothness of the differenced series, we performed a test
for smoothness and a test for the pure randomness of the series on the differenced series.
We carried out a unit root test on the dataset using the adf.test function in R to determine
whether the dataset was smooth. We employed the augmented Dickey–Fuller (ADF) test
to set up the test results for three hypothetical cases: Type 1: no drift, no trend, where the
dataset is tested for smoothness without considering drift or trend; Type 2: with drift but
no trend, where the dataset is tested for smoothness with drift, but without considering
trend; and Type 3: with drift and trend, where the dataset is tested for smoothness with
both drift and drift and trend, which determines whether the dataset is smooth. For each
hypothesis, we found that the p-value of the ADF test statistic for the ocean-area UGS
data series after first-order differencing was less than the 0.05 level of significance; thus,
we were able to determine that the series, after first-order 12-step differencing of the data,
achieved smoothness.

Subsequently, we used the Ljung–Box (LB) test to determine the pure randomness
of the differenced series. This series at order 6 had a statistic of X2 = 19.981, df = 6,
p = 0.002791; at order 12, the series had a statistic of X2 = 35.709, df = 12, p = 0.0003608.
Thus, this series at orders 6 and 12 delayed the p-values of the LB statistics of this series,
which are less than the significance level of 0.05. We were able to establish that the series
of ocean-area UGS data before the outbreak after first-order 12-step differencing were all
smooth white noise series; thus, we rejected the original hypothesis of pure randomness.
Therefore, we can consider this differenced series to be non-random.

We then plotted the autocorrelation and partial autocorrelation plots of the first-order
differenced series (Figure 4) to examine the characteristics of the autocorrelation and partial
autocorrelation coefficients up to order 12 for this data series. This allowed us to determine
the model’s fit. We can see that the autocorrelation coefficients up to order 12 are truncated
and the partial autocorrelation coefficients are not truncated, so we attempted to extract
the short-term autocorrelation information of the differenced series using the ARIMA (0,1)
model. Given its possible seasonal autocorrelation characteristics, this time series investi-
gates the characteristics of the delayed 12th- and 24th-order autocorrelation coefficients
in terms of period length and the partial autocorrelation coefficients. The autocorrelation
plot shows that the delayed 12th-order autocorrelation coefficient is significantly non-zero,
but the delayed 24th-order autocorrelation coefficient falls into the two-times standard
deviation range. The partial autocorrelation plot indicates that the partial autocorrelation
coefficients for both the delayed 12th and 24th orders are significantly non-zero. Thus,
we can assume that the seasonal autocorrelation is characterized by a truncated tail of
autocorrelation coefficients and a trailing tail of partial autocorrelation coefficients when
the ARIMA (0,1) model, with a 12-step period, extracts the seasonal autocorrelation infor-
mation of the differenced series. Combining the previous differencing information, we
chose the fitted product model as ARIMA (0,1,1) × (0,1,1) [12].
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In sum, we used the ARIMA (0,1,1) × (0,1,1) [12] model to fit the ocean-area UGS data
series from January 2014 to December 2019. We harnessed the forecast function to make a
24-period forecast, and the predictive values of ocean-area UGS data from January 2020
to December 2021 under the assumption of no impact of the pandemic (see Table 3; the
forecast effect is presented in Figure 5).

Table 3. Predictive value for ocean-area UGS from January 2020 to December 2021, assuming no
impact of the pandemic (data from the ARIMA model using R).

