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Abstract: Owing to the complexity of obtaining the landslide inventory data, it is a challenge to
establish a landslide spatial prediction model with limited labeled samples. This paper proposed
a novel strategy, namely transfer learning with attributes (TLAs), to make good use of existing
landslide inventory data, a strategy that is based on a variational autoencoder of a generative
adversarial network (VAEGAN) for improving the landslide spatial prediction performance in
sample-scarce areas. Different from transfer learning (TL), TLAs are pretraining the model with
the data reconstructed by VAEGAN, so that the models learn in advance the landslide attributes of
sample-scarce areas. Accordingly, a database containing a total of 986 landslides in three study areas
with 14 landslide-influencing factors was established, and each of the three models, i.e., convolutional
neural networks (CNNs), bidirectional long short-term memory (BiLSTM) and gated recurrent units
(GRUs), was respectively selected as the feature extractor of the VAEGAN to reconstruct the data
with attributes and the prediction model to generate the landslide susceptibility maps to investigate
and validate the proposed TLA strategy. The experimental results showed that the TLA strategy
increased the mean value of evaluators, such as the area under the receiver-operating characteristic
(AUROC), F1-score, precision, recall and accuracy by about 2–7% compared with TL, results that
indicated that the generated data have the attribute of specific study areas and the effectiveness of
TLA strategy in sample-scare areas.

Keywords: transfer learning with attributes; landslide spatial prediction; variational autoencoder
generative adversarial network; deep-learning frameworks

1. Introduction

Landslides occur on all continents and are global threats to human infrastructure and
the environment [1]. Urbanization (e.g., highway expansion) accelerates the demand for
landslide prevention and control. However, landslide assessment is a complicated task that
includes needing to understand geotechnics, geomorphology, hydrology and statistics [2].
Although the method of establishing a physical model to evaluate the stable state of a slope
is reliable [3], it is suitable only for the small research area or a single slope [4]. Thus, it is a
challenge to use physical models to evaluate the stability of a large number of slopes as it is
time-consuming and expensive [5].

Recently, the landslide spatial prediction (LSP) has become essential for landslide
susceptibility maps (LSMs) [6]. Additionally, many models for LSMs have been proposed,
such as statistical [7] and machine-learning (ML) [8] models. However, these methods
cannot extract critical information from the landslide-influencing factors; in addition, these
machine-learning methods are prone to overfitting and make it difficult to improve the
prediction accuracy [9].
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To address these problems, deep-learning frameworks (e.g., convolutional neural
networks (CNNs)), which have received more attention, can achieve an equivalent or
higher level of human experts in the prediction accuracy and objectivity in many fields [10].
Recently, the deep-learning frameworks are commonly used in LSP [11–13]. Furthermore,
the deep-learning frameworks are confirmed to be better than machine-learning methods
in LSP [14]. These LSP models take landslide-influencing factors as the inputs to generate
spatial probability maps of landslides [15]. However, an excellent LSP model of an area
needs a lot of data for training. It is a challenge to collect these landslide inventory data
whether they are from an onsite field survey or a search from remote-sensing images and
historical data because a lot of professional knowledge will be needed [16]. Thus, it is
difficult to establish a strong model in sample-scarce areas [17].

For the data with similar features, TL, which makes good use of the existing landslide
inventory data in other regions, can solve the above problem. That is, a model is first trained
with the data from a sample-abundant region, and next, this pretrained model is fine-tuned
by using data in sample-scarce areas. The TL strategy utilizes the learning representation
from a well-trained model, which enables the model to successfully transfer the learned
knowledge to other data sets [18,19]. Although the TL has impressive effects, some critical
problems remain to be solved when the TL strategy is applied to LSP. Especially for the
limitation of the data with unsimilar features, it is hard to generalize a model pretrained
with the data from an sample-abundant area to another sample-scarce area [16], owing to
the data-set bias (e.g., the inches of rain are quite different between areas), which makes
the effect of TL negligible.

Thus, it is necessary to increase the attribute similarity between the data set used
for training and the one used for fine-tuning the models. Reducing the data-set bias by
improving the attribute similarity between the source domain and target domain can
enhance the performance of the models when applying the TL [20]. The technique of
reconstructing the data, which include not only its own attributes but also other attributes,
has achieved good results in the field of image enhancement [21]. In the study [21], the
original data set is purposely reconstructed with new features contained in another data set
by using a variational autoencoder generative adversarial network (VAEGAN), increasing
the attribute similarity between the data set of the source domain and the one of the target
domain. However, this technique has not yet been used in LSP.

Therefore, in order to improve the performance of an LSP model in sample-scarce
areas, the strategy of using TLAs is proposed in this paper, which is a solution that consists
of two steps: (1) reconstructing the data with similar attributes of landslide-influencing
factors in two areas on the basis of the VAEGANs and (2) first pretraining the LSP model
with the reconstructed data and then fine-tuning them with limited samples from sample-
scare areas. In other words, the TLA strategy transfers the learning representation from the
existing landslide inventory data to a sample-scare area and increases the compatibility of
the models. In summary, the contributions of this work are listed as below:

1. Investigating the transferability by applying the proposed TLA strategy in two study areas.
2. Three deep-learning frameworks (CNNs, GRUs and BiLSTM) are selected as the

feature extractor of the VAEGAN to assess the attribute similarities of autoencoded
(reconstructed) data between the source domain and the target domain.

3. The Bayesian optimization algorithm is used to obtain the best hyperparameters and
training options from three LSP models (CNNs, GRUs and BiLSTM).

2. Study Area and Landslide Inventory

This paper includes three study areas in China: the first one is across both Luoding
Country and Xinyi County (LX) of Guangdong Province (Figure 1a); the second one is
in Guigang County (GG) of Guangxi Province (Figure 1b); and the third one is in Zigui
County (ZG) of Hubei Province.
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Figure 1. Landslide inventory maps of first two study areas in China. (a) the first one across Luoding
County and Xinyi County (LX) of Guangdong Province, (b) the second one in Guigang County
(GG) of Guangxi Province, (c) the locations of the study areas in Guangdong Province and Guangxi
Province, (d) the locations of the two provinces in China.

