
Citation: Kaya, F.; Mishra, G.;

Francaviglia, R.; Keshavarzi, A.

Combining Digital Covariates and

Machine Learning Models to Predict

the Spatial Variation of Soil Cation

Exchange Capacity. Land 2023, 12,

819. https://doi.org/10.3390/

land12040819

Academic Editors: David

Pastor-Escuredo, Alfredo J. Morales

and Yolanda Torres

Received: 27 February 2023

Revised: 27 March 2023

Accepted: 31 March 2023

Published: 3 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Combining Digital Covariates and Machine Learning Models to
Predict the Spatial Variation of Soil Cation Exchange Capacity
Fuat Kaya 1 , Gaurav Mishra 2 , Rosa Francaviglia 3,* and Ali Keshavarzi 4

1 Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Isparta University of
Applied Sciences, Isparta 32260, Türkiye

2 Centre of Excellence on Sustainable Land Management, Indian Council of Forestry Research and Education,
Dehradun 248006, Uttarakhand, India

3 Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics,
00184 Rome, Italy

4 Laboratory of Remote Sensing and GIS, Department of Soil Science, University of Tehran, P.O. Box 4111,
Karaj 31587-77871, Iran

* Correspondence: r.francaviglia@gmail.com

Abstract: Cation exchange capacity (CEC) is a soil property that significantly determines nutrient
availability and effectiveness of fertilizer applied in lands under different managements. CEC’s
accurate and high-resolution spatial information is needed for the sustainability of agricultural man-
agement on farms in the Nagaland state (northeast India) which are fragmented and intertwined
with the forest ecosystem. The current study applied the digital soil mapping (DSM) methodology,
based on the CEC values determined in soil samples obtained from 305 points in the region, which is
mountainous and difficult to access. Firstly, digital auxiliary data were obtained from three open-
access sources, including indices generated from the time series Landsat 8 OLI satellite, topographic
variables derived from a digital elevation model (DEM), and the WorldClim dataset. Furthermore,
the CEC values and the auxiliary were used data to model Lasso regression (LR), stochastic gradient
boosting (GBM), support vector regression (SVR), random forest (RF), and K-nearest neighbors
(KNN) machine learning (ML) algorithms were systematically compared in the R-Core Environment
Program. Model performance were evaluated with the square root mean error (RMSE), determination
coefficient (R2), and mean absolute error (MAE) of 10-fold cross-validation (CV). The lowest RMSE
was obtained by the RF algorithm with 4.12 cmolc kg−1, while the others were in the following order:
SVR (4.27 cmolc kg−1) <KNN (4.45 cmolc kg−1) <LR (4.67 cmolc kg−1) <GBM (5.07 cmolc kg−1). In
particular, WorldClim-based climate covariates such as annual mean temperature (BIO-1), annual
precipitation (BIO-12), elevation, and solar radiation were the most important variables in all algo-
rithms. High uncertainty (SD) values have been found in areas with low soil sampling density and
this finding is to be considered in future soil surveys.

Keywords: digital soil mapping; soil cation exchange capacity; feature selection; uncertainty; mountainous
region; geomorphology; remote sensing

1. Introduction

An accurate knowledge of the spatial distribution of soil physicochemical properties
is crucial for effective agricultural management and informed decision-making in tropical
regions, where topography can be highly variable and agricultural and forested areas
are often intertwined [1,2]. In particular, soil cation exchange capacity (CEC) provides
important information on the soil’s ability to adsorb cations, which has a significant impact
on the frequency and amount of fertilizer application required for optimal plant growth and
productivity [3,4]. However, in tropical regions, CEC has been reported to affect the natural
growth and occurrence of plant species [5,6]. Therefore, spatially accurate knowledge of
CEC can facilitate effective land management practices.
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Soil CEC is influenced by various factors such as soil type, organic matter content,
texture, pH, and mineral composition. These factors can vary widely across different
soil types and geographic locations, leading to differences in soil CEC. The intensity of
observations needed to spatially detect and map these differences cannot be effectively
carried out using traditional methods, especially in hard-to-reach areas such as our study
area where observations are limited [7]. However, since soils always exhibit a spatial
variability, it is necessary to estimate the gaps between soil sampling points taken from a
limited number of sites or points over time [8,9].

Rather than traditional soil mapping techniques, the increasing availability of digital
data and computing power has accelerated the mapping of soil properties with pedometric
methodologies [10]. In particular, when accompanied by an increase in digital data [11] in
the spatial representation of soil formation factors [12,13] and the possibilities of using ma-
chine learning algorithms for data processing, “digital” [14] and of course, the production
of “predictive” [15] maps are allowed.

Digital soil mapping (DSM) studies utilize various data sources, including open-access
satellite images, climate data spanning decades, and digital elevation models, to correlate
soil features at sample points and generate soil feature estimates for a study area [14,16,17].
Sorenson et al. [18] used the RF algorithm with Landsat-based digital covariates, climate-
related temperature and precipitation, and digital elevation model derivatives to estimate
CEC in surface soils in Saskatchewan, Canada, where vegetation is dense. They reported a
R2 value of 0.47 for the model performance. Reddy and Das [19] developed a CEC map
for India using topographic variables derived from digital elevation models, vegetation
indices from MODIS satellite data, and monthly temperature and precipitation data. They
reported a performance of R2 = 0.62 and RMSE = 9.21 cmolc kg−1 for the CEC map.