Time
(Month and Year)

Predictive Value
(Ocean-Area UGS)

January 2020 78.08404

February 2020 57.38566

March 2020 83.26087

April 2020 129.76301

May 2020 128.58841

June 2020 124.91645

July 2020 171.0254

August 2020 154.29757

September 2020 111.09483

October 2020 128.38786

November 2020 63.48787

December 2020 54.03563

January 2021 68.76185

February 2021 48.06347

March 2021 73.93868

April 2021 120.44082

May 2021 119.26622

June 2021 115.59426

July 2021 161.70321

August 2021 144.97538

September 2021 101.77264

October 2021 119.06566

November 2021 54.16567

December 2021 44.71344
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(b) Testing the Model

First, we performed the significance test using the ts.diag function in R. The residual
series are white noise series, indicating that the model fits well and extracts sufficient
information about the series. In addition, a joint plot of the fitted and observed values of
the series indicates that the ARIMA model fits the series well (Figure 6). Subsequently,
to determine whether the prediction error was normally distributed with a 0 mean and
constant variance, we performed the independence test of the model’s residual using the
box.test function. The residual plot is depicted in Figure 7. Upon constructing the plot
ForecastErrors function to convert the residual into a normal distribution plot (Figure 8),
we found that it passed the normality test. Subsequently, we built the autocorrelation
plot of residuals (Figure 9) and performed the LB test to determine whether the residual
series was autocorrelated. The outcome of p = 0.4714 was greater than the 0.05 level of
significance, and the original hypothesis could not be rejected; thus, the residual series
cannot be considered autocorrelated. All tests were passed, so we can assume that the
ARIMA model is a good fit.
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3.3.2. ARIMA Model for Non-Ocean-Area UGS

We carried out the same process with the ARIMA model for the pre-outbreak ocean-area
UGS; we were able to test the results of the model that we built, which proved to be a good fit.
We plotted the time-series data of ocean-area UGS before the outbreak as shown in Figure 10.
By examining the autocorrelation and partial autocorrelation plot features (Figure 11), we used
the ARIMA (0,1,1) × (0,1,1) [12] model to fit the non-ocean-area UGS data series from January
2014 to December 2019. We fitted the ocean-area UGS data series and the predictive values of
non-ocean-area UGS data from January 2020 to December 2021 under the assumption of no
impact from the pandemic (see Table 4). The prediction effect is shown in Figure 12.
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Table 4. Predictive value for non-ocean-area UGS from January 2020 to December 2021, assuming no
impact of the pandemic (data from the ARIMA model using R).

Time
(Month and Year)

Predictive Value
(Non-Ocean-Area UGS)

January 2020 69.36227

February 2020 62.42041

March 2020 60.41193

April 2020 57.79053

May 2020 66.66478

June 2020 51.83195

July 2020 53.09759

August 2020 53.94552

September 2020 54.32503

October 2020 53.93627

November 2020 50.57369

December 2020 57.13684

January 2021 55.19529

February 2021 50.41964

March 2021 50.97723

April 2021 49.22835

May 2021 54.82956

June 2021 49.18297

July 2021 49.10758

August 2021 45.08598

September 2021 47.14309

October 2021 49.37000

November 2021 45.56541

December 2021 48.69557
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3.3.3. Magnitude of Change in Proportional Relationships

We separately analyzed the proportional relationship between the actual-values date
series after the COVID-19 outbreak (see Table 5) and the predictive-values data series.
This helped us avoid errors caused by differences in the databases used, and enabled us
to determine the magnitude of change that occurred after the outbreak, grounded in the
seasonal conditions used in the past. Table 6 presents the proportional relationship between
the actual and predictive values of posting numbers post-outbreak for UGS in ocean and
non-ocean areas.

Table 5. Actual-values data series of ocean and non-ocean-area UGS after the outbreak.

Time (Month and Year) Actual Value
(Ocean-Area UGS)

Actual Value
(Non-Ocean-Area UGS)

January 2020 62 65

February 2020 66 48

March 2020 72 46

April 2020 12 13

May 2020 1 4

June 2020 9 9

July 2020 40 27

August 2020 30 25

September 2020 12 8

October 2020 31 9

November 2020 44 28

December 2020 32 24

January 2021 7 25

February 2021 4 6

March 2021 8 11

April 2021 12 24

May 2021 24 15

June 2021 8 14

July 2021 14 19

August 2021 19 32

September 2021 13 20

October 2021 8 11

November 2021 11 22

December 2021 26 28

Table 6. Proportional relationship between the actual and predictive values.