A landslide survey is an indispensable procedure for data statistics and understanding
of landslide spatial distribution [22]. The landslide inventories of the study areas were ini-
tially obtained from the archive database in 2012 and then were supplemented with several
field surveys using geoinformatics (ArcGIS) from Google Earth images (historical images
from 2010 to 2016). Additionally, the description of the landslides in the study areas can be
found in Table A1 of Appendix A. Figure 1 shows the landslide distribution of the first two
study areas. The inventory contains 484 landslide locations in LX and 88 landslide locations
in GG. These historical landslide locations are explored by using expert knowledge and
onsite investigation, which can be found in the report by the China Geological Environment
Monitoring Institute [23]. According to Reichenbach et al. [1], 596 factors have been found
to assess landslide susceptibility, from 1983 to 2016, and the average number of factors
used in each model is nine. In addition, the selected landslide-influencing factors should
be measurable, operable, uneven, complete and nonredundant [24]. Some studies [25–27]
have shown that using between 4 and 12 factors is suitable for LSP. Therefore, there are
14 landslide-influencing factors (Table 1) are considered in this paper, which can be classi-
fied as seven topography factors (altitude, aspect, plan curvature, profile curvature, surface
roughness, topographic wetness index and slope), five environmental factors (normalized
difference vegetation index, land use, rainfall, distance to rivers and distance to roads)
and two geological factors (lithology and distance to faults). The thematic maps of these
landslide-influencing factors of LX and GG are shown in Figures 2 and 3, respectively.
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Table 1. The information about landslide-influencing factors used in this study [28].

# Category Factors Reason for Selection Data Source

1 Topography Altitude
Slope is closely related to the local altitude, so

altitude is one of the factors that influence
landslides [29].

The digital elevation model (DEM) with
a 30 m resolution of the study area can be

downloaded from
http://www.gscloud.cn/home (accessed

on 23 June 2022).

2 Slope angle This directly affects slope stability and has been
widely used in landslide sensitivity analysis [9]. DEM derivatives.

3 Aspect
This is related to the landslides in that slopes in
different orientations are differently affected by

precipitation and solar radiation [30].
DEM derivatives.

4 Plan curvature
This reflects the rate of change of the aspect along
the contour and thus can affect the flow of water

across a surface [31].
DEM derivatives.

5 Profile curvature

This influences the acceleration and
deceleration of flow through slope; thus, some

valuable information about erosion and
deposition is provided [32].

DEM derivatives.

6 SDS This is an index reflecting the degree of surface
fluctuation and erosion intensity [33]. SDS = 1/ cos(slope).

7 TWI
TWI describes the topographic properties of

hydrological processes in that both slope and local
upslope contribution areas are considered [34].

TWI = Ln(SCA/ tan β), where SCA is
the specific catchment area (m2/m) and

β is the slope angle (degree) of the
position.

8 Environmental Land use
Land use is a key factor in landslides and has

an important influence on the stability of slopes
thanks to vegetation cover [35].

Land-use data are from a study in 2015 [36].

9 Rainfall This is a key landslide-inducing factor in that it
can affect the shear strength of the slope [37].

The rainfall (mm/month) raster data in
the study area were obtained by using

the inverse-distance weighting
interpolation method [38] on rain

stations (http://data.cma.cn/, accessed
on 5 January 2022) in the vicinity of the

study area.

10 NDVI
This reflects the greenness of an area and may
alter the distribution of soil and hydrological

processes on slopes [39].

The NDVI data were obtained from the
MOD13Q1 product, which were

downloaded from https:
//search.earthdata.nasa.gov/search

(accessed on 3 July 2022) and processed
by the MODIS projection tool [40].
Furthermore, in order to minimize

potential atmospheric effects, the NDVI
data used in the paper are the average

value of the entire year of 2015.

11 Distance to rivers

Rivers affect slope stability in that they can cut
and erode banks, and these actions reshape and
sculpt the landscape. In addition, fluctuations

in the water level greatly affect the
groundwater level of the slope [29].

The data come from the National
Geomatics Center of China

(http://www.ngcc.cn/ngcc/ (accessed
on 20 May 2022), and the Euclidean

distance tool of ArcGIS is used to obtain
the river distance in the study area.

12 Distance to roads
This is considered to be one of the most
important human factors affecting the

occurrence of landslides [7].

The method of obtaining the road
distance raster data is the same that for

obtaining the river distance.

13 Geological Lithology

The mechanical and hydrological properties of
rock masses (such as permeability and friction
angle) differ between lithological units, so this

factor can greatly affect slope stability [37].

Geological maps of the study area were
obtained from the National 1:200,000

Digital Geological Map (Public Edition)
of China [41]. The description of the

lithological formations in the study areas
are shown in Table A2 of Appendix A.

14 Distance to faults
This has an important influence on the

distribution and scale of landslides in the study
area [30].

The data on the locations of faults in the
study area were obtained from the

National 1:200,000 Digital Geological
Map (Public Edition) Spatial Database of
China [41], and The Euclidean distance
tool of ArcGIS was used to obtain the

fault distance in the study area.

http://www.gscloud.cn/home
http://data.cma.cn/
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
http://www.ngcc.cn/ngcc/
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Figure 2. Thematic maps of the Luoding and Xinyi counties: (a) altitude (meter), (b) aspect, (c) dis-
tance to faults (meter), (d) distance to rivers (meter), (e) distance to roads (meter), (f) land use,
(g) lithology, (h) normalized difference vegetation index (NDVI), (i) plan curvature, (j) profile curva-
ture, (k) rainfall (mm/month), (l) surface roughness (so-called standard deviation of the slope—SDS),
(m) slope (◦), (n) topographic wetness index (TWI).
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In addition to the positive samples, the same number of negative samples (nonland-
slide) are randomly collected from the first two study areas on the basis of following some 
basic priorities (for example, low slopes) [11,16]. The heat maps of the correlation matrix 
of the landslide-influencing factors and one output variable for data sets in three study 

Figure 3. Thematic maps of Guigang Province: (a) altitude (meter), (b) aspect, (c) distance to
faults (meter), (d) distance to rivers (meter), (e) distance to roads (meter), (f) land use, (g) lithology,
(h) normalized difference vegetation index (NDVI), (i) plan curvature, (j) profile curvature, (k) rainfall
(mm/month), (l) surface roughness (so-called standard deviation of the slope, SDS), (m) slope (◦),
(n) topographic wetness index (TWI).

