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Abstract: Agent-based models (ABMs) are particularly suited for simulating the behaviour of agricul-
tural agents in response to land use (LU) policy. However, there is no evidence of their widespread
use by policymakers. Here, we carry out a review of LU ABMs to understand how farmers’ decision-
making has been modelled. We found that LU ABMs mainly rely on pre-defined behavioural rules at
the individual farmers’ level. They prioritise explanatory over predictive purposes, thus limiting the
use of ABM for policy assessment. We explore the use of machine learning (ML) as a data-driven
alternative for modelling decisions. Integration of ML with ABMs has never been properly applied to
LU modelling, despite the increased availability of remote sensing products and agricultural micro-
data. Therefore, we also propose a framework to develop data-driven ABMs for agricultural LU. This
framework avoids pre-defined theoretical or heuristic rules and instead resorts to ML algorithms to
learn agents’ behavioural rules from data. ML models are not directly interpretable, but their analysis
can provide novel insights regarding the response of farmers to policy changes. The integration of
ML models can also improve the validation of individual behaviours, which increases the ability of
ABMs to predict policy outcomes at the micro-level.

Keywords: policy assessment; machine learning; behavioural modelling; decision-making

1. Introduction

Human activity is hampering our possibility of living within planetary boundaries [1,2].
Food production is the most important driver of environmental change at a global scale [3];
it accounts for 19–29% of total anthropogenic greenhouse gas emissions [4]; it is responsible
for 70% of freshwater use for irrigation purposes and 40% of land occupation and is a major
driver of biodiversity loss [5]; moreover, it is the main driver of eutrophication, through the
massive use of nitrogen and phosphorus fertilizers [3].

Agricultural land use (LU)—the focus of this paper, which we will refer to as LU for
simplification—behaves as a complex adaptive system. Farmers are individual agents
acting and interacting under the influence of past actions, peer pressure, economic market
forces, governmental decisions and environmental constraints [6–8]. This causes feed-
back loops and non-linear responses that can lead to unexpected outcomes [7–9]. Due
to path dependency, the effects of ill-designed policies might be persistent and difficult
to reverse [9,10]. For these reasons, when designing policies, the literature highlights the
importance of treating the complexity of LU and of socio-ecological systems more generally
in order to prevent unintended consequences [7–9,11–13].

The use of computational simulations in LU studies has attracted wide scientific
interest, especially since 2008 [14,15]. In particular, the interest in applying agent-based
models (ABMs) to model LU experienced a steady increase [8,16,17]. The use of ABMs
for agricultural policy assessment applications increased as well [15,18]. ABMs are gener-
ically identified as simulations composed of individual agents and characterized by the
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importance given to their behaviours, interactions and heterogeneity [19]. Thanks to their
bottom-up approach, with no centralised control and each agent acting according to its own
rules, ABMs are suited for the study of complex adaptive systems [20]. Typically, LU ABMs
consist of individual farmers, the main agents, deciding at each step of the simulation to
maintain or change the use of the land they own, experiencing environmental changes
and interacting with the government, markets and other farmers. ABMs can, therefore,
overcome some important limitations of other more consolidated approaches to model LU,
such as the aggregated level of analysis required by equations-based and system models
(such as partial equilibrium models) or the simplification of farmers’ decision-making and
reciprocal influence in cellular models [21,22]. The literature stresses, in particular, some
advantages of applying ABMs to LU and agricultural policies assessment [6,14,18,21,23–27],
which can be summarized as follows:

• ABMs can simulate the decentralised and heterogeneous decision-making of farmers
with a high level of detail and consider uncertainty regarding their behaviour. This
allows for the evaluation of policy effects at the individual level.

• ABMs can explicitly model social interactions, which have an important influence
on farmers’ behaviour, and therefore allow the study of the diffusion of technologies
and practices.

• ABMs can explicitly include a spatial dimension and the biophysical properties of land,
linking it with farmers’ decision-making and thus addressing the feedback between
the socio-economic and biophysical spheres.

• ABMs provide a natural framework to consider out-of-equilibrium dynamics.
• ABMs can consider the complex and distributed effects of climate change on agricul-

ture, which are likely to gain increasing relevance.

Despite the number of ABMs focusing on agricultural policies, their use for actual
policy assessment is still limited [15,26]. The lack of transparency and accessibility
of the models is a commonly reported reason for this [15], although transparency
initiatives by journals and funders are making this problem less prevalent. The ODD
protocol (which stands for overview, design concepts, details) [28–31] provides a stan-
dardised way to document ABMs and is already used for 20% of ABMs in ecology [29].
Source code and data are increasingly made available, improving the replicability and
openness of ABMs [15,18,32].

An even more relevant issue is the predictive performance of ABMs. Prediction can
be defined as “the ability to reliably anticipate well-defined aspects of data that is not
currently known to a useful degree of accuracy via computations using the model” [33].
Reliable prediction is paramount for ex post and especially ex ante policy analysis [32,34].
Two important achievements in this regard have been the harnessing of ABMs’ ability
to incorporate deep uncertainty and run multi-scenario simulations, as opposed to their
previous use for point predictions [26,35], and the passage from conceptual and abstract
models to empirical ones, which allowed targeting specific case studies [34]. However, as
Section 3 will show, ABMs have traditionally focused on equipping agents with clearly in-
terpretable pre-set behavioural rules, striving to understand the mechanisms and processes
of the system and the relation between micro-level behaviours and macro-level emergent
properties. The relationship between the explanatory and predictive power of ABMs is,
however, complex. There is no evidence that the imposition of theoretical rules increases
the potential of an ABM to predict outcomes.

To improve their predictive ability, we argue that ABMs should integrate data-science
approaches, which have an important role in the increasing efforts for evidence-based
policy assessment [36–38]. Recent advances in big data, machine learning (ML) predictive
algorithms and computational power allow modellers to go one step further than using
empirical data only for the parametrization of models. ML enables efficient handling
of large amounts of micro-level data to learn real-world patterns of behaviour [39]. ML
models can, therefore, be integrated into data-driven ABMs to avoid relying on theoretical
or heuristic behavioural rules. Such an approach has shown potential for outperforming
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more traditional ABMs in other areas of application [39–41] but is basically absent from
LU applications. LU ABMs should prioritize research along these lines as there are large
amounts of LU data from field surveys and remote sensing, as well as micro-data at
the individual farmer level from national surveys and research projects and spatialized
biophysical data (for soils, climate, etc.) [42].

Therefore, in this paper, we started by establishing that data-driven approaches to
behaviour modelling of agents are still underexplored in land use modelling. Section 2
explains how the empirical grounding of ABMs is particularly suited for LU problems,
including for policy assessments. Section 3 explains how the agents’ decision-making is
modelled in ABMs, highlighting the potential use of micro-level data. We then propose
a framework for integrating data-science approaches and ABMs to address LU prob-
lems through a completely data-driven definition of agents’ behaviours and interactions.
Section 4 introduces ML as a data-driven approach and shows how it has been used in
combination with ABMs, focusing on its use to learn agents’ behaviours directly from the
available data and increase the predictive robustness of the model. It also stresses the
lack of a proper framework for the integration of ML and LU ABMs. Section 5 presents
our proposal for a data-driven LU agent-based modelling framework. We hope that, by
providing this framework, more data-driven LU ABMs will be developed with the ability
to provide robust and useful insights for policy assessment. Finally, Section 6 discusses the
limitations of this framework in terms of increased complexity and data requirements and
then describes how theoretical and heuristic rules can be integrated to address these issues
and which other benefits they could bring.

2. Empirically Grounded Land Use ABMs

The first ABMs developed were mainly abstract and conceptual, i.e., representing
a fictitious environment and agents without any use of empirical data as they aimed at
demonstrating the applicability and suitability of this new modelling approach [17,21].
After successful proofs of concept of their utility and facing increased acceptance, ABMs
are now increasingly complex and system-specific [17,43,44]. This caused a surge in the last
two decades in the efforts to employ data in empirical LU ABMs [22,24,30,45]. This was
exemplified by the proposal of modelling approaches focused on capturing observed facts
such as KIDS (“Keep it Descriptive Stupid”), in direct contrast with previous ones aimed at
the simplicity of the model, such as KISS (“Keep it Simple Stupid”) [46]. The application
of ABMs that particularly drove this shift was policy design [34]. To obtain stakeholders’
and policymakers’ trust in ABMs results, proper calibration and validation using empirical
data [30], as well as a representation of micro-processes based on real-world observa-
tions [22,40], are, in fact, fundamental. At the same time, this empirical grounding was
enhanced by the exponential increase in the availability of relevant data [34,40,43,44]. High-
resolution remotely sensed data and Geographical Information Systems (GIS) products
for soil, vegetation and climate provide the possibility to build spatially explicit models,
directly linking agents to their biophysical environment [20,22,47]. Sample surveys and
interviews [48–50], census data [47], participant observation insights and expert opin-
ions [22,50] can be used in combination and provide micro-level data on individual farmers’
socio-economic characteristics. Micro-data have been used in ABMs to instantiate agents’
attributes and parametrise their rules [30,45,51], but cutting-edge applications harness
micro-data to elicit individual agents’ behavioural rules and interactions directly.

