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Abstract: Sustainable agricultural landscape management needs reliable and accurate soil maps and
updated geospatial soil information. Recently, machine learning (ML) models have commonly been
used in digital soil mapping, together with limited data, for various types of landscapes. In this study,
we tested linear and nonlinear ML models in predicting and mapping soil properties in an agricultural
lowland landscape of Lombardy region, Italy. We further evaluated the ability of an ensemble learning
model, based on a stacking approach, to predict the spatial variation of soil properties, such as sand,
silt, and clay contents, soil organic carbon content, pH, and topsoil depth. Therefore, we combined
the predictions of the base learners (ML models) with two meta-learners. Prediction accuracies
were assessed using a nested cross-validation procedure. Nonetheless, the nonlinear single models
generally performed well, with RF having the best results; the stacking models did not outperform
all the individual base learners. The most important topographic predictors of the soil properties
were vertical distance to channel network and channel network base level. The results yield valuable
information for sustainable land use in an area with a particular soil water cycle, as well as for
future climate and socioeconomic changes influencing water content, soil pollution dynamics, and
food security.

Keywords: digital soil mapping; ensemble machine learning; stacking model; terrain attributes;
Lombardy lowland

1. Introduction

The soil is the most crucial part of our ecosystem and its functioning in terms of crop
production, filtering of water, hosting and maintaining soil biodiversity, atmospheric carbon
sequestration and storage, as well as biomass production. Soil functions, in turn, depend
on soil properties, such as water holding capacity, soil available nutrients, soil organic
carbon stock, etc., that can be portrayed by soil maps [1]. Today, precise soil information
with high spatial resolution is in great demand by various stakeholders, including soil
scientists, land use planners, environmental managers, and farmland managers. Traditional
soil surveys manually delineate discrete, vector-type soil units that are difficult to update
since there is a need to repeat the entire production procedure that, in part, is subjective
and based on expert knowledge [2]. This traditional method also requires numerous
soil samples, and it is therefore expensive and time-consuming. Even though classical
soil surveys are a fundamental prerequisite for digital soil mapping (DSM), the latter
allows for the overcoming of some limitations of the classical methods using available,
spatially distributed auxiliary environmental information and Geographical Information
Systems (GIS).
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Generally, DSM estimates the properties of soil by analyzing the relationships between
soil characteristics and the environmental variables, using geostatistical and machine
learning (ML) models [3,4]. The available environmental variables play an important role
in predicting soil properties across different landscapes, especially in complex terrain. Soil
scientists identify topography as one of the main pedogenic factors, which significantly
influences the spatial distribution of soil properties (e.g., [5]). Studies like Grimm et al. [6],
Seibert et al. [7], Tu et al. [8], or Song et al. [9] showed that exclusively using terrain attributes
yields the potential to effectively map the spatial distribution of soil properties. However,
most agricultural lowland areas often show weak correlations between the input variables
and specific soil properties [10,11]. These low performances in lowland areas are due to the
landscape being characterized by a low-gradient relief, and thus, an accurate prediction of
soil properties is quite challenging. To tackle this challenge, different modelling approaches
are generally compared to choose a single ‘best’ model or an ‘optimal’ set of models to
improve prediction accuracy by reducing the uncertainties of predicted values.

The advantage of ML algorithms is related to the ability to quantify the high-dimensional
and nonlinear relationships between soil properties and environmental variables over di-
verse soil landscapes [12]. The application of ML techniques in DSM helps to improve the
prediction of soil properties, hereby overcoming some of the limitations of conventional soil
mapping approaches [13,14]. ML is also suitable in DSM if data availability is limited [15].
Several studies have applied novel ML techniques in DSM to predict the spatial distribution
of soil properties and types [12,16,17]. Some of the most common ML models used in DSM
are support vector machines, multivariate regressions, regression trees, Cubist, random
forest, and gradient boosting machines [18–20]. The emergence of different ML models
has encouraged model comparison studies in which different models might generate dis-
tinctly different digital soil maps, despite using the same input data [12,14,16]. As a result
of this, it is advisable, for the best practice in DSM, to compare and evaluate different
model techniques [12] and choose the best performing one [16,21]. However, selecting the
best performing model could be problematic because each model has its own pros and
cons in specific circumstances. Thus, one model could perform better than others in a
certain situation and area [22,23]. Therefore, another approach that helps to combine the
information and knowledge acquired from single models is ensemble modelling [24,25].
Ensemble models result in potentially better and more stable predictions, in comparison
to predictions made using single ML models. Moreover, they reduce the risk of choosing
the “wrong” model [26,27]. Random forest, which applies a bagging method, and gra-
dient boosting machines are common ensemble learning ML algorithms that are used in
DSM [28]. However, these ensemble models were built using a single type of predictive
learner (homogenous ensemble learning), and less attention has been paid to modelling
approaches that combine multiple types of ML models as base learners (heterogenous
ensemble learning) within DSM studies. Model averaging is another ensemble technique
that was proposed [29–32].

Stacked generalization is a type of ensemble learning and model averaging approach.
It involves training a new learning algorithm to combine the predictions of several base
learners. Several trained base learners are aggregated into a combined learner using
a combiner algorithm called the ‘meta-learner’. The latter is based on the hypothesis
that the combined model has a better predictive performance [33,34]. Here, the meta-
learner evaluates the predictive performance of the individual base learners and builds
an optimal combination [35]. This approach accounts for the differences in the predictive
performance of the base learners [36]. Unlike other ensemble models, the stacking approach
has rarely been explored in DSM; nevertheless, this approach often out-performs individual
models [37,38].