In addition to the positive samples, the same number of negative samples (nonland-
slide) are randomly collected from the first two study areas on the basis of following some
basic priorities (for example, low slopes) [11,16]. The heat maps of the correlation matrix of
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the landslide-influencing factors and one output variable for data sets in three study areas
are shown in the Figure A1, which illustrates the correlation between parameters. Accord-
ing to the researches [42–44], the samples in both areas of this study are split into a training
set (80%) and a validation set (20%) for comparison and to validate the performance of
each method.

3. Method
3.1. Overview

The paper achieves the transfer learning with attributes for improving model perfor-
mance in the sample-scarce areas by using a VAEGAN. The method is sketchily shown in
Figure 4. First, a VAEGAN is trained from landslide-influencing factors (positive samples
and negative samples). Second, the factors with the landslide-related attributes of two areas
(LX and GG) will be extracted and reconstructed by a VAE. It is specified in Section 3.4.
Finally, the LSP models will be established by a CNN, and the transferability of the models
will be tested. The thematic maps of landslide-influencing factors and sample production
are made by ArcGIS 10.8 (Environmental Systems Research Institute, Inc., Redlands, CA,
USA). Additionally, the deep-learning framework is accomplished on MATLAB 2022a
(MathWorks Inc., Native, MA, USA).
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3.2. Assessment for Landslide-Influencing Factors

The selection of features is important for the prediction of LSMs [29]. Studies have
shown that many factors can be selected [1]. However, redundant features will interfere
with the recognition ability of a model, reduce the generalizability and increase the opera-
tion time [45]. In order to prove the validity of the selected landslide-influencing factors or
eliminate irrelevant factors to improve the predictive ability of the model, the gain ratio
(GR) technique [46] is adopted in this paper. When the GR of a factor is less than or equal to
zero, the factor is assumed irrelevant to the landslide and should not be used as the input
of the model.

3.3. Convolutional Neural Network

As a nonlinear tool that can extract key attributes from large numbers of data [47], the
CNNs are used as the LSP model and the feature extractor of a VAEGAN in this paper. In LSP,
the CNN input is the landslide-influencing factors in vector format, and the output consists
of the landslide (positive class) and nonlandslide (negative class) labels [9,11,48]. In the TLA
strategy, the feature extractor of the VAEGANs is a CNN without the classification layer.
Furthermore, to avoid numerical problems, the all dimensions of the input data for the LSP
model are normalized to [0, 1] by using Equation (1), before being included in the models.

x rescaled =
x− xmin

xmax − xmin
(1)
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where x is the origin input data and xmax and xmin are the maximum value and the minimum
value of the origin input data, respectively.

3.4. Variational Autoencoder of Generative Adversarial Network
3.4.1. The Training of VAEGANs

In Figure 5, the VAEGAN has two components: a VAE and a GAN, which share the
same generator. Different from regular autoencoders, VAEs apply and learn the probability
distribution on the latent space extracted by the encoder from the input, so that the distribu-
tion of outputs from the decoder matches that of the observed data. Next, the distribution
sampled by the decoder will be encoded to reconstruct new data. Meanwhile, applying a
discriminator in the VAE, which is to distinguish whether the data is real or generated, has
a positive effect on model performance [21]. The loss of the VAEGAN is shown as follows:

L = LVAE + LGAN (2)

with
LVAE =

1
b ∑b

i=1(xi − xi)
2 + [−0.5 · ∑b

i=1

(
1 + log

(
σ2

i

)
− µ2

i − σ2
i

)
] (3)

LGAN = −∑b
i=1(log(Dis(xi)) + log(1− Dis(xi)) + log(1− Dis(xpi))) (4)

where b is the minibatch size, xi is the input data, xi is the reconstructed data decoded
from the prior distribution (z) and µi and σi are the mean and standard deviation (prior
distribution) of the latent space, respectively. xpi is the reconstructed data decoded from
the normal distribution (zp). Dis(xi), Dis(xi) and Dis(xpi) comprise the output of the
discriminator when the input is the origin data xi, the reconstructed data xi and the
reconstructed data decoded from the normal distribution xpi, respectively.
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3.4.2. Data Reconstruction and Transfer Learning with Attributes

Reconstructing data with attributes can make data with specified knowledge, thereby
increasing the commonality and representativity of samples [20]. Specifically, a VAEGAN
was pretrained by using the data set of LX and the one of GG. Additionally, the latent vector
representations of each data set will be extracted by the pretrained VAEGAN. That is, for
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each attribute, the mean vectors of the latent space of landslide-influencing factors in each
area are computed. Next, the attributes that existed only in a study area (e.g., GG) will be
obtained by computing the difference between the mean vectors (operation [a] in Figure 6).
Finally, the data containing the attributes of two areas will be obtained by reconstructing
the vector, which is the integrated result of the attribute vector (with attributes) and the
latent space of LX (without attributes) (operation [b] in Figure 6). The reconstructed data
contain the attributes of the landslide-influencing factors in GG and LX, which makes the
LSP model learn the attributes beyond one study area. Additionally, the TLA will then be
achieved by fine-tuning the model pretrained by the reconstructing data with the labeled
samples of GG (Figure 7).
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3.5. Evaluators of Model Performance

To investigate the effectiveness of the TLAs strategy, the measures, including accuracy,
recall, area under the receiver-operating characteristic (AUROC), precision and the F1-score,
are introduced, and their mathematical calculation are listed as follows:

Accuray =
TP + TN

TP + FP + TN + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− score =
2× TP

2× TP + FP + FN
(8)

In addition, the landslide-frequency ratio (FR) can be used to assess the model per-
formance even if the landslide susceptibility zones in LSM are varied [29]. The FR is
mathematically expressed as:

FR =
LAi/TLA

Ai/TA
(9)

where the landslide area of each susceptibility zone is LAi, the total landslide area in the
study area is TLA, the area of each susceptibility zone is Ai and the total area of the study
area is TA. The FR index also considers the relationship between the susceptibility zone in
different grades and the landslide area, which indicates the reasonableness of the model to
predict the susceptibility zone.