3. Modelling Agents’ Behaviours in ABMs

Individual decision-making modelling in ABMs is critical for their outcomes’ use-
fulness and credibility [19,21,32,52]. Modelling agents’ behaviour is a delicate issue,
especially in LU. Farmers’ decision-making seldom follows strict economic optimization
and is also influenced by culture, traditions and peer influence and subject to limited
knowledge of innovations and markets [47,50,53,54]. Therefore, the use of the increas-
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ingly available micro-data to empirically ground agents’ behaviours in LU ABMs has
received particular attention [24,52,55,56].

In this section, we survey the literature on empirical LU ABMs to characterize how
agents’ behaviour has been designed. We mainly based our analysis on reviews already
available on the topic, such as [16,34,53,55]. We define three different approaches, increas-
ingly reliant on data: theory-based, heuristic and data-driven ABMs (Figure 1).
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3.1. Theory-Based ABMs

Theory-based ABMs derive agents’ decision-making rules from theoretical behavioural
models and are the most frequent approach for abstract ABMs. The first frameworks
developed for empirically grounded ABMs, such as [45], were therefore focused on the
integration of empirical data to initialise agents’ attributes and calibrate the parameters of
their behavioural rules, already pre-defined through theories.

The most common theory-based ABMs are economic models [16]. This category
encompasses various approaches, from simple evaluations of the costs and benefits of each
LU choice to proper mathematical optimization decision rules, all based on the idea that
agents are maximizing economic return [34,55]. A well-known implementation of this
approach is the expected utility theory, in which agents choose the option that maximises
their utility under risk [16]. In neoclassical economics, this translates into the Homo
economicus agent, one which has complete knowledge, can perform perfect calculations
and acts purely in its self-interest [16]. This paradigm has, however, been widely challenged,
stressing the possibility of harnessing ABMs’ individual representation to consider agents
with rationality bounded by biases and a lack of information and knowledge, relaxing
neoclassical assumptions [19–21,23,57]. A prominent example in this regard is the theory
of Satisficing when agents review the options and stop their research as soon as they find
one that matches their expectations [16,32,55]. Bounded rationality is now common in LU
ABMs, even though many models continue using complete rationality [16].

The other main theoretical framework comes from psychological and cognitive models,
where cognitive maps and abilities, social norms and biases are the main decision-making
drivers [55]. A prominent example is the theory of planned behaviour, where perceived
social pressure (“subjective norms”) and internal and external barriers (“perceived be-
havioural control”) are considered to have a fundamental role in agents’ behaviour [58].
Another approach is the Consumat model, where agents engage in and switch among
different cognitive strategies, such as repetition or imitation, depending on their needs and
uncertainty [59]. The application of cognitive models is largely lagging behind economic
models in LU ABMs. In particular, the role of emotions, values and norms, important for
environmental management, are often overlooked [16,54].
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3.2. Heuristic ABMs

The majority of LU ABM studies from 2000 onward adopted ad hoc implementations
of agents’ behaviours based on the knowledge and data collected for the specific case study
and without theoretical justifications [16]. Among these, we define heuristic ABMs as ad hoc
implementations that are still rules-based, i.e., where agents’ behaviour consists of clearly
pre-set rules and processes, such as if-then statements [32,60]. This category, therefore,
encompasses various approaches sharing an easy and intuitive interpretation [34].

Some heuristic ABMs rely on empirical rules of thumb, backed by empirical insights
but extracted without computationally intensive methods. These rules can be inductively
derived from qualitative and quantitative data, reproducing observed patterns and be-
haviours, obtained from direct observations and experts’ opinions or based on stylised
facts abstracted from real-world studies [32,55,61]. Participatory ABMs are another heuris-
tic approach. They directly involve stakeholders and decision-makers during each stage
of the modelling process, enabling an easy design of behavioural rules and benefiting
from real-time feedback [26,62]. They harness the bottom-up approach of ABMs, asking
real-world entities that will be represented in the model how they would behave under
different conditions.

3.3. Data-Driven ABMs

Agents’ decision-making can also be modelled without expressing pre-set rules and
processes but strictly relying on observed data. We define these models as data-driven
ABMs. This is not because empirical theory-based and heuristic models work without
data. All types of models use data to varying degrees. However, in data-driven ABMs, the
desired behavioural patterns are inferred by fitting statistical models to the available data
or learned by training ML models on these [34,40]. These models define agents’ behaviour
depending on internal parameters concerning the agents’ state variables and attributes
and external ones related to other agents’ states and environmental conditions. With this
approach, the modeller is not required to specify any pre-defined rule to express agents’
behaviour or interactions between agents and reciprocal influence. This can be particularly
useful when these rules cannot be based on known theories and are not intuitive [63].
This can potentially reduce—but does not cancel, as will be highlighted in the framework
description—the risk for modellers to project their subjectivity and worldviews in the ABM
they are developing, which is a common pitfall [64,65]. The data-driven perspective is an
important mark in the ongoing shift from KISS to KIDS modelling frameworks. In ABMs,
the approach has historically been to design relatively simple agents’ and let complexity
arise mainly from the hard-coded rules governing the interactions among them and with the
environment [39]. Simple behavioural rules are attractive due to their easy interpretation
but can result in simplistic representations of the agents and unrealistic results. Data-
driven ABMs enable a departure from this paradigm to build complex agents, opening the
possibility of considering a large number of variables within their behavioural model [39].
Moreover, some ML models can capture highly non-linear dynamics and behavioural rules,
which are common in complex adaptive systems such as LU change.

Despite being hazy in many situations, a distinction between statistics and ML can
be drawn in terms of purpose: while statistics focuses on inference, on understanding
the data generation process, ML aims at generalisation, at prediction on out-of-sample
data [66]. ML is, therefore, better suited than statistics for policy assessment, where
predictive performance is fundamental [34]. ML can also handle datasets with a comparable
number of variables and data points better than statistics [52,66], as can be the case in the
agricultural census available at a certain aggregated level and surveys. This is also thanks to
the ability of ML to build high-performance models without prior knowledge and without
making explicit assumptions about the system [66]. Features (i.e., input variables) selection
methods and algorithms training provide reliable methods to support the selection of the
most important drivers of each behaviour. ML can, therefore, help reduce the impact of
two common causes of low prediction accuracies of ABMs: the inclusion of many unreliable
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assumptions and the need to decide a priori which mechanisms to include and exclude [64].
For all these reasons, we argue that ML has the potential to support the development of
robust data-driven ABMs for agricultural policy assessment.

4. Machine Learning and ABMs

ML generally refers to algorithms able to learn from data automatically. ML algo-
rithms discover patterns in the datasets they are trained on and generalize the knowledge
acquired [52,67]. Over the last two decades, ML experienced dramatic development and is
nowadays one of the most rapidly growing technical fields [68]. ML algorithms have been
applied in many different contexts, and their integration with computational simulations
has been receiving increasing attention [69,70]. ABMs have taken part in this trend as well,
and there has been a growing interest in the use of ML in and for them, especially from
2013 onwards [52,71]. These uses can be categorized into three main threads.

The first thread, by far the most common, consists of using reinforcement learning
to equip goal-oriented agents with a dynamic learning process [52]. An example of this
approach applied to residential land growth is given by [72], where household agents
learn both from their past actions and interpersonal exchange. A reinforcement learning
approach modified to consider agents’ bounded rationality served as inspiration for the
framework proposed by [63]. This consists of generating agents training neural networks
on data obtained during an “Experience” modelling stage, where the goal-oriented agents
act and obtain rewards. Despite its interesting applications, such an approach is not purely
data-driven, as defined here. In fact, the application of reinforcement learning does not
require a dataset from which to elicit behaviours but the definition of goals and rewards,
which has to rely on theoretical or heuristic rules.

The second application concerns the use of ML to support ABMs’ simulation experi-
ments and results analysis. The empirical trend of ABMs and their increase in complexity,
which allowed for a growing explanatory power, came at the cost of making the process
of obtaining useful insights harder [65,73]. Clustering algorithms can group similar
scenarios, and classification and regression algorithms can relate input values with the
produced scenarios [73,74], for instance, used support–vector machine classification
to study the equilibria between intensive and extensive agriculture based on external
drivers, despite misclassifying 18% of the cases. More complex models can, moreover,
create issues in terms of computational efficiency and tractability, which is also true
for calibration procedures, and ML algorithms can help to cope with this issue despite
the risk of sacrificing accuracy [69,75]. Finally, ML has also been used to improve the
validation and verification of ABMs [52].