Soil mapping techniques have been applied to produce DSM products for soil CEC
at a continental scale, such as for CEC in Europe by Ballabio et al. [20] and in Africa
by Hengl et al. [21]. Digital maps for soil CEC have been created at national scales for
Nigeria [22] and China [23]. At regional scales, DSMs have been developed for CEC in
several areas, such as the northwest of Iran [24], the US state of Wisconsin [25], southwestern
Burkina Faso, Africa [26], and New South Wales, Australia [27].

Although DSM studies should ideally provide a comprehensive description of the
results and include the visual representations of uncertainty [28], DSM products often
suffer from a lack of proper uncertainty measurement in the final maps.

The ML-based soil property maps are now widely used in Earth surface process
modeling and agricultural science. However, maps created using different methods can
look significantly different, and it is important to use methods that assess spatial patterns
in addition to point estimates accuracy [29]. Evaluating maps beyond point prediction
advances soil mapping as a science [30].

This study aimed to produce a state-scale digital CEC map using soil observations, ML
algorithms used extensively in the literature, and related covariates describing the spatial
distribution of CEC. To achieve this goal, the study had three specific objectives. First, to
compare the predictive performance of five ML algorithms for mapping CEC. Second, to
compare the uncertainty outputs of the spatial and digital products of the predictive models.
Finally, to analyze the spatial model of CEC distribution across the different physiographic
regions of Nagaland state.

2. Materials and Methods
2.1. Study Area and Soil Data

The study was conducted in the state of Nagaland, located in the extreme eastern part
of the Himalayan region of India (Figure 1). Nagaland is bounded by Myanmar to the
east, Assam to the west and north, Arunachal Pradesh to the north, and Manipur to the
south [31]. The study area (Figure 1) is approximately 17,000 km2 and is located between
25◦10′ N and 27◦4′ N Latitude and 93◦15′ E and 95◦20′ E Longitude. The altitudinal range
in Nagaland varies from 100 m to 3826 m a.s.l. [32]. The climate type of the region is mainly
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Cwa (monsoon-influenced humid subtropical climate) according to the Köppen–Geiger
climate classification system [33]. Nagaland is primarily a hilly state, stretching in a narrow
strip from northeast to southwest, and located in the northern extension of the Arakan Yoma
Mountain ranges of Myanmar. The forest cover of Nagaland encompasses approximately
12,000 km2, representing 73.91% of its total area [34]. ‘Shifting cultivation’, locally known
as ‘jhum’, is the second major land use in the state, following forest cover [35]. The
primary crop grown in the state is upland rice (Oryza sativa) using conventional practices,
which serve as a staple food. Other significant crops include maize, cowpea, pulses, and
vegetables [36]. The majority of soils in the region can be classified as Inceptisols according
to the USDA Soil Taxonomy [37], with Ultisols being the second most common soil order.
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From 2013 to 2017, soil surveys were conducted in various districts of Nagaland to
gather soil samples from a depth of 0–30 cm. A total of 305 sites were randomly selected
under different land uses, and the GPS was used to record the sampling positions of all
the sites (Figure 1). At each site, a quadrat of 10 m × 10 m was laid, and five samples
(four at the corners and one at the center) were collected to make a composite sample. The
collected soil samples were air-dried at room temperature (22 ◦C), grinded, and passed
through a 2-mm sieve to exclude litter, roots, and coarse particles. CEC was measured by
1 N ammonium acetate (pH 7.0) method [38].

2.2. Digital Covariates

This study utilized DEM-based terrain attributes, satellite image-based indexes, and
climate data to represent environmental conditions and their influence on the distribution
of soil CEC.

The System for Automated Geoscientific Analysis (SAGA) GIS [39] was employed to
calculate the topographic digital covariates from the digital elevation model (DEM) [40], In
addition, remote sensing-based indices were derived from Landsat 8 OLI surface reflectance
(SR) [41] data by applying band operations [42]. Climate variables were obtained from the
“WorldClim 2” dataset [43]. Table 1 contains information on the digital covariates used in
the study.
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Table 1. Digital covariates used for estimating soil cation exchange capacity.

Covariate Name Definition Refs.