4. Results
4.1. Importance Analysis of Factors

The influencing degree of factors can be reflected by the GR, and the result is shown
in Figure 8.
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On the one hand, in LX, the topography factors (e.g., SDS and slope) are more impor-
tant for landslides in this study area than the geological factors (e.g., distance from faults),
hydrological factors (e.g., TWI) and environmental factors (e.g., rainfall and land use) are.

On the other hand, in GG, the topography factors (e.g., plan and profile curvature) are
more important for landslides than the environmental factors (e.g., rainfall and land use),
geological factors (e.g., distance from faults) and hydrological factors (e.g., TWI) are.

In general, the influential extent of these landslide-influencing factors is different in
two areas, but the topography factors are most important in the two areas. For example,
the SDS and the plan curvature had the highest impact on landslides in LX (0.113) and in
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GG (0.056), respectively. Thus, all landslide-influencing factors are considered to have a
positive impact on landslides.

4.2. Evaluation of Supervised Learning

The samples of each study area are randomly divided into 80% and 20% for the
training and the validation of the CNN models, respectively. According to Bayesian
optimization [49], the best architecture of a CNN features three convolutional layers, no
pooling layer and a piecewise decaying learning-rate strategy (Table 2 and Figure 9). This
is because the function of the pooling layer is to extract key features from a large amount of
information. However, for LSP, when the input dimension is small, adding pooling layers
may cause key features to be lost, leading to the opposite of what is expected. For the
selection of the learning rate, piecewise decay is better than constant. This indicates that at
the later stage of the model iteration, using a small step size is beneficial to search for the
smaller value in the loss function.

Table 2. The best-selected parameters of CNNs.

Group Parameters Search Space Best Value

CNN architecture Convolution kernel number [1, 5] 3
Max pool layer number [0, 5] 0

CNN
hyperparameters

Convolution kernel size [1, 6] 6, 1, 4
Convolution kernel channel [8, 16] 16, 32, 64

Max pool size [0, 5] 0
Dropout rate [0.1, 0.7] 0.2249

Training options

Initial learning rate [0.001, 1] 0.0059
Learn rate schedule piecewise decay, constant piecewise decay

Learn rate drop period [1, 10] 2
Learn rate drop factor [0.1 0.9] 0.1462

minibatch size [6, 30] 30
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Table 3 is the prediction results of the CNNs with best hyperparameters. The model
performance is better when it is trained with the data set of LX. Especially in the AUROC,
the model trained with the data set of LX performs better (about 6%) than the one trained
with GG. This is because there are sufficient samples in LX. Figure 10 shows the LSMs of two
study areas. Additionally, the natural break classification [7] was used to classify landslide
susceptibility indices (probability) as very low, low, moderate, high and very high.



Land 2023, 12, 525 12 of 26

Table 3. LSM model performance comparison in LX and GG (supervised learning).

Study Area Model
Evaluators

AUROC Accuracy Precision Recall F1-Score Mean

LX
CNN

0.863 0.771 0.788 0.761 0.775 0.792
GG 0.802 0.735 0.833 0.714 0.769 0.771

Note: Bold font is the best case.

Land 2023, 12, x FOR PEER REVIEW 13 of 28 
 

Table 3. LSM model performance comparison in LX and GG (supervised learning). 

Study Area Model 
Evaluators 

AUROC Accuracy Precision Recall F1-Score Mean 
LX 

CNN 
0.863 0.771 0.788 0.761 0.775 0.792 

GG 0.802 0.735 0.833 0.714 0.769 0.771 
Note: Bold font is the best case. 

 
Figure 10. LSMs generated by CNNs. (a) LX and (b) GG. SL = supervised learning. 

4.3. Influence of Transfer Learning with Attribute Strategy on Model Performance 
To evaluate the influence of the TLA on model performance, the experiments were 

implemented, and the results are listed in Table 4. The situation of the training and testing 
data set is on the left, and the mean value of evaluators (accuracy, AUROC, recall, preci-
sion, F1-score) is on the right. No transferring skills are applied in Experiment A; in Ex-
periment B, the GG model is pretrained by the LX data set and fine-tuned with GG-labeled 
samples. In Experiment C, the GG model is pretrained by the data set with attributes (LXതതതത), 
that are reconstructed by VANs and then fine-tuned with GG-labeled samples. 

It can be seen from Experiments A and B that the model performance improved by 
the TL is inappreciable. It can be seen more clearly from Figure 11a that the model perfor-
mance actually decreased in AUROC when the TL strategy is applied. Moreover, in the 
early stage of training (Figure 11b), the loss of the TL strategy is larger than the SL. These 
results indicate that the sample attributes of the two study areas are quite different and 
that the model pretrained by LX is not suitable for GG. However, in Experiment C, the 
model performance is significantly improved by pretraining the model with the data, 
which were reconstructed by a VAEGAN with a CNN feature extractor. The TLA strategy 
increased the mean value of evaluators by about 7% compared with the SL and the TL. 
Meanwhile, in GG, the convergence loss of the TLA is lower than that of the TL and the 
SL, which indicates that the reconstructed data, LXതതതത, contain the representative of both 
areas, and the performance of the LSP models in sample-scarce areas can be improved by 
using the TLA. 

Table 4. Transferring ability comparison of different methods (LX to GG). 

Training Testing Experiment  
Model 
CNN 

LX LX A (SL) 0.771 
LX & GG 

GG 
B (TL) 0.772 

LXതതതത & GG C (CNN-VAEGAN) 0.844 
Note: the scores in the table represent the mean value of evaluators; boldface indicates the best case. 