Time
(Month and Year)

Proportion
(Ocean-Area UGS)

Proportion
(Non-Ocean-Area UGS)

January 2020 79.40% 93.71%

February 2020 115.01% 76.90%

March 2020 86.48% 76.14%

April 2020 9.25% 22.50%
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Table 6. Cont.

Time
(Month and Year)

Proportion
(Ocean-Area UGS)

Proportion
(Non-Ocean-Area UGS)

May 2020 0.78% 6.00%

June 2020 7.20% 17.36%

July 2020 23.39% 50.85%

August 2020 19.44% 46.34%

September 2020 10.80% 14.73%

October 2020 24.15% 16.69%

November 2020 69.30% 55.36%

December 2020 59.22% 42.00%

January 2021 10.18% 45.29%

February 2021 8.32% 11.90%

March 2021 10.82% 21.58%

April 2021 9.96% 48.75%

May 2021 20.12% 27.36%

June 2021 6.92% 28.47%

July 2021 8.66% 38.69%

August 2021 13.11% 70.98%

September 2021 12.77% 42.42%

October 2021 6.72% 22.28%

November 2021 20.31% 48.28%

December 2021 58.15% 57.50%

4. Discussion
4.1. Ocean-Area UGS
4.1.1. Exploiting Seasonality

We created a line graph to predict the posting values for ocean-area UGS, assuming
no impact from the outbreak. The data series used in the graph was rooted in pre-outbreak
data, as shown in Figure 13. The graph clearly illustrates the seasonal nature of visitor use
of the area, with a noticeable cyclical pattern throughout the year. The peak season for
visitors to ocean-area UGS occurs from April to October, while the off-peak season is from
November to March. During the peak season, posting forecasts for April to June are almost
identical, with a sharp increase in July, reaching the highest point. Posting forecasts are
somewhat high in August and begin to decline significantly in September, with a slight
increase in October. During the off-peak season, posting forecasts drop significantly in
November compared to October, reaching the lowest point of the year in December. Posting
forecasts gradually increase in January, reach a similar trough in February and December,
and begin a sustained upward trend in March.

First, we must consider the seasonal impact of climate factors on the use of ocean areas.
Let us take Naha, the largest city in Okinawa, as an example. In Naha, the temperature
gradually rises above a comfortable 20 ◦C starting in April, allowing tourists to easily
engage in various water activities. The rainy season begins in early May in Okinawa and
ends in late June. Afterward, the Pacific high-pressure system covers the region, and there
are often consecutive sunny days in July with less precipitation. This is also the period
of the strongest ultraviolet radiation, which we claim is the main reason for the highest
number of posting forecasts in that month. From August to early October, the area is
susceptible to typhoons, and marine-related activities are restricted, gradually entering
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the off-peak season for tourism. Starting in November, the average temperature begins to
drop below 20 ◦C, and the duration and intensity of sunshine also decrease significantly.
The average duration and intensity of sunshine from December to February are less than
half of those in July. We assert that this is also the chief reason for the low number of
posting forecasts in December and February. In March, the temperature gradually warms
up. During this time, cold air from the Asian continent tends to form a cloud cover when
passing over the warm East Sea, and sunlight is not abundant [38].
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Second, holiday factors have a certain influence on seasonal use. Tourists traveling
with their families account for the majority of visitors to Okinawa [39]. Although early
May is national Golden Week in Japan, when many people go on vacation, no significant
increase was observed in predictive values in that month. By contrast, July is the start of
summer vacation for Japanese students, and parents take their children outside to play,
leading to a peak period for tourism in Okinawa, resulting in higher posting forecasts in
July. When planning a travel itinerary, tourists usually consider the climate characteristics
of the destination, making UGS near the ocean more popular during summer vacation.
In contrast, such areas are not in the travel plans of most tourists during students’ winter
vacation from February to March. Additionally, most overseas visitors to Okinawa come
from Greater China [28], where, in many places, people celebrate National Day in October.
Meanwhile, the occurrence of typhoons ceases in October, and the average temperature
can remain around a comfortable 25 ◦C for water activities. Therefore, climate and holiday
factors may be common reasons for the small increase in predictive values in October.
Although the climate in January is not suitable for water activities, it is the most important
New Year’s holiday in Japan, and the number of tourists rises significantly. Some tourists
visit the area to admire the ocean views, which may be why the predictive values in January
are relatively high during the off-peak season.