Elevation Elevation, measured as height above sea level [40]
Slope Slope measures the elevation change and steepness of a line [39]
Pl-cur Rate of change of aspect along a contour [39]
Pr-cur Rate of change of slope down a slope line [39]

Con-Ind Calculated using flow direction and neighboring cell aspects [39]
Flow-acc Calculated accumulated flow [39]
Val-depth The vertical height below the summit accumulation [39]
Flow-dir Height differences between cells determine the flow direction. [39]
MRVBF The measure of flatness and lowness depicting depositional areas [44]
MRRTF The measure of flatness and upness depicting stable upland areas [44]

TWI The measure of the propensity of an area to accumulate water [39,45]

TPI Difference between a cell elevation value and the average elevation of the neighborhood
around that cell [39]

TRI Degree of roughness or irregularity of the landscape [39]

NDVI
Stdv, Median, Mean

(NIR Band− Red Band)/(NIR Band + Red Band) (1)

[46]
Measures the amount and health of vegetation in a given area

RONR
Stdv, Median, Mean (SWIR Band− Green Band)/(SWIR Band + Green Band) (2)

Landsat 8 OLI
ProductIDs

LC08_L2SP_135041_20170204_20200905_02_T1,
LC08_L2SP_135042_20170204_20200905_02_T1

[41]
LC08_L2SP_135041_20190125_20200829_02_T1,
LC08_L2SP_135042_20190125_20200830_02_T1

BIO-1 The annual mean temperature in degrees Celsius.
[43]BIO-12 Annual precipitation in millimeters.

TSR Thirty-year mean solar radiation in 12 months in kJ m−2 year−1

Note: NDVI: Normalized Difference Vegetation Index, RONR: Rock Outcrop Normalized Ratio, BIO-1: Mean
Annual Temperature (MAT), BIO-12: Annual Precipitation, TSR: Total Solar Radiation, Pl-cur: Planform Curvature,
Pr-Cur: Profile Curvature, Con-Ind: Convergence Index, Flow-acc: Flow Accumulation, Val-depth: Valley Depth,
Flow-dir: Flow Direction, MRVBF: Multi-resolution valley bottom flatness index, MRRTF: Multi-resolution of
ridge top flatness index, TWI: Topographic wetness index, TPI: Topographic position index, TRI: Topographic
roughness index.

All the digital covariates were standardized through a disaggregation approach (based
on the nearest neighbors’ technique) to the same pixel resolution of 30 m and the same
extent and were reprojected onto the epsg:32646 projection system [42].

2.3. Modelling Cation Exchange Capacity

This study followed the DSM framework and was conducted in several steps (Figure 2):
(1) Soil data enabling and data curation process, (2) acquisition of digital covariates from
open-sources, (3) extraction of georeferenced sample points from the digital covariates
data and preparation of geodatabases, (4) selection of the digital covariates using the
“caretFuncs” functions for each algorithm, (5) iteratively employing ML models, and
(6) producing predictive mean and standard deviation maps. Figure 2 shows the flowchart
of the present study.

To reduce the redundancy among digital covariates and to produce a model with a
parsimony approach [47], the recursive feature elimination (rfe) process in accordance with
root mean square error (RMSE) minimization (Figure A1) was employed while taking into
account the available digital covariates (Table 1). The digital covariates selection process
was carried out for each machine learning algorithm using the “caretFuncs” [48] function.

Five ML models (Table 2) were systematically compared to identify the relation-
ships between soil CEC and digital covariates for the study area. K Nearest neighbors
(KNN) [49], gradient boosting machine (GBM) [50,51], Lasso regression (LR) [52], random
forest (RF) [53,54], and support vector regression (SVR) [55,56] were executed. These ML
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algorithms were chosen because the mathematical differences on which they are based can
be easily compared using the scientific literature [22,25], whether they are linear or not.
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The K-nearest neighbor (KNN) algorithm is a supervised ML algorithm useful for
solving regression problems [49]. As in this study, if the values of the target function
are “continuous”, the process proceeds by calculating the mean. For solving a regression
problem, Nearest-neighbor methods utilize the observations in the calibration set that is
closest in input space to x to form Y;

Y (x) =
1
k ∑xi ∈Nk(x) yi, (3)

where Nk(x) represents the neighborhood of x, defined as the k closest points xi in the
training sample. The notion of closeness is based on a metric, which in this case is assumed
to be the Euclidean distance. Thus, we find the k observations closest to x in input space
and take the average of their responses. The optimization of the model’s performance in
the study involved the tuning parameter closest instances (k).

The random forest (RF) algorithm is an ensemble learning method for regression
problems [54]. Introduced by Breiman [54], it is an improvement over the bootstrap
aggregating (bagging) algorithm. The idea behind RF is to build multiple decision trees and
use them to make predictions. The final prediction is made by aggregating the predictions
of all the trees, and the average in a regression model. For a more detailed understanding
of the RF method, see Biau and Scornet [57]. Out of Bag (OOB) errors were computed using
36.8% of the training dataset to evaluate variable importance. Mean square error (MSE)
was employed as the prediction error in the OOB analysis for regression models, with the
software generating two critical measures: %IncMSE and IncNodePurity. %IncMSE was
computed for each tree with and without relevant predictors, and the mean differences
were normalized to their standard deviation. IncNodePurity represents the average total
reduction in node impurity from splitting among predictors in the tree-building process
across all trees, with node impurity measured using residual sum of squares [58]. The
optimization of the model’s performance in the study involved the tuning parameter of the
number of possible directions for splitting at each node of each tree “mtry”.
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Gradient Boosting Machine (GBM) is an ensemble learning method that combines
the predictions from multiple weak models to produce a stronger final prediction [50].
GBM uses an ensemble learning method but uses boosting rather than bagging. Instead of
focusing on the complete training data, boosting algorithms select only a fraction of the
training data to improve prediction accuracy gradually. The optimization of the model’s
performance in the study involved the tuning of parameters, including terminal node
size (n.minobsinnode), number of trees (n.trees), number of splits (interaction.depth), and
learning rate (shrinkage).