Figure 10. LSMs generated by CNNs. (a) LX and (b) GG. SL = supervised learning.

4.3. Influence of Transfer Learning with Attribute Strategy on Model Performance

To evaluate the influence of the TLA on model performance, the experiments were
implemented, and the results are listed in Table 4. The situation of the training and testing
data set is on the left, and the mean value of evaluators (accuracy, AUROC, recall, precision,
F1-score) is on the right. No transferring skills are applied in Experiment A; in Experiment
B, the GG model is pretrained by the LX data set and fine-tuned with GG-labeled samples.
In Experiment C, the GG model is pretrained by the data set with attributes (LX), that are
reconstructed by VANs and then fine-tuned with GG-labeled samples.

Table 4. Transferring ability comparison of different methods (LX to GG).

Training Testing Experiment
Model

CNN

LX LX A (SL) 0.771
LX & GG

GG
B (TL) 0.772

LX & GG C (CNN-VAEGAN) 0.844
Note: the scores in the table represent the mean value of evaluators; boldface indicates the best case.

It can be seen from Experiments A and B that the model performance improved by the
TL is inappreciable. It can be seen more clearly from Figure 11a that the model performance
actually decreased in AUROC when the TL strategy is applied. Moreover, in the early
stage of training (Figure 11b), the loss of the TL strategy is larger than the SL. These results
indicate that the sample attributes of the two study areas are quite different and that the
model pretrained by LX is not suitable for GG. However, in Experiment C, the model
performance is significantly improved by pretraining the model with the data, which were
reconstructed by a VAEGAN with a CNN feature extractor. The TLA strategy increased
the mean value of evaluators by about 7% compared with the SL and the TL. Meanwhile,
in GG, the convergence loss of the TLA is lower than that of the TL and the SL, which
indicates that the reconstructed data, LX, contain the representative of both areas, and the
performance of the LSP models in sample-scarce areas can be improved by using the TLA.
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attributes of the data set in LX and the data set in target domain (e.g., GG).

5. Discussion

According to the above results, the prediction accuracy of the LSP models was im-
proved by increasing the attribute similarity of the data sets by using the TLA strategy. In
order to further explore the transferability of the TLA, the experiments were conducted
with different combinations of the LSP models and the feature extractors in the VAEGAN.
Additionally, another study area has been employed to assess the transferability of the TLA
strategy, which is shown in the following discussion.

5.1. Comparison of LSP Model

The improvement in model performance in the previous section proves the effec-
tiveness of CNN and TLA strategies in establishing LSP models with limited samples.
However, different deep-learning models have different effects on evaluators in LSP [50].
Therefore, in order to validate the CNN framework proposed in this paper, the GRU model
and the BiLSTM model are added. The hyperparameters and training parameters of these
models are obtained by using the Bayesian optimization algorithm.

Table 5 shows the results of LX and GG in supervised learning. It can be seen that all
the performance values of the models were decreased in sample-scarce areas, especially the
GRU. In the comparisons, the BiLSTM model achieves excellent results in recall and F1-
score. Additionally, the CNN is better than the others in AUROC, accuracy and precision,
which makes the CNN the best in the mean value of the evaluators.

Table 5. LSM models performance comparison in LX and GG (supervised learning).

Study Area Model
Evaluators

AUROC Accuracy Precision Recall F1-Score Mean

LX
CNN 0.863 0.771 0.788 0.761 0.775 0.792
GRU 0.836 0.771 0.756 0.694 0.724 0.756

BiLSTM 0.832 0.753 0.709 0.859 0.777 0.786

GG
CNN 0.802 0.735 0.833 0.714 0.769 0.771
GRU 0.784 0.559 0.800 0.381 0.516 0.608

BiLSTM 0.714 0.706 0.739 0.810 0.773 0.748
Note: Boldface indicates the best case.

5.2. Evaluation and Comparison of the Model Transferability

To further explore the performance of the model with the strategy of TLA, this paper
proposes the following models: GRU-VAEGAN and BiLSTM-VAEGAN, for example,
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operation [a] in Figure 5, replace the feature extractors in a VAEGAN from CNN to GRU
(experiment D) and BiLSTM (experiment E), respectively. Next, five groups of experiments
were conducted.

Table 6 and Figure 12 show the mean values of the above evaluators and ROC curves.
When the TLA techniques (in Experiments C, D and E) were used, the performance values
of the models are improved, especially the CNN. The best ROC curve of the TLA reaches
the highest, 0.844, by comparing those with the SL (0.771) and the TL (0.772).

Table 6. Comparison of the transferability of different models (LX to GG).

Training Testing Experiment
Models

CNN GRU BiLSTM

GG

GG

A (SL) 0.771 0.608 0.748
LX & GG B (TL) 0.772 0.710 0.770
LX & GG C (CNN-VAEGAN) 0.844 0.698 0.767
LX & GG D (GRU-VAEGAN) 0.783 0.689 0.746
LX & GG E (BiLSTM-VAEGAN) 0.793 0.708 0.783

Note: the scores in the table represent the mean value of evaluators; boldface indicates the best case.
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the bracket, such as (CNN, GRU), represent that the decoder of VAEGAN is CNN and that of LSM
models is GRU, respectively.