The third thread consists of a substantial integration of ML in ABMs to model agents’
behaviour by relying only on data. This corresponds to the data-driven approach suggested
in this paper and will, therefore, be the focus of the following discussion. No general
and accepted framework for the integration of ML in data-driven ABMs exists, despite
some noteworthy attempts. In the field of innovation diffusion, mentioned [39] as the
first to suggest a generic framework for data-driven ABMs. They studied the diffusion
of solar panels adoption and showed the ability of data-driven ABMs to outperform a
theory-based, utility-based approach. Additionally, [40] identified a handful of attempts
to draft a data-driven ABM method from 2007, stressing that none presented a way to
generate a model structure and individual agents from data. Therefore, they presented only
“initial steps towards an agent-based modelling approach that focuses on individual-level
data to generate agent behavioural rules and initialize agent attribute values” and applied it
to a case study without comparing it to a more traditional approach. The absence of general
guidelines is also, in part, justified by the very different context in which this modelling
approach was applied and by the various possibilities in terms of the granularity and size
of the data available in different fields [52].

For LU, the literature on ML and ABM integration is extremely scarce. We carried
out a search on Google Scholar combining “machine learning” (or the names of the most



Land 2023, 12, 756 7 of 17

used ML algorithms) with “agent-based model” (or terms commonly used interchangeably
as “agent-based simulations” or “multi-agent simulations”) and “land-use”, and then re-
viewed the most cited results to see if they were actually using the ML algorithms to model
agents’ behaviours, excluding papers employing reinforcement learning. Moreover, [76]
used neural networks to model agents’ preferences on spatial planning, while [41] and [77]
modelled the probability of LU change. We found only two studies addressing specifically
agricultural LU. Furthermore, [50] used both qualitative and quantitative data collected
through interviews and surveys to build a Bayesian belief network representing farm-
ers’ decisions on whether to participate in a scheme of payments for ecosystem services.
However, they still rely on a theoretical opinion dynamic model for social interaction and
properly validate only the Bayesian belief network and not the entire simulation. Thus, [56]
used a clustering and regression analysis to study the relation of LUs in Portugal with
landscape characteristics. Additionally, these studies have limited spatial scope as they
were performed at the county level. To our knowledge, the only LU ABM that takes a data-
driven approach as defined here is ref [78], which relies on two ML algorithms to model
the decision of Portuguese farmers regarding the installation of sustainable pastures in a
payment for ecosystem services programme, without relying on any additional pre-defined
behavioural rule.

5. A Framework for Data-Driven LU ABMs

This section builds on Sections 2–4 and presents our proposal for a tentative framework
to develop data-driven LU ABMs. Section 5.1 presents the flowchart of a basic data-driven
ABM timestep to provide a first idea of its functioning. Section 5.2 then lists and describes
the stages required to construct such a model, highlighting the key issues.

5.1. Model Timestep

Figure 2 sketches the proposed data-driven ABM framework in its simplest possible
form, i.e., with a population of homogenous agents taking the same single decision at
each ABM timestep. LU ABMs usually run in discrete timesteps representing a month, a
season or an agricultural year. At the beginning of each timestep, the agents sense all the
variables required for their decision-making process regarding the state of the system and
of other agents. The behavioural model of the agents, consisting of a previously trained ML
model (as Section 5.2.4 explains), takes these variables as input and outputs the outcome
of the decision. Then, the agents’ state variables are updated accordingly to record the
changes, and, if needed, the model’s variables are also updated (for instance, to keep track
of the diffusion of a certain practice). This concludes the ABM timestep, and the following
one can start.
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the agents and of the modelling environment. Those operations should not introduce any
theoretical or heuristic rule. The key component is instead the agents’ behavioural model,
which completely determines the evolution of the system.

5.2. Model Implementation

Figure 3 shows the modelling stages of the proposed data-driven approach. This does
not aim at providing strict guidelines but rather at sketching an implementation procedure
for future case studies. It focuses on the stages concerning the ABM design and, in particular,
the generation of the agents through ML algorithms. Data collection and manipulation
are also extensively treated since, contrary to more traditional approaches, they highly
influence the design of the ABM, and therefore, these stages have to be conducted in parallel
with continuous feedback. The only analysis stage properly treated is the one concerning
the ML models, characteristic of data-driven ABM. For the analysis of the ABM itself, we
instead provide only some brief observations intended as initial points of discussion for
future work.

Land 2023, 12, x FOR PEER REVIEW 8 of 18 
 

 
Figure 2. Flowchart of a basic timestep of the proposed data-driven agent-based models framework. 

This description shows how the ABM architecture should strictly provide the 
required variables to the agents, trigger their behavioural model and update the state 
variables of the agents and of the modelling environment. Those operations should not 
introduce any theoretical or heuristic rule. The key component is instead the agents’ 
behavioural model, which completely determines the evolution of the system. 

5.2. Model Implementation 
Figure 3 shows the modelling stages of the proposed data-driven approach. This does 

not aim at providing strict guidelines but rather at sketching an implementation 
procedure for future case studies. It focuses on the stages concerning the ABM design and, 
in particular, the generation of the agents through ML algorithms. Data collection and 
manipulation are also extensively treated since, contrary to more traditional approaches, 
they highly influence the design of the ABM, and therefore, these stages have to be 
conducted in parallel with continuous feedback. The only analysis stage properly treated 
is the one concerning the ML models, characteristic of data-driven ABM. For the analysis 
of the ABM itself, we instead provide only some brief observations intended as initial 
points of discussion for future work. 

 
Figure 3. Modelling stages of the data-driven agent-based modelling framework and information 
or elements exchanged among these stages. 

5.2.1. Data Collection 
A data-driven approach is characterized by the need for large amounts of micro-level 

data to train the ML models constituting the behavioural models. These are also the same 
data used to instantiate the state variables of the agents and of the modelling environment 
in the ABM. The required data depend, therefore, on the conceptual ABM design (0) and 
particularly concern the characterization of the farmers, the biophysical layer and LU. 

Figure 3. Modelling stages of the data-driven agent-based modelling framework and information or
elements exchanged among these stages.

5.2.1. Data Collection

A data-driven approach is characterized by the need for large amounts of micro-level
data to train the ML models constituting the behavioural models. These are also the same
data used to instantiate the state variables of the agents and of the modelling environment
in the ABM. The required data depend, therefore, on the conceptual ABM design (0) and
particularly concern the characterization of the farmers, the biophysical layer and LU.

The characterization of farmers requires socio-economic and demographic data, which
can be retrieved mainly from agricultural censuses and surveys/interviews. Censuses
usually cover the entire farmer population. However, censuses might be available only at a
certain level of aggregation, creating problems in data matching for privacy reasons. The
level of aggregation also influences the decision of the main decision-makers controlling
LU and, therefore, the ABM design. The default choice is farmers, but if key data are
available only at a more aggregated level, agents over multiple farms or municipalities
can be defined. Censuses can often lack important variables, as the questionnaire is pre-
determined and not tailored to the study. Surveys and interviews collect instead the
specific information needed for the study but demand time and resources to conduct
them. Resources needed to perform interviews can be reduced through collaboration
with farmers’ organisations, which are an important proxy for social diffusion. They can,
however, reach only a limited population, which may require over-sampling to represent
the entire system of interest [32,44]. Acquiring data repeatedly over time for the same
population is important to predict future trends (forecasting) [45]. Census data are normally
available at repeated intervals, which are long and, therefore, may require interpolation for
smaller timesteps.
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Biophysical data holds particular importance in LU applications in order to charac-
terise, for instance, the suitability of certain LUs. Remotely sensed data on climatic con-
ditions and soil properties are retrievable through GIS software from geospatial datasets.
The use of earth observation data enables surveying large areas systematically, which also
makes it possible to create models applicable at multiple scales and for many farmers.

The accuracy of data on LU is particularly important, as it is usually the target variable
of the models. If the target variables are incorrect, the ML models will output wrong pre-
dictions. LU data can also be obtained from censuses, surveys (as LUCAS) or information
collected for the specific case study, such as project reports. Satellite images and maps can
constitute another important source.

5.2.2. Conceptual ABM Design

The ABM design starts with the specification of who the agents are, which decisions
the agents with decision-making power take, and which consequences these have. Here,
there is no specification of how the agents make decisions. The framework only requires
defining the sequence of decisions agents make, as each non-trivial decision requires the
selection and training of one ML model. These ML models represent the single decision-
making rules and compose the agent’s behavioural model. The decisions depend on the
state of the agents. For instance, the current LU can restrict possible future choices for
farmers. These specifications may need to be hardcoded. Hardcoded rules do not hamper
the data-driven character of the approach as long as these rules are not assumed or based
on theoretical explanations but the result of known or trivial facts. This is often the case
for the consequences of decisions taken by the agents, such as the time needed before
considering resowing or a new change of LU.