Lasso regression (LR) is a type of regularized or penalized regression model that
is particularly useful for dealing with multicollinearity in datasets where the number of
variables is high [59]. This helps to prevent overfitting and improves the interpretability of
the model. In mathematical terms, the LR can be expressed as an optimization problem
where the objective function is the sum of the mean squared error and the Lasso penalty
term. The Lasso penalty term is defined as the sum of the absolute values of the regression
coefficients, multiplied by a tuning parameter that controls the strength of the regularization.
The optimization problem is solved using numerical methods, such as coordinate descent,
to find the values of the regression coefficients that minimize the objective function [60]. The
optimization of the model’s performance in the study involved the tuning of the penalty
parameter (Lambda).

Support vector regression (SVR) is a type of supervised learning algorithm that can be
used for regression tasks. SVR works by mapping the input data to a high-dimensional
feature space and then finding a hyperplane that best fits the data in that space [55]. SVR
aims to find a hyperplane that fits the data while allowing for some errors. The optimization
problem involves finding the hyperplane that maximizes the margin between the support
vectors and the hyperplane while minimizing the prediction error. This is done by solving a
set of Lagrange multipliers that are used to define the support vectors and the hyperplane.
Once the optimization problem is solved, the support vectors define the boundary of the
hyperplane, and the model can be used to make predictions on new data points. The
optimization of the model’s performance in the study involved the tuning of parameters
regularization constant (C) and kernel width parameter (sigma).

Hyperparameters of each ML algorithm were tuned using their respective packages
(Table 2).

Using R Core Environment software (Version 4.2.1) [61] and RStudio IDE [62], the CEC
of the surface soil in the study area was estimated using a laboratory soil analysis dataset
and selected digital covariates in Table 2. Iterative models were created by the process of a
10-fold CV. The average outcomes of these models were used to create the final soil CEC
map based on each ML algorithm.

Table 2. Parameters of the machine learning algorithms used and final digital covariates included to
model CEC.

Algorithm Digital Covariates R Package Tuning Hyperparameter

KNN BIO-1, BIO-12, Elevation, TSR, TRI, NDVI-Mean,
TPI, Slope, Pr-cur, Val-depth, Con-Ind caret [63] k: 9

LR BIO-1, BIO-12, Elevation glmnet [52,64] Lambda: 0.56
RF BIO-1, BIO-12, Elevation, TSR randomForest [65] mtry: 2

GBM BIO-1, BIO-12, Elevation gbm [51] shrinkage: 0.32, interaction.depth:
9, n.minobsinnode: 8, n.trees: 272

SVR BIO-1, BIO-12, Elevation, TSR e1071 [66] Sigma: 0.74, cost: 1

Note: LR: Lasso regression, GBM: Stochastic gradient boosting, SVR: Support vector regression, RF: Random
forest, KNN: K-nearest neighbors.

2.4. Model Performance Evaluation and Uncertainty Analysis

Model output and observations were compared with statistics from cross-validation [67].
A 10-fold cross-validation with 5 repetitions was used [68]. The determination coefficient
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(R2) was used to evaluate the model validation, along with mean absolute error (MAE) and
root mean square error (RMSE) [68]. The formulas for these parameters are as follows:

MAE =
∑n

i=1|Oi− Pi|
n

(4)

RMSE =

√
∑n

i=1(Oi− Pi)2

n
(5)

R2 =

 ∑n
i=1(Oi−Oave)(Pi− Pave)√

∑n
i=1(Oi−Oave)2(Pi− Pave)2

2

(6)

where Oi and Pi are, respectively, the observed and predicted values, with their average
values represented by Oave and Pave, respectively, and n is the sample size in the dataset.

The accuracy of a digital soil map can be evaluated at locations where soil samples
were collected and analyzed. On the other hand, the uncertainty associated with a soil
map can be estimated for each raster cell or pixel in the map [68]. In the current study,
uncertainty was estimated by calculating the standard deviation of predictions for each
pixel across the 10 model runs. This represents the degree of variation in the predicted
values within each pixel around the mean value [69,70].

3. Results
3.1. Soil CEC Data Summary Statistics

Figure 3 depicts the statistical distribution of CEC characteristics in the study area,
including a histogram and Q-Q plot of the soil samples. Mean CEC was 12.11 cmolc kg−1, with
an amplitude ranging from 1.79 to 30.23 cmolc kg−1, a standard deviation of 5.26 cmolc kg−1,
and a median of 11.31 cmolc kg−1, as shown in Figure 3. The determined coefficient of
variation of 43.46% is relatively high (Figure 3). The skewness and kurtosis values of
the CEC were close to 0. Based on the results of the Grubbs’ Test [71] with a 5% level of
significance, no outliers were present in the dataset (G value is 3.44; p value is 0.156).
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3.2. Performance of Different Machine Learning Algorithms

Figure 4 and Table 3 show 10-fold statistics from cross-validation for the soil CEC
predictions of the study at soil surface.
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Table 3. Evaluation criteria for the machine learning algorithms included root mean square error
(RMSE), mean absolute error (MAE), and R-squared (R2) values.