The loss during training is one of the evaluators reflecting the quality of the data
set [19]. The training results are shown in Figure 13. For the LSP models, although GRU
converges the fastest, the CNN model has the lowest converging loss. Additionally, BiLSTM
is less stable than the others. For transferability (e.g., Figure 13a), the loss is much less in
the early training stage when the TLA strategy is used, especially when a CNN is used as
VAEGAN feature extractor. This indicates that the TLA technique is effective.
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Figure 14 shows the LSMs in GG predicted by models. In Figure 14h,k,n, most grids
in the study area are classified as in a very high susceptibility zone, which is inappropriate.
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It is indicated that the GRU is underfitting when the training samples are inadequate. The
model performance seems to be improved by the TLA strategy. In fact, most samples of
the testing data set are predicted as the “landslide”, increasing the F1-score and the mean
value of evaluators. However, the AUROC and accuracy are poor. This conclusion also
can be proved from another aspect. For the data set of the target domain (GG), when
reconstructing the data by using a GRU-VAEGAN, the reconstructed data contain little
attribute similarity and can even be seen as the noise and can decrease the effect of TLA
strategy because of data-set bias. This indicates that the GRU is not a suitable feature
extractor of a VAEGAN. In Figure 13a, in case TLA (GRU, CNN), at the beginning, the loss
is higher than the losses of the other cases, indicating that the attribute similarity between
the data set used to pretrain the model and the one of target domain is minor. The loss
converges to a lower value because of the strong fitting ability of the CNN.
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The LSMs of well-trained models should have higher landslide-density values (fre-
quency ratios) in very high susceptibility zones than in other ones [29]. To qualitatively
evaluate the model performance values, the FR method was used; the FR values in the
high and very high susceptibility zones of each situation are shown in Figure 15. For
the LSP models, the high and very high landslide susceptibility zones predicted by the
CNN contained 75% of the historical landslides but only accounted for about 30% of the
total area, reaching the highest FR value by comparing them with GRU and BiLSTM. For
transferability, Figure 15b–d shows the FRs when the LSP model is the CNN, GRU and
BiLSTM, respectively. Additionally, it can be concluded that compared with the SL and the
TL, the TLA strategy can significantly improve the performance of an LSP model.
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5.3. Application of Transfer Learning with Attribute in Other Study Area

In order to further investigate the transferability of the TLA strategy between the areas
with huge differences, Zigui County, Hubei Province, China, was added. Zigui County is
located in the Three Gorges Reservoir Area (TGRA) of the Yangtze River Basin. Data on
409 historical landslides, as shown in Figure 16, were obtained from the landslide inventory.
Additionally, the thematic maps of Zigui County can be found in Figure A2 of Appendix A.
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The performed experiments are consistent with the previous ones, and the results are
shown in Tables 7 and 8. The AUROC is shown in Figure 17. In the SL, the CNN achieves
the best results in evaluators. However, the CNN is also more sensitive to the data set with
or without the attributes than the others. In Table 8, when the TL was applied, only the
CNN model performance values decrease. This is because the distance between the two
places is large, so the attributes of landslide-influencing factors are different (e.g., lithology
and rainfall). Applying the TL strategy between the data sets with huge differences will
reduce the model performance because the differences will be considered as noise for model
training. However, the reconstructed data contain the attributes of both study areas; thus,
the model performance values are increased when applying the TLA strategy.

Table 7. LSM models performance comparison in ZG (supervised learning).

Study Area Model
Evaluators

AUROC Accuracy Precision Recall F1-Score Mean

ZG
CNN 0.800 0.747 0.704 0.852 0.771 0.775
GRU 0.729 0.691 0.663 0.777 0.716 0.715

BiLSTM 0.754 0.710 0.689 0.765 0.725 0.729
Note: Boldface indicates the best case.

Table 8. Comparison of transferability of different models (LX to ZG).

Training Testing Experiment
Models

CNN GRU BiLSTM

ZG

ZG

A (Supervised
Learning) 0.775 0.715 0.729

LX & ZG B (TL) 0.753 0.716 0.734
LX & ZG C (CNN-VAEGAN) 0.818 0.730 0.731
LX & ZG D (GRU-VAEGAN) 0.794 0.708 0.674
LX & ZG E (BiLSTM-VAEGAN) 0.804 0.735 0.741

Note: the scores in the table represent the mean value of evaluators; boldface indicates the best case.
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The Figure 18 shows the training process of the models. As before, the BiLSTM takes
longer convergence time and is less stable compared with the CNN and GRU. Furthermore,
when the TLA technique is used, the training progress is more efficient and yields a lower
convergence loss.



Land 2023, 12, 525 18 of 26Land 2023, 12, x FOR PEER REVIEW 19 of 28 
 

 
Figure 18. Training efficiency of (a) CNN, (b) GRU, (c) BiLSTM. 

The LSMs of ZG predicted by the models are shown in Figure A3 of Appendix A. It 
can be seen that the LSMs predicted by GRU and BiLSTM contained more high and very 
high susceptibility zones compared to the CNN. Figure 19 shows the FRs in different sit-
uations, and this information helps to more clearly evaluate the rationality of these LSMs 
and the transferability of these techniques (TL and TLA). The model performance is im-
proved by using the TLA, especially by pretraining the LSP models (the CNN) with the 
data reconstructed by the CNN-VAEGAN, indicating that the TLA strategy has strong 
compatibility regardless of the far distance between ZG and LX. 

 
Figure 19. FR values of LSMs (ZG) in high and very high susceptibility zones: (a) comparison in LSP 
model, (b) comparison in transferability of CNN, (c) comparison in transferability of GRU and (d) 
comparison in transferability of BiLSTM. 

The evaluation of the models showed that the proposed TLA strategy can improve 
the performance of the LSP model in both GG and ZG. When the TLA strategy was ap-
plied, the evaluators of all the models were improved. Moreover, different feature extrac-
tor of the VAEGAN significantly affected the transferability in LSP. The reconstructed 
data contain more similar attributes of both study areas and improve the transferability 
when the feature extractor of the VAEGAN is a CNN, which facilitates efficient and reli-
able prediction in the sample-scarce area. 

5.4. Findings and Limitations of this Study 
At present, there are also some outstanding studies that have contributed to improv-

ing model performance in landslide susceptibility mapping [51], building damage assess-
ment after earthquakes [52] and flood assessment [53] by applying the TL strategy. Unlike 
these studies, which directly gather knowledge from previous, similar situations (known 
as case-based reasoning) or select the data from a source area that has a similar 
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The LSMs of ZG predicted by the models are shown in Figure A3 of Appendix A.
It can be seen that the LSMs predicted by GRU and BiLSTM contained more high and
very high susceptibility zones compared to the CNN. Figure 19 shows the FRs in different
situations, and this information helps to more clearly evaluate the rationality of these
LSMs and the transferability of these techniques (TL and TLA). The model performance
is improved by using the TLA, especially by pretraining the LSP models (the CNN) with
the data reconstructed by the CNN-VAEGAN, indicating that the TLA strategy has strong
compatibility regardless of the far distance between ZG and LX.
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(d) comparison in transferability of BiLSTM.