4.1.2. Impact of the Outbreak

We jointly mapped the status of the number of new cases in Okinawa and the pro-
portional relationship between the actual and predictive values of posting numbers after
the outbreak in ocean-area UGS, as shown in Figure 14. The analysis indicates that, at
the start of the outbreak, the impact on the relative posting numbers was small and even
exceeded the predictive value in February 2020. However, after April 2020, a significantly
negative correlation was observed between the situation of new cases and the relative
number of postings, resulting in a significant decline. We noted the most pronounced drop
in the relative number of postings during the first small peak of the pandemic in April 2020.
Although the relative number of postings fluctuated along with the second mini-peak of
the outbreak in August 2020, it remained low and did not exceed a quarter of the predictive
value until October 2020. As the number of new cases plateaued between September and
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December 2020, the decline in the relative number of postings tapered off and reached
69.30% of the predicted value, indicating a short-lived trend of utilizing the “new normal”
during this period. However, from January 2021 onward, four consecutive peaks in the
number of new cases resulted in a continued downturn in the relative number of postings,
with only a small recovery between the fourth and fifth peaks. As the number of new
cases decreased after October 2021, the relative posting numbers began to rebound rapidly.
Overall, the relative number of postings in ocean-area UGS shows a negative correlation
with the number of new cases, and there is a small lag effect between changes. After a spike
in new cases, the magnitude of the relative postings began to drop significantly.
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4.2. Non-Ocean-Area UGS
4.2.1. Exploiting Seasonality

According to the pre-outbreak data series, we plotted a line graph of predictive values
for non-ocean-area UGS, which we assumed to be unaffected by the outbreak, as shown
in Figure 15. The graph showed no clear trend of the seasonal use of these green spaces
throughout the year, indicating that climate might not be a significant factor in determining
visitors’ tendencies to use such spaces. Furthermore, even before the outbreak, there
was already a noticeable downward trend in online postings for this type of green space.
Despite this, posting predictions for non-ocean-area UGS show relatively high numbers
during the New Year’s holidays in January and Golden Week in May, which are periods
in the year when Japanese people go on vacation the most. Between November and
March, when ocean-area UGS is in its off-peak season, posting forecasts remain low in
November and start to increase significantly in December. This may be related to discounted
accommodations and transport prices during this period [6], as well as the intensification
of traditional cultural events in the Okinawa region close to the New Year and an increase
in visitors seeking refuge from the winter weather [40], among other factors.

4.2.2. Impact of the Outbreak

A joint graph of the status of the number of new cases in Okinawa and the proportional
relationship between the actual and predictive values following the outbreak in non-ocean-
area UGS is shown in Figure 16. The overall decrease in the region is slightly less than
that of ocean-area UGS, and the impact of the outbreak is somewhat small. The reduction
in the relative number of postings was most pronounced when the first small peak of the
pandemic occurred in April 2020. After the first outbreak, the relative number of postings
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began to rise gradually, reaching 50.58% of the predictive value at one point during the
second small peak of the outbreak in August 2020. However, after the number of new cases
declined from September to October 2020, the relative number of postings in this type of
green space dropped significantly to 16.69%. During the period of continued growth in the
number of new cases from November 2020 to January 2021, the number of postings and
the percentage of forecasts began to rise, reaching a maximum of 55.36% of all forecasts.
The relative posting numbers then fluctuated positively according to the trends of increases
and decreases in the number of new cases. During the highest number of new cases in
August 2021, the relative number of postings reached the highest point after the first small
peak of the pandemic, reaching 70.98% of the predictive value. The number of people
rose and the relative number of postings increased again to exceed half in December 2021,
reaching 57.50%. Overall, the relative number of postings in non-ocean-area UGS indicates
a positive correlation with the number of new cases. The lag effect of the subsequent change
was small; thus, once there was a peak in new cases, the magnitude of the proportion of
postings began to expand compared to the predictive value.
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4.3. Comparative Analysis