Agents make decisions under the influence of other agents and the state of the system.
In the data-driven approach, this influence is represented by the variables that are used to
train the ML behavioural models (Section 5.2.4). For instance, hardcoded social networks,
peer influence and diffusion mechanisms can be replaced by proxy variables reporting the
diffusion of a certain practice in neighbourhood of each farmer. The ABM design should
specify the variables stored by each entity, the rules to update these and how these are
sensed by the decision-makers. The modelling environment can be used to store any global
information on the state of the system that the agents need to access, such as the diffusion
of a certain practice. The rules to update these variables should be trivial and not introduce
any theoretical assumption. Models may include additional economic and institutional
entities such as governments, providing incentives and constraints for specific LUs and
markets and defining price evolution. These agents may simply store variables that may
change for scenario analysis and extrapolation or, if necessary, be equipped with proper
data-driven behavioural models as well.

5.2.3. Data Manipulation

The design of the ABM (Section 5.2.2) identified the agents’ decisions that will be
modelled through ML models. Each ML model must be selected and trained, requires a
dataset composed of the target variable, i.e., the object of the agent decision, and requires
the features to predict it. The various data collected (Section 5.2.1), therefore, have to be
merged, linking each decision with the variables that might influence its outcome. The
decision of which variables to include is key since these will be the only ones able to
influence the specific process. Each data point of these datasets has to refer to a decision
taken by an agent at a precise moment in time. A variable representing the time period
should only be included to capture eventual changes in agents’ behaviour over time that
cannot be represented by other available variables.

Due to the high number of variables that can be retrieved from all the data sources
mentioned, a reduction of the number of features is usually advisable, especially for
predictive purposes [33]. A first screening can be performed when merging the datasets,
based on prior knowledge of the system, removing from the dataset variables known to
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be unrelated to a certain decision. Then, common ML feature selection methods can be
employed to limit subjective decisions by the modeller. Filter selection methods can, at
the same time, indicate the most important variables to keep and reveal their influence
on the decisions. Some examples are the ANOVA (analysis of variance) [79] and Pearson
Chi-squares test [80] or the calculation of correlation coefficients, statistics evaluating the
strength of the relation between the target variable and the features. Carrying out a variance
inflation factor (VIF) analysis can also help to reduce multicollinearity among features
and thus improve the explanatory power of the ML models [81]. This selection process
influences the ABM design since it determines the variables that each agent needs to sense
and that, therefore, other agents and the modelling environment need to store.

A certain number of data points in the resulting dataset should be left aside to allow
for validation of the ABM on independent data. For ABMs intended for forecasting, this
split should be performed timewise. Validation data points should refer to the end of the
timeframe. In this way, it will be possible to properly validate the final ABM on data for
the future of those used to train the ML models.

5.2.4. Behavioural Model Generation

Each database created can, at this point, be used to select and train an ML model,
which should then be saved in order to be embedded in the ABM software and compose
the agents’ behavioural models. This procedure should follow common ML practices: test
various ML algorithms, identify the most promising ones, tweak their hyperparameters
and select the best-performing model through cross-validation. For each decision, the
possible choices define the algorithm to be used: classification for discrete choices, such
as whether to change or not LU, and regression for continuous ones, such as the extent of
adoption of a certain practice.

Stochastic elements can be included in the behavioural models to harness ABMs’
capacity to account for uncertainty. Classification algorithms usually provide the possibility
to output a probability distribution instead of a single class. Some decisions can be broken
down into multiple stages, such as participation in a certain program: the first stage is
the decision to participate or not (a binary classification), and the second is the extent of
the eventual participation (a regression). This “double-hurdle” approach [82] can help to
provide better estimations in datasets with a continuous response and many 0 s.

The choice of the ML algorithm has two important consequences. First, each ML
algorithm can learn only a set of models. If the right model is outside this set, the algorithm
will be able to reach only an approximate solution [67]. Second, some ML algorithms, such
as classic tree-based ones, are unable to extrapolate. This is a problem when some features
assume values outside the interval that they had in the data points used to train the model,
as often happens in forecasting. It is, however, important to remember that the use of ML
algorithms that are capable of extrapolating assumes that the agents would keep following
the same behavioural rules under new conditions.

5.2.5. ABM Software Implementation

Due to the shift of complexity from agents’ pre-defined rules and interaction to the
ML models, the ABM software implementation is a relatively straightforward procedure.
The design of the conceptual model (Section 5.2.2) can be directly translated into code.
The state variables of the agents and of the modelling environment should be initialised
with the data corresponding to the year in which the simulation starts. The individual
agents’ timestep can be constructed by uploading the trained ML models (Section 5.2.4) and
coding their calls. However, modellers should pay attention to the choices made during
the software implementation phase, which might imply assumptions about the functioning
of the system. An example is the sequence of activation of the agents’ behavioural models:
ABM can present very different results if the agents act sequentially or in parallel.

The correspondence of the implemented software to the conceptual model should be
checked for coding mistakes, to especially ensure that the ML models predict as expected.
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A first check should ensure that the features are passed to the ML models in the exact order
that was used to train them. A second check can consist in comparing the outcome of
individual agents’ decisions in the ABM with the results that are obtained running the ML
models outside the ABM.

5.2.6. ML Models Analysis

An analysis of the ML model predictions should be performed at any moment after
these models are generated. This analysis should aim at improving the understanding of
the agents’ decision-making rules represented by the ML models.

Some ML algorithms, such as those relying on polynomial relations and tree-based
ones of limited size, can be directly interpreted. More complex ML models are often
referred to as grey- or even black-box models for the difficulties of this process. Never-
theless, there has been significant progress in the interpretation of their results through
so-called model-agnostic methods [83,84]. Simpler model-agnostic methods for specific
purposes are, for instance, partial dependence plots to understand the marginal influence
of one or two features on the model output [85] and permutation feature importance [86].
Arguably the most complete and theoretically robust model-agnostic method available at
the moment to study ML models’ predictions is the SHAP (Shapley additive explanations)
framework [87], based on game theory concepts, which, however, becomes computationally
expensive when large datasets are involved.

5.2.7. Following Stages

In data-driven approaches, a calibration of the ABM itself should not be necessary.
Calibration is usually required to define the values of some parameters of the ABM to
match empirical data and can become a cumbersome process, especially in models that
strive for increased realism and, therefore, include many parameters [75]. In our data-
driven framework, the calibration process is substituted by the selection and training of
the ML models. None of the rules hardcoded in the ABM should require an independent
calibration since these rules should only represent known or trivial facts (see Section 5.2.2).

The ABM should be validated not only at the macro-level on aggregate patterns
but also at the micro-level and on data unused to train the ML models and left aside, as
specified in Section 5.2.3. These data should actually remain unknown to the modeller
to allow for a proper validation intended to test predictions [33]. The micro-data used
to develop the model can also assess how well the model predicts individual agents’
behaviour, avoiding the risk of generating the correct macro-level patterns with an incorrect
micro-specification. This additional layer of micro-level validation improves the robustness
of the ABM’s predictions, together with the cross-validation performed for the individual
ML models [39,40]. If not possible to leave aside a validation set, data collection activities
with the specific aim of validating the ABM can be designed. Another approach can be to
use expert opinions, despite being qualitative and less reliable.

Uncertainty and, in particular, sensitivity analysis are important for policy assess-
ment [15,33]. Uncertainty analysis should focus on the uncertainty both embedded in
the input data and caused by their manipulation, being the most important determinants
of data-driven ABMs outcomes. Sensitivity analysis is critical to provide macro-level
explanatory insights on the ABM dynamics complementary to the ones from the ML
models analysis, which are focused on the single decision-making rules. There is no
accepted standardized method to conduct such analysis for traditional ABMs [65,88],
and a data-driven approach is likely to complicate the process further. The development
of a proper method to conduct uncertainty and sensitivity analysis of data-driven ABMs,
supported by ML as described in Section 4, would constitute an important extension of
the proposed framework. ML could additionally support ABMs’ output analysis, as also
already described in Section 4.
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6. Discussion
6.1. Challenges for Data-Driven LU ABMs

We identify two main challenges for the application of the proposed data-driven
framework for agricultural policy assessment. The first is the difficulty of understanding
data-driven ABMs. The literature often argues that if we are not able to understand the
processes involved in the model any better than the real-world ones, the entire modelling
effort is jeopardised [52,55,65,73]. A consequence is more difficult communication of the
results, especially to non-scientists such as stakeholders and policymakers [30,45,54]. A
better grasp of the factors determining farmers’ decisions can also help identify leverage
points and design more effective policies. The structure of data-driven ABMs is simpler than
more traditional models. The data-driven approach uses one or few ML models instead of
the many hardcoded theoretical and heuristic rules of traditional approaches. However,
the data-driven approach only “hides” this complexity inside the ML models composing
agents’ behaviours. The introduction of the time-consuming stages of data collection and
manipulation and ML model selection and training increases the difficulty of understanding
the processes involved and of eliciting causal relations since these are not specified a priori
and, therefore, easily recognizable [43,45,52]. The analysis of the ML models (Section 5.2.6)
and a complementary sensitivity analysis on the entire ABM can help. However, these
can be complex and long processes, especially when many ML models and data sources
are used and are not guaranteed to provide straightforward insights. Improving these
analyses is, therefore, fundamental, also because data-driven ABMs have the potential
to become powerful explanatory tools. The ultimate aim of using ML algorithms is, in
fact, the elicitation of patterns that are not intuitive to the modellers and that otherwise
would not be included in the ABM. The interpretation of data-driven ABM can, therefore,
provide even additional insights with respect to rules-based approaches, where these rules
need to be pre-defined [42,89]. The modelling paradigm should, therefore, first focus on
developing accurate ABMs and then use appropriate analysis to obtain reliable insights to
communicate with stakeholders and decision-makers.