The evaluation of the models showed that the proposed TLA strategy can improve the
performance of the LSP model in both GG and ZG. When the TLA strategy was applied,
the evaluators of all the models were improved. Moreover, different feature extractor of the
VAEGAN significantly affected the transferability in LSP. The reconstructed data contain
more similar attributes of both study areas and improve the transferability when the feature
extractor of the VAEGAN is a CNN, which facilitates efficient and reliable prediction in the
sample-scarce area.

5.4. Findings and Limitations of This Study

At present, there are also some outstanding studies that have contributed to improving
model performance in landslide susceptibility mapping [51], building damage assessment
after earthquakes [52] and flood assessment [53] by applying the TL strategy. Unlike these
studies, which directly gather knowledge from previous, similar situations (known as
case-based reasoning) or select the data from a source area that has a similar distribution
to the target area (known as domain adaptation) to complete the TL strategy, this study
proposes the TLA strategy, which increases the attribute similarity between the source
and target domain data sets. The TLA strategy achieves this by reconstructing the data
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of the source area according to the attributes of both the source area and the target area.
Compared with case-based reasoning, the TLA strategy improves model performance
in scarce-sample areas and achieves better prediction results. The goals of both domain
adaptation and the TLA are to enhance model performance by using the samples that are
more similar to the target domain distribution. However, the domain adaptation focuses
more attention on selecting the similar distribution data from source domain, while the
proposed TLA strategy reconstructs the source domain samples by using the VAEGAN to
generate the data with attributes similar to those of the target domain. The comparisons of
these two strategies in sample-scare areas deserve further investigation in future research.

To further explore the effect of sample size on the TLA strategy, several experiments
were conducted in the GG and ZG study areas.

The GG study areas were assumed to have only 11, 22, 33, 44, 55, 66, 77 and 88 samples,
separately. In each case, the samples were randomly selected from the landslide inventory,
and the training and test data sets were divided in the ratio of 4:1. As shown in Figure 20,
the model performance values are improved by increasing the number of training samples.
Additionally, the LSP model yielded the best performance with 22 samples by applying the
TLA strategy, compared to the SL and the TL.
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Similarly, the ZG study areas were assumed to have only 51, 102, 153, 204, 255, 306,
357 and 409 samples, separately. As shown in Figure 21, the model performance was lower
when the TL strategy was applied with a sample size of 102, compared to the SL. However,
the model performance reached 0.809 at the mean value of evaluators by applying the TLA
strategy, which exceeded the performance of the SL (0.796) and TL (0.734) strategies.
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This study found out that the transferability of the TLA is also affected by the distance
between the study areas. Compared to GG, the application of the TL strategy in ZG is
less effective than the SL owing to the increase in the distance between the source and
target domains, resulting in a greater difference in the attribute similarity of the landslide-
influencing factors. The smaller the distance between the study areas (e.g., LX and GG), the
more obviously the TLA strategy can improve the performance of the model. Although
the increase in the distance reduces the similarity between the data sets (e.g., LX and ZG),
the TLA strategy can still to some extent improve the performance of the model, which
demonstrates the robustness of the proposed TLA strategy.

In summary, this parametric study shows that to obtain a reasonable landslide spatial
model by using the TLA strategy, at least 55 and 102 properly selected sample points are
required for the GG and ZG test data sets, respectively. These sample points resulted in a
mean evaluator value of 0.762 and 0.809 for the GG and ZG test data sets, respectively.

Meanwhile, the proposed TLA also has the following limitations:

1. As the landslide prediction model in this study is limited to a deep-learning frame-
work, hybrid deep-learning methods (e.g., hybrid deep-learning frameworks, hybrid
deep-learning–machine-learning frameworks) are worth trying in order to improve
the reliability and accuracy of LSMs.

2. Regarding the lack of considerations of the landslide range and spatial information,
the landslide inventory in this paper consists of single points, which limits the input
of LSP models limited to the 1D sequence format. The prospective research can
focus on combining the information of remote-sensing images and explore the feature
processing ability of CNNs in high-dimensional (landslide pixel spatial) data.

6. Conclusions

For the first time, the present study proposed a TLA strategy that was based on the
VAEGAN models (CNN-VAEGAN, GRU-VAEGAN and BiLSTM-VAEGAN) in LSP, which
can facilitate and expedite the training progress with limited landslide samples. The main
conclusions were as follows:

1. The CNN frameworks were not only an excellent selection for the LSP model but also
a worthwhile choice for a feature extractor for a VAEGAN in TLAs.

2. For the LSP in the SL strategy, the performance of the CNN was more reliable than that
of the BiLSTM and GRU, which achieved the best performance in the mean value of
evaluators (AUROC, accuracy, precision, recall, F1-score and FR) in three study areas.

3. For the transferability, the TLAs strategy developed in this research yielded better
results in performance of landslide prediction models in sample-scarce areas, which
surpassed the TL, reflecting the practicability and advantage of the methods proposed
in this paper.

Author Contributions: M.L. contributed to the conceptualization, methodology, investigation, origi-
nal draft preparation and data curation of the paper. S.T. contributed to the investigation, original
draft preparation and supervision of the paper. G.C. contributed to the investigation, review and
editing of the paper. D.B. contributed to the review of the paper. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The landslide-influencing factors, thematic maps of the study areas and
LSMs were extracted and processed by ArcGIS 10.8. The paper used MATLAB 2022a to reconstruct the
data with attributes. The main code is shown in the following link: https://github.com/linmmsbaby/
TLAs (accessed on 18 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/linmmsbaby/TLAs
https://github.com/linmmsbaby/TLAs


Land 2023, 12, 525 21 of 26

Appendix A

Table A1. Description of the landslides in the study area.