Criteria Model Mean Standard Deviation Median

RMSE

RF 4.12 0.56 4.13
SVR 4.27 0.51 4.13
KNN 4.45 0.66 4.46

LR 4.67 0.75 4.55
GBM 5.07 0.55 5.11

R2

RF 0.41 0.13 0.40
SVR 0.36 0.11 0.34
KNN 0.30 0.12 0.31

LR 0.25 0.16 0.26
GBM 0.25 0.12 0.26

MAE

RF 3.12 0.42 3.21
SVR 3.29 0.38 3.29
KNN 3.44 0.49 3.38

LR 3.56 0.55 3.44
GBM 4.01 0.42 4.00

Note: LR: Lasso regression, GBM: Stochastic gradient boosting, SVR: Support vector regression, RF: Random
forest, KNN: K-nearest neighbors.

The mean RMSE values for CEC according to cross-validation statistics of the models
ranged from 4.12 to 5.07, while R2 values ranged from 0.25 to 0.41 and MAE values ranged
from 3.12 to 4.01, as shown in Table 3. Figure 4 displays the variation in R2, MAE, and
RMSE values during cross-validation of the models. The RF model outperformed the other
models, demonstrating lower RMSE and MAE values, and higher R2 values compared
to the other models as shown in Table 3 and Figure 4. The standard deviations of these
performance criteria were highest with LR (0.75, 0.16, and 0.55 for RMSE, R2, and MAE,
respectively) (Table 3).

3.3. Predictive Maps of CEC and Quantified Uncertainties

We used five ML models to generate maps of the spatial distribution of soil CEC in
the study area. The average CEC estimate produced by each algorithm and the spatial
distribution of uncertainty (standard deviation) based on 10 times bootstrapping are pre-
sented in separate subsections. By zooming to the different physiography compared, the
five algorithms were found to have robust effects on soil CEC mapping.
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3.3.1. Mapping CEC Content and Its Uncertainty via RF

The soil CEC digital map created using the RF algorithm and four climate digital
covariates (Table 2) showed that extreme CEC values could not be represented spatially
(Figure 5b). The RF model estimated the CEC values in the range of 5–15 cmolc kg−1 in
the younger and older alluvial plain areas but was not able to capture the high variability
in these areas (Figure 5a). However, in the highly/moderately dissected hills and valley
physiography (Figure 5c), the RF model could separate the sample points in the range of
5–15 cmolc kg−1 and 15–25 cmolc kg−1 relatively well. The uncertainty of the CEC values
was lower in the central and northeastern regions, where more soil samples were collected,
and higher in the southwest and southeast regions with fewer soil observations.
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Figure 5. Digital maps of CEC (0–30 cm) were generated by applying a random forest (RF) model:
Zoomed to a young and older alluvial plain area as mean CEC map (a) and as uncertainty CEC
map (d); mean CEC map over Nagaland (b) resulting from the prediction among 10 iterations;
zoomed to a highly/moderately dissected hills and valleys as mean CEC map (c) and as uncertainty
CEC map (f); uncertainty CEC map over Nagaland (e) resulting from the standard deviation of
10 iterations.
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3.3.2. Mapping CEC Content and Its Uncertainty via SVR

The mean CEC predict map generated by the SVR algorithm using four climate
digital covariates (Table 2) produced similar results to RF, with both algorithms unable
to represent extreme CEC values spatially. In younger and older alluvial plain area, both
models estimated CEC values in the range of 5–15 cmolc kg−1 and failed to capture
high variability. The SVR model performed relatively well in separating sample points
between 5–15 cmolc kg−1 and 15–25 cmolc kg−1 in high/medium dissected hills and valley
physiography. The uncertainty of CEC values was higher in the southwest and southeast
regions with fewer soil observations, resulting in higher standard deviation values than
with RF (Figure 6e).
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Figure 6. Digital maps of CEC (0–30 cm) were generated by applying a Support Vector Regression
(SVR) model: Zoomed to a young and older alluvial plain area as mean CEC map (a) and as
uncertainty CEC map (d); mean CEC map over Nagaland (b) resulting from the prediction among
10 iterations; zoomed to a highly/moderately dissected hills and valleys as mean CEC map (c) and
as uncertainty CEC map (f); uncertainty CEC map over Nagaland (e) resulting from the standard
deviation of 10 iterations.
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3.3.3. Mapping CEC Content and Its Uncertainty via LR

The LR algorithm, using two climate and one topography digital covariates (Table 2),
generated a mean CEC estimation map (Figure 7b) that produced similar results to RF and
SVR, but could not represent spatial extreme CEC values. The LR model estimated CEC
values in the range of 5–15 cmolc kg−1 in the younger and older alluvial plain area and
failed to capture high variability. In addition, the LR model performed relatively worse
than RF and SVR in separating values between 5–15 cmolc kg−1 and 15–25 cmolc kg−1 in
high/medium dissected hills and valleys physiography (Figure 7c).
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zoomed to a highly/moderately dissected hills and valleys as mean CEC map (c) and as uncertainty
CEC map (f); uncertainty CEC map over Nagaland (e) resulting from the standard deviation of
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3.3.4. Mapping CEC Content and Its Uncertainty via GBM