The graph in Figure 17 shows a crossed line plot, illustrating the proportional rela-
tionship between the actual and predictive values of posting numbers for the two types
of UGS (ocean-area UGS and non-ocean-area UGS). Before the outbreak, ocean-area UGS
had been experiencing an upward trend in online posting popularity, while non-ocean-area
UGS had been experiencing a downward trend. However, after the first small spike in
the number of new cases, the relative posting numbers for both types of UGS declined
significantly. This was due to many tourists having to cancel their planned trips because
of various restrictions implemented to control the spread of the virus. Despite the overall
decrease in the number of postings for both types of UGS, the magnitude of the decrease
and the trend of the increase and decrease in new cases were quite different. This suggests
that other factors may have also influenced the popularity of UGS during the pandemic.
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First, ocean-area UGS is popular among tourists, drawing many visitors. Notwith-
standing, research has shown that, after an outbreak [41], there is a general perception of
a greater risk of infection in popular, crowded, high-density areas, which visitors tend to
avoid. At the same time, visitors have become more inclined to opt for spectator activities
at a social distance, influenced by the publicity of the PPC policy. By contrast, the more
interactive nature of marine recreational activities, as well as the government’s tendency
to restrict water activities by closing or suspending access during peak numbers of new
cases, further reduced the number of tourist arrivals by making certain areas unavailable
to visitors. This may have contributed to a greater reduction in the relative number of
postings about ocean-area UGS.

Second, upon analyzing the trend in the number of new cases, we observed a negative
correlation with the relative number of postings about ocean-area UGS. This means that,
when the number of new cases began to show an increasing trend, the number of postings
about ocean-area UGS fell significantly. By contrast, non-ocean-area UGS showed a positive
correlation with the number of postings, with the relative posting numbers rising as new
cases began to emerge. One possible explanation for this phenomenon is that, in the event
of an increase in the number of new cases, tourists still wish to visit green spaces (such as
beaches), even after they are closed. People may need to find alternative areas such as urban
parks or traditional gardens. As most ocean-area UGS are located far from accommodations
in the city center, people might prefer less crowded areas that are easy to reach. However,
while non-ocean-area UGS has a low population density during normal times, the relative
increase in their use during a pandemic may increase the risk of cross-infection. This could



Land 2023, 12, 1075 20 of 25

exacerbate the rise in the number of cases and contribute to the positive correlation shown
in the graph.

Nevertheless, we can see that the trend of increasing numbers of new cases began to
plateau between October and December 2020 and after November 2021. At this point, the
relative number of postings about ocean-area UGS began to rise rapidly and exceeded that
of non-ocean-area UGS. This suggests that, after the effects of a pandemic are mitigated,
the number of visitors to ocean-area UGS will rebound more quickly than the number
of visitors to non-ocean-area UGS, reflecting strength in terms of tourism attractiveness.
This is because, as the number of infected people declines, confidence and enthusiasm for
tourism activities will gradually return. In addition, the government might respond to
changes in unexpected circumstances in a timely manner by choosing to relax restrictions
on tourism activities, such as by opening beaches and water recreation areas, which may
also draw more visitors to ocean-area UGS.

The results also imply that non-ocean-area UGS has greater potential for tourism resource
use and serves as a buffer against risk. Compared with the distinct seasonal usage pattern
of ocean-area UGS due to climatic factors, non-ocean-area UGS has the advantage of being
more flexible and adaptable as a tourism resource, is better able to cope with the impact of
unexpected events, and avoids paralysis of the tourism sector. Non-ocean-area UGS, as an
important part of urban infrastructure, can also function as an ecosystem service, providing a
safer place for outdoor activities to meet public demand [42]. This is conducive to people’s
physical and mental health. In addition, in Okinawa, this type of green space is less affected by
climatic factors and can provide a similar tourist experience all year round. As non-ocean-area
UGS is easier to plan and renovate, it also offers a more diverse range of tourism programs
(e.g., cultural, historical, and artistic events) to meet different tourism needs.