Study Area Landslide Type Causation

LX

Mostly, the landslides are the small-
and medium-scale falls.
Additionally, there are the
small-scale creeps and earth flows.

Human engineering activities (e.g., house
building, road construction, canal construction
and mining) and heavy rainfall.

GG
Mostly, the landslides are the
medium- and large-scale falls.
There are also small-scale creeps.

Landslides of soil slopes are caused by the
erosion of concave and convex banks
during the rainy season. The geology and
topography (e.g., isolated peaks, tectonic
fissures and solution fissures development
section with poor vegetation development)
are the main reasons for the landslides on
rocky slopes.

ZG

Mostly, the landslides are the
medium- and large-scale creeps.
There are also small-scale falls and
earth flows.

The main reason for the creep is geological
(the rocks and soils are multidimensional
gravelly soils, with a loose structure and
easy permeability). Additionally, the falls
are related mainly to heavy rainfall and
human activities such as mining.

Note: The scale (×104 m3) in landslide: large scale (100 to 1000), medium scale (10 to 100) and small scale (less
than 10); the fall: large scale (10 to 100), medium scale (1 to 10) and small scale (less than 1); earth flow: large scale
(20 to 50), medium scale (2 to 20) and small scale (less than 2).

Table A2. Description of the lithological formations in the study areas.

# Symbol Unit Name Description

1 J1 Ziliujing Formation, Xintiangou Formation Purple-red mudstone, sandstone, siltstone, conglomerate,
shale and mudstone.

2 J3 Suining Formation Red mudstone (or siltstone) with interbedded
conglomerate and sandstone clasts.

29 T3 Xiaoyunwushan Formation
Thick beds of quartz sandstone, conglomerate sandstone
with interbedded gravel, sand and gravel, carbonaceous
shale, coal seams and thin beds of coal.

31 P1 Nandan Formation, Maping Formation Grayish-white clayey siltstone, microcrystalline limestone,
bioclastic limestone and dolomitic limestone.

32 P2−3
Heshan-longtan Formation, Sidazhai
Formation, Gufeng Formation, Xixia Formation

Graywacke, mudstone, sandstone, siliceous rock, shale
with interbedded coal seams.

33 J3 Shaximiao Formation, Qianfoya Formation

The lower part is dominated by fine-grained sandstone
and shale with interbedded bands of mudstone and the
bottom contains fine gravel. The upper part is
characterized by alternating layers of mudstone and
conglomeratic sandstone.

34 Nh Daganshan Formation

Quartz-muscovite schist, muscovite-quartz schist,
quartzite interbedded with carbonaceous phyllite, siliceous
rock, shale, tuffaceous shale and layers of pyrite, with the
base being quartzite interbedded with gravel.

35 Z Doushantuo Formation, Dengying Formation

Carbonaceous or phosphorite-siliceous dolomitic
limestone and shale interbedded with carbonaceous shale
and siliceous layers, and middle to thick-bedded to
massive carbonate rock.

36 γmiPt3⊥ Paleozoic mixed rock Two-mica granite derived from the original mixed rock.

38 Ar3
Kongling group (including Xiaoyicun
Formation and Gucunping Formation)

The lower group consists mainly of black biotite schist,
while the upper group is a combination of graphitic schist,
marble, calcium-silicate rock and quartzite.

39 O
Nanjingguan Formation, Honghuayuan
Formation, Dawan Formation, Guniu Formation,
Miaopo Formation, Baota Formation

Composed mainly of bioclastic limestone, limestone,
nodular fossiliferous limestone, calcareous shale and shale
with interbedded shale.

40 ∈3 Shuishi Formation Complex rhythmic layer of altered sandstone and shale
and carbonaceous shale.

41 S1−2
Xintan Formation, Luoreping Formation,
Shamao Formation

The main composition consists of yellow-green and
gray-green thin layers of fine-grained sandy clay (siltstone)
and muddy sandstone, with small amounts of fine
sandstone and greywacke, mudstone interbedded. The
sandstone increases in thickness in the upper part.
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Table A2. Cont.

# Symbol Unit Name Description

44 D2
Guitou group (including Yangxi Formation and
Laohutou Formation)

Lower part consists of gravel, sand and gravel interbedded
with sandstone, siltstone; upper part consists of quartz-rich
gravel, conglomerate with gravel and sand, quartz
sandstone, siltstone and siltstone with shale.

45 D3
Maozifeng Formation, Changtuduo Formation,
Dasai Formation

Calcareous siltstone, siltstone with sandstone beds,
bioclastic limestone and sandstone with shale beds.

46 γπk2⊥ Late Cretaceous granodiorite Granite porphyry.

47 γO2⊥ Middle Ordovician granite Granular black mica granite with coarse and
medium-sized grains.

48 K2 Sanyajiang Formation
Volcanic breccia, sandstone, siltstone, tuffaceous
greywacke, rhyolite tuff, rhyolite, andesitic tuffaceous
greywacke, andesite, pumice and lava flows.

49 ψoPt3⊥ Paleozoic hornblende rock Splaying Schistose Gneiss.

50 C1
Shidengzi Formation, Ceshui Formation,
Xinmenqiao Formation, Dasaiba Formation

Thick layer of limestone, interbedded limestone, shale,
sandstone, limestone, carbonate limestone, coal seams,
shale-interbedded sandy mudstone and shale.

51 C1 Ceshui Formation

The main composition is quartz sandstone and fine
sandstone, interbedded with black shale and
non-smoldering coal beds. In some local areas there are
interbedded limestones and mudstones.

52 Qh∠f⊥ Dawanzhen Formation Sand and gravel interbedded with clayey sand.

53 Nh Liantuo Formation, Nantuo Formation
Mainly grey-white, grey-green, purple-red sandstone and
conglomerate, with conglomerate at the base; grey-green,
purple-red to conglomeratic rock.

54 JxQb
Yunkai group (including Fengdongkou
Formation, Lankeng Formation and
Shawanping Formation)

A group of metamorphic rocks containing a complex of
metamorphic volcanic rocks, metamorphic iron and
phosphate mineral layers.
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