As in LR, the mean CEC estimation map was created by the GBM algorithm of
two climates and one topography digital covariates (Table 2) that produced different results
from LR, RF, and SVR throughout the study area and represented the extreme CEC values
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on more digital maps than the others provided. In a younger and older alluvial plain area,
the GBM model, like the others, estimated CEC values in the range of 5–15 cmolc kg−1 and
could not achieve high variability. The GBM model performed relatively better than LR in
separating between 5–15 cmolc kg−1 kg and 15–25 cmolc kg−1 in high/medium dissected
hills and valley physiography and provided the limits with more details (Figure 8c).
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Figure 8. Digital maps of CEC (0–30 cm) were generated by applying a Stochastic Gradient Boosting
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uncertainty CEC map (d); mean CEC map over Nagaland (b) resulting from the prediction among
10 iterations; zoomed to a highly/moderately dissected hills and valleys as mean CEC map (c) and
as uncertainty CEC map (f); uncertainty CEC map over Nagaland (e) resulting from the standard
deviation of 10 iterations.

3.3.5. Mapping CEC Content and Its Uncertainty via KNN

The KNN model was used to estimate the CEC using three climatic, one vegetation,
and seven topographic covariates, thus it produced the CEC map with the highest number
of digital covariates (Table 2). The mean CEC prediction map created with the KNN model
showed different distributions throughout the study area compared to other models but
was similar to SVR. However, the KNN model was relatively unsuccessful in representing
extreme CEC values except for GBM, (Figure 9a). The KNN model, like the other models,
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estimated CEC values in the range of 5–15 cmolc kg−1 in a younger and older alluvial
plain area and did not provide high variability. In the high/medium dissection hills and
valley physiography, the KNN model performed relatively better than LR in distinguishing
between 5–15 cmolc kg−1 and 15–25 cmolc kg−1, providing more detailed limits (Figure 9c).
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Figure 9. Digital maps of CEC (0–30 cm) were generated by applying a K-nearest neighbors (KNN)
model: Zoomed to a young and older alluvial plain area as mean CEC map (a) and as uncertainty
CEC map (d); mean CEC map over Nagaland (b) resulting from the prediction among 10 iterations;
zoomed to a highly/moderately dissected hills and valleys as mean CEC map (c) and as uncertainty
CEC map (f); uncertainty CEC map over Nagaland (e) resulting from the standard deviation of
10 iterations.

3.4. Importance of Digital Covariates in Modelling Process

The relative importance graphs of the digital covariates used in the RF model, which
provides the most ideal results, and the LR model with the highest SD value, are given
in Figure 10. The BIO-1 annual mean temperature covariate was found to be the most
important feature in all the models, regardless of whether they were linear or non-linear.
According to the feature importance rankings of the two ML models, the three most im-
portant variables in descending order were the BIO-1 annual mean temperature, elevation,
and total solar radiation.



Land 2023, 12, 819 14 of 20Land 2023, 12, x FOR PEER REVIEW 15 of 22 
 

 
Figure 10. Variable importance for RF (a,b) and LR (c). 

4. Discussion 
4.1. Systematic Evaluation of the Five Machine-Learning Models 

We compared our 10-fold–five-repetition model performance statistics, which were 
made with five different ML algorithms, with published studies conducted in similar re-
gions [19] and at different scales [72]. In the current study, the tree-based machine learning 
model RF achieved better performance statistical values than KNN, SVR, LR, and GBM 
(Table 3). More recently, Reddy and Das [19], using similar digital covariates in their CEC 
estimation and mapping study across India, reported R2 around 0.60 and RMSE around 
9.00 cmolc kg−1. In Burkina Faso, Forkuor et al. [26] compared the efficacy of similar set of 
digital covariates and RF, SVR, GBM, and multiple linear regression (MLR) algorithms to 
predict CEC, and achieved the highest performance with RMSE values of 4.69 cmolc kg−1 
and R2 0.38. Chagas et al. [73] achieved a R2 value of 0.47 with the RF model and RMSE of 
7.89 cmolc kg−1, while Dharumarajan et al. [72] obtained R2 0.52 and RMSE 13:07 cmolc kg−1 
in topsoil (0–30 cm). Nascimento et al. [74] achieved R2 0.19 and RMSE 3.26 cmolc kg−1 in 
their study in which they included satellite data for many years as a variable for CEC 
estimation in the Sao Paulo region of Brazil. Khanal et al. [25] compared the efficacy of 
multi-band aerial photographs and high spatial resolution DEM derivatives and Linear 
regression, RF, Neural networks (NN), SVR, GBM, and Cubist models to predict CEC at 
the field scale. They reported that the algorithm obtained R2 0.67 and RMSE 2.35 cmolc 
kg−1 performance statistical values via NN algorithm. The RF-based digital soil CEC map 
produced in the present study used topographic derivatives, the mean values of plant and 
soil-based indices produced from time-series satellite images (Landsat 8 OLI), and open 
access climate data, and the effectiveness of our model procedure was confirmed by com-
paring the performances of the models in the existing literature. We can recommend a 
high resolution (30 m) CEC map for Nagaland state as an informative starting point to 
guide future new sampling, considering model performance statistics. 