5. Conclusions

We used R to develop an ARIMA model of the number of postings about ocean-
area UGS and non-ocean-area UGS in Okinawa. We aimed to compare the magnitude
of the proportional change between the actual and predictive values after the outbreak
and to analyze the seasonality of tourists’ use of Okinawa’s UGS and the impact of the
COVID-19 pandemic.

The seasonality of the use of ocean-area UGS is dominated by climatic factors, with
April–October being the peak season (especially during students’ summer vacation in July),
and November–March (continuing into the following year) being the off-peak season. The
outbreak of the COVID-19 pandemic has had a significant impact on visitor enthusiasm,
with a considerable reduction in the number of postings. Ocean-area UGS showed a greater
variation in postings and a negative correlation with the number of new cases due to
weather and safety concerns; a positive correlation was observed in the number of postings
and the number of new cases for non-ocean-area UGS, demonstrating its ability to cope
with risk during an outbreak.

Finally, the experience of the pandemic has brought about new demands for UGS
management; in the post-pandemic era, with the spread of vaccines and changing percep-
tions of the pandemic, Okinawa’s tourism industry now has opportunities to rebuild and
recover. Restoring people’s confidence in tourism will be a long-term and difficult task,
specifically in terms of the following: (1) boosting the media buzz of under-recognized
attractions and promoting a virtuous cycle of publicity; (2) making plans for the temporary
renovation of UGS in response to unexpected social events or environmental weather crises;
(3) making all data public in a timely manner and strengthening people’s daily health and
safety to bolster their confidence when traveling; and (4) promoting deep integration of
the Internet, big data, artificial intelligence, and other relevant information technology
with the tourism industry. Future prediction data could be used to rationalize services
such as facility services, traffic management, and staff deployment to improve the quality
of tourism services while avoiding wastage of resources. On the basis of the return of
spontaneous tourists, we should actively advocate for people to resume social and outing
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activities, reduce the psychological impact of the pandemic, and gradually work to remove
the shadow of the pandemic.

This study has some limitations. The data source for building the ARIMA model
was the only publicly available data source from the Tripadvisor platform; the accuracy
of Internet data analysis is influenced by the frequency of Internet usage among visitors.
However, it is crucial to acknowledge that there might be variations in Internet usage
frequency across different age groups, regions with restricted access to the TripAdvisor
platform, and economically disadvantaged areas. These variations can potentially result
in statistical errors; more platforms could be considered to supplement the data source in
the future. In addition, both the actual and predictive values are short-term data series.
For future research on the “new normal” in the post-pandemic era, more data need to
be added on an ongoing basis to gain a more comprehensive understanding of tourists’
behavioral patterns. In addition, future studies should consider whether significant factors
besides a pandemic influence the seasonality of visitor use; this could lead to more accurate
predictions of visitor numbers.
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Appendix A

This table presents the names of all the attraction sites and the cities involved in the
UGC study data for this study.

Table A1. Attraction sites for the ocean-area UGS and the cities involved.

Site City Site City

Tomori Imugya Beach Miyakojima Ginowan Tropical Beach Ginowan
Maehama Beach with Naha Miyakojima Ginowan Marina Ginowan

Shinjo Coast Miyakojima Bibi Beach Itoman Itoman
Shimodachi Island Miyakojima Odohama Beach Itoman

Toriike Pond Miyakojima Kadeshi River Itoman
Irabu-jima Island Miyakojima Nashiro Beach Itoman
Ikema-jima Island Miyakojima Kawahira Bay Ishigaki

Sawada no hama Beach Miyakojima Yonehara Beach Ishigaki
Painagama Beach Miyakojima Sukuji Beach Ishigaki