The second main challenge for data-driven ABMs concerns data availability and
quality. Data availability restricts the applicability of our framework. For instance, it could
not be applied to assess ex ante the introduction of a scheme of payments for ecosystem
services, if we have no past data on the effect of the introduction of similar payments. If
there are no data to train the ML models, they cannot evidently be used. Even when data
are available, we should ensure their quality. The importance of the quality of the data fed
to ML models’ performance is often summarised with the sentence “garbage in, garbage
out”. Data are often more important than the ML algorithm used [43,67]. However, not all
data have the same influence. The effects on the model’s outcome of the assumptions made
when manipulating the data should be evaluated [43], first when analysing the ML models
and then through uncertainty and sensitivity analysis on the ABM [65]. This can then help
guide additional data collection. However, some key variables may simply be unavailable
and impossible to collect due to time and resource constraints or because the past was not
recorded. If even proxies for those data cannot be found, important modifications of the
ABM may be needed, such as the integration of theoretical or heuristic rules to compensate.

6.2. Integration of Rules-Based and Data-Driven Approaches

The right balance between data and theory and how to link these two apparently
opposite approaches is widely debated in the ABM community, also for LU applica-
tions [30,54,90]. When some data are unavailable, or their quality is deemed insufficient, the
integration of theoretical and heuristic rules is necessary. In these cases, different rules can
be tested and validated, and the results may also point out the potential value of collecting
missing data [16,32]. Such rules can also be used to improve data quality, for instance,
supporting the disaggregation of datasets or providing important missing features that can
then be used to train the ML models.
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Including theoretical and heuristic rules can, however, also be useful, even if un-
necessary. Rules can improve understanding and communication of the model in cases
when this is particularly relevant [16,91]. Qualitative insights collected through surveys,
interviews and participatory modelling can be directly included in the model as heuristic
rules while providing clear and immediate insights into the drivers of agents’ decision-
making [60]. A specific example is the inclusion of mechanisms described by stakeholders,
which, even when not improving results, can increase their engagement with the model
and the odds of using results [15,43]. Heuristic insights can also help guide the screening
of the features used to train the ML models and constrain them. For instance, [50] used
experts’ knowledge to constrain and select the best structure of a Bayesian belief network
trained with quantitative data. Another issue to consider is that a data-driven approach
can only learn from past patterns and is, therefore, likely to lean toward business-as-usual
predictions. Participatory modelling [92] or the inclusion of adaptive expectations, such as
on prices [93], can help consider different future scenarios and disruptive events that may
modify the decision-making process of the agents. Finally, theoretical and heuristic rules
can be the basis of using reinforcement learning to equip agents with learning, as already
described in Section 4.

The possibilities for integrating theoretical and, in particular, heuristic rules in data-
driven ABMs are eventually so various and diverse that a systematic treatment is probably
unfeasible. For policy assessment, the validation of the model at the individual level should
remain paramount in order to verify the reliability of the included rules.

7. Conclusions

In this paper, we presented and discussed a framework for the integration of ML
in data-driven ABMs focused on LU applications. This framework is identified by the
following characteristics, which differentiate it from other more traditional approaches:

• Use of empirical data since the very beginning of the modelling process and continuous
feedback between model design and data collection and manipulation steps.

• Agents’ behavioural models consisting of ML models learned from micro-data at the
individual level, without relying on any pre-defined theoretical or heuristic rule.

• No assumption on agents’ interaction and social networks, substituted by proxies for
spatial and social influence used to train the agents’ behavioural models.

• Validation performed on independent data at the macro-level and at the micro-level,
improving the assessment of policy effects on the individuals.

This data-driven framework strives to harness the predictive power of ML algorithms,
which is constantly improving. Data-driven ABMs could, in this way, better assess agri-
cultural policies, evaluating their possible outcomes ex post and ex ante. The analysis of
the trained ML models can shed light on decision-making rules and important drivers
that would not be accessible otherwise, providing a potentially powerful but complex
explanatory tool.

However, data-driven models are not completely free from assumptions. These are
usually hidden, as in the choice of the features and the ML algorithm, in the tendency of
ML models to reproduce past patterns and in the software implementation surrounding
the ML models. There are methods to support some of these choices, e.g., for variables
and algorithm selection, but modellers should keep in mind that their subjectivity can
still influence the results. We identified the main challenges for the diffusion of data-
driven ABMs in the increased difficulty of understanding their processes and retrieving the
required data with sufficient quality. These issues could be addressed by developing proper
methods for uncertainty and sensitivity analysis and treating how to integrate theoretical
and heuristic rules without hampering predictive performances.

The data-driven framework we proposed constitutes a fundamental change of paradigm
compared to more traditional approaches. We agree on the importance of understanding
the processes within the ABM, but we argue that achieving robust predictions should be
prioritized for policy assessment purposes. For complex and multidimensional human
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systems, an overemphasis on easily explaining a wrong model is useless (when not dam-
aging). Accurate models can be useful even without a complete understanding of the
dynamics involved. We believe that models with better predictive performance are likely
to be used more by policymakers if their potential is properly demonstrated, even without
mechanistic cause–effect rules for all the processes involved. To increase policymakers’ trust,
a comparison of the predictive performance of our data-driven framework with rules-based
approaches will be fundamental. In fact, despite some successful examples of data-driven
ABMs, this approach still has to be properly tested in LU.

Author Contributions: Conceptualization, G.R., R.F.M.T. and T.D.; formal analysis, G.R.; investiga-
tion, G.R.; writing—original draft preparation, G.R.; writing—review and editing, R.F.M.T. and T.D.;
supervision, R.F.M.T. and T.D.; project administration, R.F.M.T.; funding acquisition, R.F.M.T. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by Fundação para a Ciência e Tecnologia through projects
“LEAnMeat—Lifecycle-based Environmental Assessment and impact reduction of Meat produc-
tion with a novel multi-level tool” (PTDC/EAM-AMB/30809/2017), 2021.07144.BD (to G. Ravaioli)
and CEECIND/00365/2018 (R. Teixeira). The work was also funded by FCT/MCTES (PIDDAC)
through project LARSyS—FCT Pluriannual funding 2020–2023 (UIDP/EEA/50009/2020).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hardt, L.; O’Neill, D.W. Ecological Macroeconomic Models: Assessing Current Developments. Ecol. Econ. 2017, 134, 198–211. [CrossRef]
2. Raworth, K. A Safe and Just Space for Humanity: Can We Live within the Doughnut? Oxfam: Nairobi, Kenya, 2012.
3. Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al.

Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019,
393, 447–492. [CrossRef] [PubMed]

4. Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [CrossRef]
5. Tilman, D.; Clark, M.; Williams, D.R.; Kimmel, K.; Polasky, S.; Packer, C. Future Threats to Biodiversity and Pathways to Their

Prevention. Nature 2017, 546, 73–81. [CrossRef] [PubMed]
6. Gaube, V.; Haberl, H. Using Integrated Models to Analyse Socio-Ecological System Dynamics in Long-Term Socio-Ecological

Research—Austrian Experiences. In Long Term Socio-Ecological Research; Singh, S.J., Haberl, H., Chertow, M., Mirtl, M., Schmid,
M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 53–75; ISBN 978-94-007-1176-1.

7. Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al.
Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. [CrossRef]

8. Rindfuss, R.R.; Entwisle, B.; Walsh, S.J.; An, L.; Badenoch, N.; Brown, D.G.; Deadman, P.; Evans, T.P.; Fox, J.; Geoghegan, J.; et al.
Land Use Change: Complexity and Comparisons. J. Land Use Sci. 2008, 3, 1–10. [CrossRef]

9. Levin, S.; Xepapadeas, T.; Crépin, A.-S.; Norberg, J.; de Zeeuw, A.; Folke, C.; Hughes, T.; Arrow, K.; Barrett, S.; Daily, G.; et al.
Social-Ecological Systems as Complex Adaptive Systems: Modeling and Policy Implications. Environ. Dev. Econ. 2013,
18, 111–132. [CrossRef]

10. Agent-Based Modelling of Socio-Technical Systems; Dam, K.H.; Nikolic, I.; Lukszo, Z. (Eds.) Springer: Dordrecht, The Netherlands,
2013; ISBN 978-94-007-4932-0.

11. Holling, C.S. Understanding the Complexity of Economic, Ecological, and Social Systems. Ecosystems 2001, 4, 390–405. [CrossRef]
12. Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [CrossRef]
13. Preiser, R.; Biggs, R.; De Vos, A.; Folke, C. Social-Ecological Systems as Complex Adaptive Systems: Organizing Principles for

Advancing Research Methods and Approaches. Ecol. Soc. 2018, 23, 46. [CrossRef]
14. Berger, T.; Troost, C. Agent-Based Modelling of Climate Adaptation and Mitigation Options in Agriculture. J. Agric. Econ. 2014,

65, 323–348. [CrossRef]
15. Reidsma, P.; Janssen, S.; Jansen, J.; van Ittersum, M.K. On the Development and Use of Farm Models for Policy Impact Assessment

in the European Union—A Review. Agric. Syst. 2018, 159, 111–125. [CrossRef]
16. Groeneveld, J.; Müller, B.; Buchmann, C.; Dressler, G.; Guo, C.; Hase, N.; Hoffmann, F.; John, F.; Klassert, C.; Lauf, T.; et al.

Theoretical Foundations of Human Decision-Making in Agent-Based Land Use Models—A Review. Environ. Model. Softw. 2017,
87, 39–48. [CrossRef]

17. O’Sullivan, D.; Evans, T.; Manson, S.; Metcalf, S.; Ligmann-Zielinska, A.; Bone, C. Strategic Directions for Agent-Based Modeling:
Avoiding the YAAWN Syndrome. J. Land Use Sci. 2016, 11, 177–187. [CrossRef]

http://doi.org/10.1016/j.ecolecon.2016.12.027
http://doi.org/10.1016/S0140-6736(18)31788-4
http://www.ncbi.nlm.nih.gov/pubmed/30660336
http://doi.org/10.1146/annurev-environ-020411-130608
http://doi.org/10.1038/nature22900
http://www.ncbi.nlm.nih.gov/pubmed/28569796
http://doi.org/10.1126/science.1144004
http://doi.org/10.1080/17474230802047955
http://doi.org/10.1017/S1355770X12000460
http://doi.org/10.1007/s10021-001-0101-5
http://doi.org/10.1126/science.1172133
http://doi.org/10.5751/ES-10558-230446
http://doi.org/10.1111/1477-9552.12045
http://doi.org/10.1016/j.agsy.2017.10.012
http://doi.org/10.1016/j.envsoft.2016.10.008
http://doi.org/10.1080/1747423X.2015.1030463


Land 2023, 12, 756 15 of 17

18. Kremmydas, D.; Athanasiadis, I.N.; Rozakis, S. A Review of Agent Based Modeling for Agricultural Policy Evaluation. Agric. Syst.
2018, 164, 95–106. [CrossRef]

19. Macal, C.M. Everything You Need to Know about Agent Based Modelling and Simulation. J. Simul. 2016, 10, 144–156. [CrossRef]
20. Epstein, J.M. Agent-Based Computational Models and Generative Social Science. Complexity 2006, 4, 41–60. [CrossRef]
21. Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-Agent Systems for the Simulation of Land-Use

and Land-Cover Change: A Review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [CrossRef]
22. Robinson, D.T.; Brown, D.G.; Parker, D.C.; Schreinemachers, P.; Janssen, M.A.; Huigen, M.; Wittmer, H.; Gotts, N.; Promburom, P.;

Irwin, E.; et al. Comparison of Empirical Methods for Building Agent-Based Models in Land Use Science. J. Land Use Sci. 2007,
2, 31–55. [CrossRef]

23. Dullinger, I.; Gattringer, A.; Wessely, J.; Moser, D.; Plutzar, C.; Willner, W.; Egger, C.; Gaube, V.; Haberl, H.; Mayer, A.; et al. A
Socio-ecological Model for Predicting Impacts of Land-use and Climate Change on Regional Plant Diversity in the Austrian Alps.
Glob. Chang. Biol. 2020, 26, 2336–2352. [CrossRef]

24. Filatova, T.; Verburg, P.H.; Parker, D.C.; Stannard, C.A. Spatial Agent-Based Models for Socio-Ecological Systems: Challenges and
Prospects. Environ. Model. Softw. 2013, 45, 1–7. [CrossRef]

25. Happe, K.; Kellermann, K.; Balmann, A. Agent-Based Analysis of Agricultural Policies: An Illustration of the Agricultural Policy
Simulator AgriPoliS, Its Adaptation and Behavior. Ecol. Soc. 2006, 11, 49. [CrossRef]

26. Matthews, R.B.; Gilbert, N.G.; Roach, A.; Polhill, J.G.; Gotts, N.M. Agent-Based Land-Use Models: A Review of Applications.
Landsc. Ecol. 2007, 22, 1447–1459. [CrossRef]

27. Schreinemachers, P.; Berger, T. An Agent-Based Simulation Model of Human–Environment Interactions in Agricultural Systems.
Environ. Model. Softw. 2011, 26, 845–859. [CrossRef]

28. Grimm, V.; Berger, U.; DeAngelis, D.L.; Polhill, J.G.; Giske, J.; Railsback, S.F. The ODD Protocol: A Review and First Update.
Ecol. Model. 2010, 221, 2760–2768. [CrossRef]

29. Grimm, V.; Railsback, S.F.; Vincenot, C.E.; Berger, U.; Gallagher, C.; DeAngelis, D.L.; Edmonds, B.; Ge, J.; Giske, J.;
Groeneveld, J.; et al. The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve
Clarity, Replication, and Structural Realism. JASSS 2020, 23, 7. [CrossRef]

30. Laatabi, A.; Marilleau, N.; Nguyen-Huu, T.; Hbid, H.; Ait Babram, M. ODD+2D: An ODD Based Protocol for Mapping Data to
Empirical ABMs. JASSS 2018, 21, 9. [CrossRef]

31. Müller, B.; Bohn, F.; Dreßler, G.; Groeneveld, J.; Klassert, C.; Martin, R.; Schlüter, M.; Schulze, J.; Weise, H.; Schwarz, N.
Describing Human Decisions in Agent-Based Models—ODD + D, an Extension of the ODD Protocol. Environ. Model. Softw.
2013, 48, 37–48. [CrossRef]

32. Bruch, E.; Atwell, J. Agent-Based Models in Empirical Social Research. Sociol. Methods Res. 2015, 44, 186–221. [CrossRef]
33. Edmonds, B.; Grimm, V.; Meyer, R.; Montañola, C.; Ormerod, P.; Root, H.; Squazzoni, F. Different Modelling Purposes. JASSS

2019, 22, 6. [CrossRef]
34. Zhang, H.; Vorobeychik, Y. Empirically Grounded Agent-Based Models of Innovation Diffusion: A Critical Review.

Artif. Intell. Rev. 2019, 52, 707–741. [CrossRef]
35. Lempert, R. Agent-Based Modeling as Organizational and Public Policy Simulators. Proc. Natl. Acad. Sci. USA 2002, 99,

7195. [CrossRef] [PubMed]
36. Data For Policy Policy-Making in the Big Data Era: Opportunities and Challenges. In Proceedings the Book of Data for Policy 2015

Conference, Cambridge, UK, 15–17 June 2015; University of Cambridge: Cambridge, UK, 2015.
37. Androutsopoulou, A.; Charalabidis, Y. A Framework for Evidence Based Policy Making Combining Big Data, Dynamic Modelling

and Machine Intelligence. In Proceedings of the 11th International Conference on Theory and Practice of Electronic Governance,
Galway, Ireland, 4–6 April 2018.

38. Lee, J.W. Big Data Strategies for Government, Society and Policy-Making. J. Asian Financ. Econ. Bus. 2020, 7, 475–487. [CrossRef]
39. Zhang, H.; Vorobeychik, Y.; Letchford, J.; Lakkaraju, K. Data-Driven Agent-Based Modeling, with Application to Rooftop Solar

Adoption. Auton. Agent Multi-Agent Syst. 2016, 30, 1023–1049. [CrossRef]
40. Kavak, H.; Padilla, J.J.; Lynch, C.J.; Diallo, S.Y. Big Data, Agents and Machine Learning: Towards a Data-Driven Agent-Based

Modeling Approach. In Proceedings of the Annual Simulation Symposium (ANSS 2018), Baltimore, MD, USA, 15–18 April 2018;
Society for Modeling and Simulation International (SCS): Baltimore, MD, USA, 2018.