4.2. Physiography and Soil Cation Exchange Capacity 
It is well known that topsoil CEC is highly influenced by topography, which tends to 

be higher overall in areas of sedimentation or deposition [20]. In addition, the geochemis-
try of the parent material also significantly influences CEC values [19]. Considering the 
spatial resolution of the digital covariates that were used in the study, and that we did not 
have a quantitative geology map, we could not add this variable as a predictive raster 
covariate [31]. Thus, we considered that the evaluation of the predictive maps in two dif-
ferent physiographic areas that dominate the study region can provide important insights. 
The presence of 1:1 kaolinite clay in gneiss formations may explain the low clay values in 
these soils. However, the presence of smectite (2:1 type clays) of different parent material 
origin in alluvial areas partially explains the presence of high CECs. In terms of the qual-
itative evaluation of the predictive map, no algorithm was successful from the soil scientist 
point of view to represent the CEC values in alluvial areas (Figures 5a–9a). Natural dis-
turbances such as flooding in alluvial areas are the ultimate cause of this disagreement, as 
this affects the distribution of soil particle fractions over very short distances, significantly 

Figure 10. Variable importance for RF (a,b) and LR (c).

4. Discussion
4.1. Systematic Evaluation of the Five Machine-Learning Models

We compared our 10-fold–five-repetition model performance statistics, which were
made with five different ML algorithms, with published studies conducted in similar
regions [19] and at different scales [72]. In the current study, the tree-based machine
learning model RF achieved better performance statistical values than KNN, SVR, LR,
and GBM (Table 3). More recently, Reddy and Das [19], using similar digital covariates
in their CEC estimation and mapping study across India, reported R2 around 0.60 and
RMSE around 9.00 cmolc kg−1. In Burkina Faso, Forkuor et al. [26] compared the efficacy
of similar set of digital covariates and RF, SVR, GBM, and multiple linear regression (MLR)
algorithms to predict CEC, and achieved the highest performance with RMSE values of
4.69 cmolc kg−1 and R2 0.38. Chagas et al. [73] achieved a R2 value of 0.47 with the RF
model and RMSE of 7.89 cmolc kg−1, while Dharumarajan et al. [72] obtained R2 0.52
and RMSE 13:07 cmolc kg−1 in topsoil (0–30 cm). Nascimento et al. [74] achieved R2 0.19
and RMSE 3.26 cmolc kg−1 in their study in which they included satellite data for many
years as a variable for CEC estimation in the Sao Paulo region of Brazil. Khanal et al. [25]
compared the efficacy of multi-band aerial photographs and high spatial resolution DEM
derivatives and Linear regression, RF, Neural networks (NN), SVR, GBM, and Cubist
models to predict CEC at the field scale. They reported that the algorithm obtained R2 0.67
and RMSE 2.35 cmolc kg−1 performance statistical values via NN algorithm. The RF-based
digital soil CEC map produced in the present study used topographic derivatives, the mean
values of plant and soil-based indices produced from time-series satellite images (Landsat
8 OLI), and open access climate data, and the effectiveness of our model procedure was
confirmed by comparing the performances of the models in the existing literature. We
can recommend a high resolution (30 m) CEC map for Nagaland state as an informative
starting point to guide future new sampling, considering model performance statistics.

4.2. Physiography and Soil Cation Exchange Capacity

It is well known that topsoil CEC is highly influenced by topography, which tends to
be higher overall in areas of sedimentation or deposition [20]. In addition, the geochem-
istry of the parent material also significantly influences CEC values [19]. Considering the
spatial resolution of the digital covariates that were used in the study, and that we did
not have a quantitative geology map, we could not add this variable as a predictive raster
covariate [31]. Thus, we considered that the evaluation of the predictive maps in two differ-
ent physiographic areas that dominate the study region can provide important insights. The
presence of 1:1 kaolinite clay in gneiss formations may explain the low clay values in these
soils. However, the presence of smectite (2:1 type clays) of different parent material origin
in alluvial areas partially explains the presence of high CECs. In terms of the qualitative
evaluation of the predictive map, no algorithm was successful from the soil scientist point
of view to represent the CEC values in alluvial areas (Figures 5a, 6a, 7a, 8a and 9a). Natural
disturbances such as flooding in alluvial areas are the ultimate cause of this disagreement,
as this affects the distribution of soil particle fractions over very short distances, signifi-
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cantly affecting the distribution of clay, which is one of the most important factors on which
CEC depends. The current study area has a highly variable topography and is characterized
by dissected deep valleys and hills, which determine soil property and landscape variability.
In particular, dissected hills and valleys may have different CEC values as a result of mass
movement, periodic flooding, and accumulation of multiple material resources. The digital
maps produced in the study area by five different algorithms show a significant difference
especially in relation LR and GBM. Thus, while these two algorithms are involved in CEC
mapping with the same digital covariates (Table 2), they produce very different CEC digital
maps. This is proof that no single algorithm is “best” in the field DSM [29]. In particular, the
current study makes significant contributions to the literature by producing CEC prediction
and uncertainty [10,67,75] maps in surface soils and evaluating them in detail through the
eyes of soil scientists.