Kurimajima Island Miyakojima Shiraho Beach Ishigaki
Watanabisama Miyakojima Sunset Beach Ishigaki

Yae Ganse Miyakojima Maezato Beach Ishigaki

Nakanoshima Beach Miyakojima Kabira Ishizaki Manta
Scramble Ishigaki

Shigira Beach Miyakojima Akashi Beach Ishigaki
Ogami Island Miyakojima Maesato Beach Ishigaki

Nagamahama Beach Coast Miyakojima Ishigaki-jima Blue Cave Ishigaki
Sand Hill Beach Miyakojima Urasoko Bay Ishigaki



Land 2023, 12, 1075 22 of 25

Table A1. Cont.

Site City Site City

Funakusu Beach Miyakojima Tomizaki Beach Ishigaki
Hauai Waiwai Beach Miyakojima Osaki Hanagoi Reef Ishigaki

Boraga Beach Miyakojima Osaki Tutle Reef Ishigaki
Turiba Sunset Beach Miyakojima Iharama Okinone Ishigaki

Hora Gyoko no Hama Beach Miyakojima Kumoji River Naha
Kagimmi-hama Beach Miyakojima Ryutan Naha

Maja Beach Miyakojima Naminoue Umisora Park Naha
Opiiwa Miyakojima Miigusu Port Naha

Yamatobu Oiwa Miyakojima Soongahinja Spring Naha
Muigah Cliff Miyakojima Naminoue Beach Naha

Tako Park Miyakojima Miigusuku Furusato Coast Naha
Ikizu Beach Miyakojima Kudakajima Island Nanjo

Satans Palace Miyakojima Ojima Island Nanjo
Arasshisuhida Beach Miyakojima Miibaru Beach Nanjo

Urasoko Beach Miyakojima Ojima Coast Nanjo
Miyaguni Nnatohama Beach Miyakojima Komaka Island Nanjo

Antoni Gaudi Miyakojima Azama Sunsun Beach Nanjo
Muikaga Miyakojima Mibaru Beach Nanjo

Nakanoshima Water Channel Miyakojima Ishiki Beach Nanjo
Kumaza Beach Miyakojima Habyan, Cape Kaberu Nanjo
Nagakita Beach Miyakojima Ukabijima Island Nanjo

Cross Hole Miyakojima Pizza Beach Nanjo
Miyako Sunset Beach Miyakojima Busena Beach Nago

Hamahiga Island Uruma 21st Century Forest Nago
Ikei Beach Uruma Yagaji Island Nago

Odomari Beach Uruma Kise Beach Nago
Tsukenjima Island Uruma Kanucha Beach Nago

Tonnaha Beach Uruma Nago citizen Beach Nago
Muruku Hama Beach Uruma Sea Glass Beach Nago

Hamahiga Beach Uruma Koki Beach Nago
MIyagijima Island Uruma Yagaji Beach Nago

Henza Island Uruma Teniya Beach Nago
Tsukenjima Beach Uruma Setagashima Tamagusuku
Tomai-hama Beach Uruma Toyosaki Kaihin Koen Tamagusuku
Ukibaru-jima Island Uruma Chura Sun Beach Tamagusuku

Itsukuma Beach Uruma Hija River Okinawa
City

Kaneku Beach Uruma

Table A2. Attraction sites for the non-ocean-area UGS and the cities involved.

Site City Site City

Miyakojima Marine Park Miyakojima Ishigaki Island Science
Garden Ishigaki

Imugya Marine Garden Miyakojima Hirakubo Sagaribana
Gunraku Ishigaki

Shimajiri Mangrove Forests Miyakojima Maezato Dam Ishigaki
Hirara Tropical Botanical

Garden Miyakojima Oura Dam Ishigaki

Hika Road Park Miyakojima Kanmuriwashi Observatory Ishigaki
Turiba Seaside Park Miyakojima Urasoe Park Urasoe

Nishikaigan Park Miyakojima Urasoe Sports Park Urasoe
Kamamamine Park Miyakojima Miyagi Park Urasoe

Shiratori Misaki Park Miyakojima Ohira Bus Stop Park Urasoe
Nakahara Limestone Cave Miyakojima Fukushuen Naha

Stone Garden Miyakojima Shikinaen Naha
Tropical Fruits Park Miyakojima Onoyama Park Naha
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Table A2. Cont.