41. Zhao, L.; Peng, Z.-R. LandSys II: Agent-Based Land Use–Forecast Model with Artificial Neural Networks and Multiagent Model.
J. Urban Plann. Dev. 2015, 141, 04014045. [CrossRef]

42. Heppenstall, A.; Crooks, A.; Malleson, N.; Manley, E.; Ge, J.; Batty, M. Future Developments in Geographical Agent-Based Models:
Challenges and Opportunities. Geogr. Anal. 2021, 53, 76–91. [CrossRef]

43. Buchmann, C.M.; Grossmann, K.; Schwarz, N. How Agent Heterogeneity, Model Structure and Input Data Determine the Performance
of an Empirical ABM—A Real-World Case Study on Residential Mobility. Environ. Model. Softw. 2016, 75, 77–93. [CrossRef]

44. Janssen, M.A.; Ostrom, E. Empirically Based, Agent-Based Models. Ecol. Soc. 2006, 11, 37. [CrossRef]
45. Hassan, S.; Antunes, L.; Pavon, J.; Gilbert, N. Stepping on Earth: A Roadmap for Data-Driven Agent-Based Modelling. In Proceedings

of the 5th Conference of the European Social Simulation Association (ESSA08), Brescia, Italy, 1–5 September 2008; p. 12.

http://doi.org/10.1016/j.agsy.2018.03.010
http://doi.org/10.1057/jos.2016.7
http://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5&lt;41::AID-CPLX9&gt;3.0.CO;2-F
http://doi.org/10.1111/1467-8306.9302004
http://doi.org/10.1080/17474230701201349
http://doi.org/10.1111/gcb.14977
http://doi.org/10.1016/j.envsoft.2013.03.017
http://doi.org/10.5751/ES-01741-110149
http://doi.org/10.1007/s10980-007-9135-1
http://doi.org/10.1016/j.envsoft.2011.02.004
http://doi.org/10.1016/j.ecolmodel.2010.08.019
http://doi.org/10.18564/jasss.4259
http://doi.org/10.18564/jasss.3646
http://doi.org/10.1016/j.envsoft.2013.06.003
http://doi.org/10.1177/0049124113506405
http://doi.org/10.18564/jasss.3993
http://doi.org/10.1007/s10462-017-9577-z
http://doi.org/10.1073/pnas.072079399
http://www.ncbi.nlm.nih.gov/pubmed/12011397
http://doi.org/10.13106/jafeb.2020.vol7.no7.475
http://doi.org/10.1007/s10458-016-9326-8
http://doi.org/10.1061/(ASCE)UP.1943-5444.0000255
http://doi.org/10.1111/gean.12267
http://doi.org/10.1016/j.envsoft.2015.10.005
http://doi.org/10.5751/ES-01861-110237


Land 2023, 12, 756 16 of 17

46. Edmonds, B.; Moss, S. From KISS to KIDS—An ‘Anti-Simplistic’ Modelling Approach. In Multi-Agent and Multi-Agent-Based
Simulation; Davidsson, P., Logan, B., Takadama, K., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2005; Volume 3415, pp. 130–144; ISBN 978-3-540-25262-7.

47. Marvuglia, A.; Navarrete Gutiérrez, T.; Baustert, P.; Benetto, E. Luxembourg Institute of Science and Technology (LIST), 5, avenue
des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg Implementation of Agent-Based Models to Support Life Cycle
Assessment: A Review Focusing on Agriculture and Land Use. AIMS Agric. Food 2018, 3, 535–560. [CrossRef]

48. Acosta, A.L.; Rounsevell, D.A.M.; Bakker, M.; Van Doorn, A.; Gómez-Delgado, M.; Delgado, M. An Agent-Based Assessment of
Land Use and Ecosystem Changes in Traditional Agricultural Landscape of Portugal. Intell. Inf. Manag. 2014, 6, 55–80. [CrossRef]

49. Chen, X.; Viña, A.; Shortridge, A.; An, L.; Liu, J. Assessing the Effectiveness of Payments for Ecosystem Services: An Agent-Based
Modeling Approach. Ecol. Soc. 2014, 19, art7. [CrossRef]

50. Sun, Z.; Müller, D. A Framework for Modeling Payments for Ecosystem Services with Agent-Based Models, Bayesian Belief
Networks and Opinion Dynamics Models. Environ. Model. Softw. 2013, 45, 15–28. [CrossRef]

51. Smajgl, A.; Brown, D.G.; Valbuena, D.; Huigen, M.G.A. Empirical Characterisation of Agent Behaviours in Socio-Ecological
Systems. Environ. Model. Softw. 2011, 26, 837–844. [CrossRef]

52. Dahlke, J.; Bogner, K.; Müller, M.; Berger, T.; Pyka, A. Bernd Ebersberger Is the Juice Worth the Squeeze? Machine Learning in
and for Agent-Based Modelling. arXiv 2020. [CrossRef]

53. Bartkowski, B.; Bartke, S. Leverage Points for Governing Agricultural Soils: A Review of Empirical Studies of European Farmers’
Decision-Making. Sustainability 2018, 10, 3179. [CrossRef]

54. Huber, R.; Bakker, M.; Balmann, A.; Berger, T.; Bithell, M.; Brown, C.; Grêt-Regamey, A.; Xiong, H.; Le, Q.B.; Mack, G.; et al.
Representation of Decision-Making in European Agricultural Agent-Based Models. Agric. Syst. 2018, 167, 143–160. [CrossRef]

55. An, L. Modeling Human Decisions in Coupled Human and Natural Systems: Review of Agent-Based Models. Ecol. Model. 2012,
229, 25–36. [CrossRef]

56. Bakker, M.M.; van Doorn, A.M. Farmer-Specific Relationships between Land Use Change and Landscape Factors: Introducing
Agents in Empirical Land Use Modelling. Land Use Policy 2009, 26, 809–817. [CrossRef]

57. Farmer, J.D.; Hepburn, C.; Mealy, P.; Teytelboym, A. A Third Wave in the Economics of Climate Change. Environ. Resour. Econ.
2015, 62, 329–357. [CrossRef]

58. Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [CrossRef]
59. Jager, W.; Janssen, M.A.; De Vries, H.J.M.; De Greef, J.; Vlek, C.A.J. Behaviour in Commons Dilemmas: Homo Economicus and

Homo Psychologicus in an Ecological-Economic Model. Ecol. Econ. 2000, 35, 357–379. [CrossRef]
60. Runck, B.C.; Manson, S.; Shook, E.; Gini, M.; Jordan, N. Using Word Embeddings to Generate Data-Driven Human Agent

Decision-Making from Natural Language. Geoinformatica 2019, 23, 221–242. [CrossRef]
61. Schenk, T.A. Using Stakeholders’ Narratives to Build an Agent-Based Simulation of a Political Process. Simulation 2014,

90, 85–102. [CrossRef]
62. Gaube, V.; Kaiser, C.; Wildenberg, M.; Adensam, H.; Fleissner, P.; Kobler, J.; Lutz, J.; Schaumberger, A.; Schaumberger, J.;

Smetschka, B.; et al. Combining Agent-Based and Stock-Flow Modelling Approaches in a Participative Analysis of the Integrated
Land System in Reichraming, Austria. Landsc. Ecol 2009, 24, 1149–1165. [CrossRef]

63. Jäger, G. Using Neural Networks for a Universal Framework for Agent-Based Models. Math. Comput. Model. Dyn. Syst. 2021,
27, 162–178. [CrossRef]

64. Edmonds, B.; Aodha, L. ní Using Agent-Based Simulation to Inform Policy—What Could Possibly Go Wrong? In Simulating
Social Complexity—A Handbook; Springer: Berlin/Heidelberg, Germany, 2017; pp. 801–822.

65. Lee, J.-S.; Filatova, T.; Ligmann-Zielinska, A.; Hassani-Mahmooei, B.; Stonedahl, F.; Lorscheid, I.; Voinov, A.; Polhill, G.; Sun, Z.;
Parker, D.C. The Complexities of Agent-Based Modeling Output Analysis. JASSS 2015, 18, 4. [CrossRef]

66. Bzdok, D.; Altman, N.; Krzywinski, M. Statistics versus Machine Learning. Nat. Methods 2018, 15, 233–234. [CrossRef]
67. Domingos, P. A Few Useful Things to Know about Machine Learning. Commun. ACM 2012, 55, 78–87. [CrossRef]
68. Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [CrossRef]
69. Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.;

Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. arXiv 2019. [CrossRef]
70. von Rueden, L.; Mayer, S.; Sifa, R.; Bauckhage, C.; Garcke, J. Combining Machine Learning and Simulation to a Hybrid Modelling

Approach: Current and Future Directions. In Advances in Intelligent Data Analysis XVIII; Berthold, M.R., Feelders, A., Krempl, G.,
Eds.; Springer International Publishing: Cham, Swizerlands, 2020; pp. 548–560.