4.3. Factors Affecting Soil Cation Exchange Capacity

The variable importance is significant for interpreting the models obtained from the soil
scientist perspective and providing useful information for future modeling approaches [76].
In the modeling, ML models were run in line with the covariates selected with “rfe” due
to the tight approach, and the importance graphs of the variables used in the model of
RF, which produced the most successful model performance statistics, and LR, which
produced the most unsuccessful maps, were analyzed (Figure 10). Interestingly, the most
important variable in both algorithms was BIO-12, followed by elevation. Considering the
nature of the study area, the variables valued by the linear or nonlinear algorithm were
the same. The effectiveness of climate variables in CEC mapping in India is particularly
compatible with the findings of Reddy and Das [19]. Similarly, Akpa et al. [22], working
in similar geographies in Nigeria, identified precipitation, temperature, and elevation
digital covariates as the most important in the CEC estimation. Shaded hillsides typically
exhibit lower light intensity, evaporation rates, and air and soil temperatures, with less
frequent soil freezing and thawing compared to sunny slopes. Consequently, soils on
shaded hillsides demonstrate increased water penetration at greater depths relative to
those on predominantly sunny hillsides. However, the intensity of weathering is reduced
on colder, shaded hillsides. These justifications may explain the relationship of solar total
radiation and annual mean temperature with soil physicochemical properties in the present
study area. Similar outcomes have been reported in other studies [77]. The vegetation of
our current study area covers the soil throughout the year [78] and the spatial resolution
(30 m) of the satellite image used may have had difficulty reflecting the heterogeneity in
the area. Failure to reflect the heterogeneity of data on vegetation or organisms remotely
sensed by satellite can present difficulties in CEC prediction models over large areas [79].
In the study area, transport of clay during the monsoonal season into deeper layers and
the process of clay pedogenesis significantly drives the spatial distribution of CEC in the
surface soil.

4.4. Limitations and Perspectives

Although the evaluation of the performance statistics of the models confirms the
relative usefulness of soil CEC estimates and maps, particularly through the RF algorithm,
uncertainties and limitations remain associated with this study. Specifically, Gray et al. [27]
recommend using a detailed geology map for DSM-based mapping of soil properties when-
ever available. Accordingly, incorporating a detailed geological map into the model can
improve performance statistics of models and reduce map uncertainty at smaller scale
studies within the Nagaland state. The selection of a soil sampling method can significantly
impact the quality of characterizing spatial variability in soil properties [80]. Consider-
ing technical advancements in cost-effective smart sampling techniques for assessing soil
sampling density in heterogeneous areas, careful consideration of appropriate sampling
strategies is imperative prior to undertaking DSM [81]. The methodology can be advanced
by checking the digital covariate values (for example, temperature, solar radiation, eleva-
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tion, and NDVI) in the soil sampling points provided as training data with the covariate
values throughout the study area, especially in large areas (such as our study area), with
techniques such as Multivariate Environmental Similarity Surfaces (MESS) [82–84] before
modeling. In future research, it is recommended to use multispectral remote sensing data
with higher spatial resolution [23] as well as various ancillary data such as synthetic aper-
ture radar (SAR), especially to represent vegetation. The collection and analysis of such
data is critical for future research to accurately characterize the spatio-temporal dynamics
of the soil CEC. Many machine learning algorithms that have parallel computing power,
such as Extreme Gradient Boosting (XGBoost) [85], can be evaluated in terms of efficiency,
such as shortening the modeling time [86] which can help in studies with large datasets in
large areas.

5. Conclusions

To address the lack of knowledge about the spatial distributions of cation exchange
capacity (CEC) in the highly mountainous and all year-round vegetation-dominated Naga-
land state of India, five machine learning (ML) model predictions and spatial uncertainties
were derived and systematically evaluated from a soil scientist perspective. The RF model
exhibited superior performance relative to the other models, as evidenced by lower RMSE
(4.12 cmolc kg−1) and MAE (3.12 cmolc kg−1) values and higher R2 (0.41) values. The
results required the careful use of models to spatially detect CEC value ranges in young
and old alluvial deposits, which are one of the dominant physiography of the area. Due to
the tropical environmental conditions of the region, climatic variables were determined
as indispensable CEC estimators. As flexible and stable models, tree learners—such as
random forest models—provided strong performance and outperformed others in model
performance statistics. In addition, the results confirm that there is no single ML that can be
used to map soil features, especially in areas of dissected hills and valleys. Future sampling
efforts should focus on areas where high standard deviations were found, to minimize
current uncertainty in surface CEC modeling. This study is the first of its kind in the state
and is deemed much needed by soil scientists and land planners in Nagaland. While this
work will provide a national CEC content base map for Nagaland, it can serve as a good
reference work to develop CEC content mapping in similar physiographic settings.
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