Site City Site City

Takenakayama Tembo Park Miyakojima Shurikinjocho Oakagi Tree Naha
Fukuzato Underground Dam Miyakojima Manko Park Naha
Minafuku Underground Dam

Park Miyakojima Yogi Park Naha

Painagama Umizora
Sukoyaka Park Miyakojima Sueyoshi Park Naha

Ogamijima Island
Multipurpose Park Miyakojima Wakasa Seaside Park Naha

Shiratori Hole Miyakojima Kinjo Dam Naha
Panata Miyakojima Matsuyama Park Naha

Sunken Ship Irabu Miyakojima Midorigaoka Park Naha
Bios Valley Uruma Kibogaoka Park Naha

Cave Okinawa Uruma Asatogawa Shinsui Park Naha
Zukeran Poultry Farm

Minimini Zoo Uruma Uenomo Park Naha

Jyane Caves Uruma Gajanbira Park Naha
Sea Side Garden Hamahiga Uruma Makishi Park Naha

Miten Uza Uruma Asahigaoka Park Naha
Kurashiki Dam Uruma Shintoshin Park Naha

Uruma Shiminnomori Park Uruma Okinawa Cellular Park Naha Naha
Yacho no Mori Nature Park Uruma Kuganimui Park Naha

Iha Park Uruma Matsuo Park Naha
Heshikiya Takino Uruma Uenoya North Park Naha

Hamagyoko Ryokuchi Park Uruma Sakiyama Park Naha
Hanaridaki Uruma Nami no Ue Chocho House Naha

Ginowa Seaside Park Ginowan Ai no Shisa Park Naha
Kakazu Upland Park Ginowan Gangala Valley Nanjo

Morikawa Park Ginowan Cape Chinen Park Nanjo
Mashiki Pocket Park Ginowan Hanayakamura Nanjo

Heiwa Sozo no Mori Park Itoman Gusuku Road Park Nanjo
Okinawa Maha Bodhi Garden Itoman Chichinga Nanjo
Ishigaki Island Stalactite Cave Ishigaki Busena Marine Park Nago

Ishigakijima Banner Park Ishigaki NEO PARK OKINAWA Nago
Kawahira Park Ishigaki Forest Yanbaru Subtropical Nago

Ibaruma Sabichi Cave Ishigaki Nago Castle Historical Park Nago
Nosoko Mape Ishigaki Todoroki Falls Nago

Yaeyama Shyonyudo
Doshokubutsuen Park Ishigaki 21st Century Forest Park Nago

Nosoko Forest Road Ishigaki Mt. Tanoudake Nago
Shinei Park Ishigaki Fukugawa Falls Nago
Misaki Park Ishigaki Haneji Dam Nago

Maezato Park Ishigaki Shikuwasa Hana & Green
Village Nago

Funakura Park Ishigaki Kouki Park Nago
Sokobaru Dam Ishigaki Kaigungo Park Tamagusuku

Mr. Isigaki Garden Ishigaki Manko Waterbird & Wetland
Center Tamagusuku

Ishigaki Dam Ishigaki Dmm Kariyushi Aquarium Tamagusuku
Arakawa Falls Ishigaki Southeast Botanical Gardens Okinawa City
Nagura Dam Ishigaki Okinawa Zoo & Museum Okinawa City

Kids Land Fantasy World Ishigaki Okinawa Comprehensive
Athletic Park Okinawa City

Manta Park Ishigaki Yaeshima Park Okinawa City
Yashima Ryokuchi Park Ishigaki Akemichi Park Okinawa City

Yashima Jinko Island Ishigaki
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