71. An, L.; Grimm, V.; Sullivan, A.; Turner, B.L., II; Malleson, N.; Heppenstall, A.; Vincenot, C.; Robinson, D.; Ye, X.; Liu, J.; et al.
Challenges, Tasks, and Opportunities in Modeling Agent-Based Complex Systems. Ecol. Model. 2021, 457, 109685. [CrossRef]

72. Li, F.; Li, Z.; Chen, H.; Chen, Z.; Li, M. An Agent-Based Learning-Embedded Model (ABM-Learning) for Urban Land Use
Planning: A Case Study of Residential Land Growth Simulation in Shenzhen, China. Land Use Policy 2020, 95, 104620. [CrossRef]

73. Pereda, M.; Santos, J.I.; Galán, J.M. A Brief Introduction to the Use of Machine Learning Techniques in the Analysis of Agent-Based
Models. In Advances in Management Engineering; Hernández, C., Ed.; Lecture Notes in Management and Industrial Engineering;
Springer International Publishing: Cham, Swizerlands, 2017; pp. 179–186; ISBN 978-3-319-55888-2.

74. van Strien, M.J.; Huber, S.H.; Anderies, J.M.; Grêt-Regamey, A. Resilience in Social-Ecological Systems: Identifying Stable and
Unstable Equilibria with Agent-Based Models. Ecol. Soc. 2019, 24, art8. [CrossRef]

http://doi.org/10.3934/agrfood.2018.4.535
http://doi.org/10.4236/iim.2014.62008
http://doi.org/10.5751/ES-05578-190107
http://doi.org/10.1016/j.envsoft.2012.06.007
http://doi.org/10.1016/j.envsoft.2011.02.011
http://doi.org/10.48550/arXiv.2003.11985
http://doi.org/10.3390/su10093179
http://doi.org/10.1016/j.agsy.2018.09.007
http://doi.org/10.1016/j.ecolmodel.2011.07.010
http://doi.org/10.1016/j.landusepol.2008.10.010
http://doi.org/10.1007/s10640-015-9965-2
http://doi.org/10.1016/0749-5978(91)90020-T
http://doi.org/10.1016/S0921-8009(00)00220-2
http://doi.org/10.1007/s10707-019-00345-2
http://doi.org/10.1177/0037549713514127
http://doi.org/10.1007/s10980-009-9356-6
http://doi.org/10.1080/13873954.2021.1889609
http://doi.org/10.18564/jasss.2897
http://doi.org/10.1038/nmeth.4642
http://doi.org/10.1145/2347736.2347755
http://doi.org/10.1126/science.aaa8415
http://doi.org/10.1145/3485128
http://doi.org/10.1016/j.ecolmodel.2021.109685
http://doi.org/10.1016/j.landusepol.2020.104620
http://doi.org/10.5751/ES-10899-240208


Land 2023, 12, 756 17 of 17

75. Lamperti, F.; Roventini, A.; Sani, A. Agent-Based Model Calibration Using Machine Learning Surrogates. J. Econ. Dyn. Control.
2018, 90, 366–389. [CrossRef]

76. Zhao, X.; Ma, X.; Tang, W.; Liu, D. An Adaptive Agent-Based Optimization Model for Spatial Planning: A Case Study of Anyue
County, China. Sustain. Cities Soc. 2019, 51, 101733. [CrossRef]

77. Hashemi Aslani, Z.; Omidvar, B.; Karbassi, A. Integrated Model for Land-Use Transformation Analysis Based on Multi-Layer
Perception Neural Network and Agent-Based Model. Environ. Sci. Pollut. Res. 2022. [CrossRef]

78. Ravaioli, G.; Domingos, T.; Teixeira, R.F. Data-driven agent-based modelling of incentives for carbon sequestration: The case of
sown biodiverse pastures in Portugal. J. Environ. Manag. 2023, 338, 117834.

79. Kaufmann, J.; Schering, A. Analysis of Variance ANOVA. In Wiley StatsRef: Statistics Reference Online; Bala-krishnan, N., Colton,
T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., Eds.; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-1-118-44511-2.

80. Pearson, K.X. On the Criterion That a given System of Deviations from the Probable in the Case of a Correlated System
of Variables Is Such That It Can Be Reasonably Supposed to Have Arisen from Random Sampling. Philos. Mag. Ser. 1900,
5, 157–175. [CrossRef]

81. Daoud, J. Multicollinearity and Regression Analysis. In Journal of Physics: Conference Series; International Islamic University
Malaysia: Kuala Lumpur, Malaysia, 2017; Volume 949, p. 012009.

82. Cragg, J.G. Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods.
Econometrica 1971, 39, 829. [CrossRef]

83. Molnar, C. Interpretable Machine Learning. Independently published. 2019; ISBN 979-8411463330.
84. Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, Methods, and Applications in Interpretable Machine

Learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [CrossRef]
85. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Statist. 2001, 29, 1189–1232. [CrossRef]
86. Fisher, A.; Rudin, C.; Dominici, F. All Models Are Wrong, but Many Are Useful: Learning a Variable’s Importance by Studying an

Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 177. [PubMed]
87. Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st Conference on Neural

Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.
88. ten Broeke, G.; van Voorn, G.; Ligtenberg, A. Which Sensitivity Analysis Method Should I Use for My Agent-Based Model? JASSS

2016, 19, 5. [CrossRef]
89. Viana, C.M.; Santos, M.; Freire, D.; Abrantes, P.; Rocha, J. Evaluation of the Factors Explaining the Use of Agricultural Land: A

Machine Learning and Model-Agnostic Approach. Ecol. Indic. 2021, 131, 108200. [CrossRef]
90. Koomen, E.; Diogo, V.; Dekkers, J.; Rietveld, P. A Utility-Based Suitability Framework for Integrated Local-Scale Land-Use

Modelling. Comput. Environ. Urban Syst. 2015, 50, 1–14. [CrossRef]
91. Sun, Z.; Lorscheid, I.; Millington, J.D.; Lauf, S.; Magliocca, N.R.; Groeneveld, J.; Balbi, S.; Nolzen, H.; Müller, B.; Schulze, J.; et al.

Simple or Complicated Agent-Based Models? A Complicated Issue. Environ. Model. Softw. 2016, 86, 56–67. [CrossRef]
92. Harb, M.; Garschagen, M.; Cotti, D.; Krätzschmar, E.; Baccouche, H.; Ben Khaled, K.; Bellert, F.; Chebil, B.; Ben Fredj, A.;

Ayed, S.; et al. Integrating Data-Driven and Participatory Modeling to Simulate Future Urban Growth Scenarios: Findings from
Monastir, Tunisia. Urban Sci. 2020, 4, 10. [CrossRef]

93. Filatova, T. Empirical Agent-Based Land Market: Integrating Adaptive Economic Behavior in Urban Land-Use Models.
Comput. Environ. Urban Syst. 2015, 54, 397–413. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jedc.2018.03.011
http://doi.org/10.1016/j.scs.2019.101733
http://doi.org/10.1007/s11356-022-19392-8
http://doi.org/10.1080/14786440009463897
http://doi.org/10.2307/1909582
http://doi.org/10.1073/pnas.1900654116
http://doi.org/10.1214/aos/1013203451
http://www.ncbi.nlm.nih.gov/pubmed/34335110
http://doi.org/10.18564/jasss.2857
http://doi.org/10.1016/j.ecolind.2021.108200
http://doi.org/10.1016/j.compenvurbsys.2014.10.002
http://doi.org/10.1016/j.envsoft.2016.09.006
http://doi.org/10.3390/urbansci4010010
http://doi.org/10.1016/j.compenvurbsys.2014.06.007

	Introduction 
	Empirically Grounded Land Use ABMs 
	Modelling Agents’ Behaviours in ABMs 
	Theory-Based ABMs 
	Heuristic ABMs 
	Data-Driven ABMs 

	Machine Learning and ABMs 
	A Framework for Data-Driven LU ABMs 
	Model Timestep 
	Model Implementation 
	Data Collection 
	Conceptual ABM Design 
	Data Manipulation 
	Behavioural Model Generation 
	ABM Software Implementation 
	ML Models Analysis 
	Following Stages 


	Discussion 
	Challenges for Data-Driven LU ABMs 
	Integration of Rules-Based and Data-Driven Approaches 

	Conclusions 
	References