Ensemble learning with stacked generalization combines the results from multiple ML
algorithms to further develop an integrated mapping output, with relatively stable perfor-
mance. To the knowledge of the authors, this approach is relatively uncommon in DSM, espe-
cially for lowland areas. First attempts were presented by Taghizadeh-Mehrjardi et al. [37,38]
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who used a stacked generalization of ensemble ML models to predict SOC content, and a
super learner for other soil properties; Zhang et al. [39] also used this approach to predict
soil pH. Hence, the objective of this study is to evaluate and compare a stacking ensemble
model approach with five ML models (base learners) to predict and map the spatial dis-
tribution of different soil properties, such as texture (sand, silt, clay content), soil organic
carbon (SOC), pH, and topsoil depth, in an agricultural lowland area of Lombardy region,
Italy. Diagnostic tools for the interpretation of these black-box models were applied to
assess their plausibility, as well as similarities and differences, in the modelled relationships,
which reflect the related model’s abilities and biases.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1) covers approximately 314 km2 and is located about 15 km
southwest of the city of Milan, in the Lombardy region, close to the border with the
Piedmont region. The area is part of the Ticino River valley and the elevation ranges
between 64 m.a.s.l, in the southern part of the Ticino River, to 135 m in the northern parts
(Figure 2). The Ticino River is the only natural drainage system in the investigated region.
The area, in fact, is characterized by a strong anthropogenic influence and is constantly
evolving. The area is intensively cultivated, and the main crops are maize and rice, irrigated
through artificial canals. The land use and land management practices date back to the
eleventh century with the construction of irrigation channels [40] and the reuse of water
along the fluvial terrace cascade of the Ticino River, representing, for centuries, an example
of a sustainable and effective reuse of irrigation water.
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Figure 1. General overview of Italy and focus on the study area between Abbiategrasso and Vigevano
in Pavia Province.

The area is mainly flat, except for the river terraces that have been incised by the
Ticino River, generating escarpments with maximum inclinations of 30 degrees. The soil
shows a sandy loam texture, developed on Quaternary alluvial deposits. Particularly, the
area is characterized by Pleistocene fluvial and fluvio-glacial, gravelly to sandy sediments
deposited in the last (i.e., Würm) glaciation, as well as more recent Holocene fluvial deposits,
with a mainly sandy-gravelly and slightly silty character.
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Figure 2. Hybrid digital elevation model with 10 m resolution based on TanDEM-X (12 m resolution)
and Lidar (1 m) digital terrain models. Color-coded elevation with hill shading. Black dots show the
location of the sampled soil profiles.

The region has a humid subtropical climate (Cfa), following the Köppen climate
classification [41], with warm summers and cold winters.

Soil profile data (n = 130) was provided by ERSAF (Ente Regionale per i Servizi
all’Agricoltura e dalle Foreste) [42] and described specific soil properties, such as soil pH
in water, soil organic carbon (SOC%), texture (sand, silt, clay content in %), and topsoil
depth (cm). Generally, the soils are characterized by a sandy loam texture developed on
Quaternary alluvial deposits.

In this study, we modelled the soil properties texture (sand, silt, clay content), soil or-
ganic carbon (SOC), pH, and topsoil depth by using multiple base learners, and compared
them against an ensemble learning approach with stacked generalization. The perfor-
mances of this approach were compared with the base learners, and the best model was
used to develop the digital soil maps.

2.2. Environmental Variables

The environmental conditions were represented by terrain attributes, land use, and
landcover maps (LULC). In this study, LULC is used to represent the influence of human
activities on soil properties distribution. The LULC map, for the year 2018, was obtained
from the geoportal of the Lombardy region (https://www.geoportale.regione.lombardia.it,
accessed on 1 February 2023). These maps were produced using SPOT6/7 2018 satellite im-
age and had a spatial resolution of 1.5 m. The provided land cover types were reorganized
into simple arable land, rice fields, and broad-leaved forest, with medium and high density
governed by coppice (Figure 3).

Terrain attributes are the most extensively used environmental variables in DSM [43].
They are proxies for solute, water, and sediment fluxes through the landscape. In this study,
the terrain attributes were derived from a 10 m resolution hybrid digital elevation model,
obtained from the interpolation of a TanDEM-X DEM with 12 m resolution (provided by
Deutsches Zentrum für Luft- und Raumfahrt, DLR) [44] and a 1 m resolution Lidar digital
terrain model (DTM), acquired from the Ministry of the Environment and the Protection of
the Territory and the Sea [45]. The DEM was pre-processed by filling gaps and removing
artefacts following Maerker et al. [46]. Subsequently, the terrain attributes representing the

https://www.geoportale.regione.lombardia.it
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environmental conditions include topographic wetness index (TWI), multi-resolution ridge
top flatness index (MRRTF), multi-resolution index of valley bottom flatness (MRVBF), mod-
ified catchment area (MCA), mid-slope position (MSP), slope height (SH), channel network
base level (CNBL), and vertical distance to channel network (VDCN). McKenzie et al. [47]
discussed the role of terrain analysis in soil mapping. These topographic indices were
extracted from the pre-processed DEM using the System for Automated Geoscientific
Analysis (SAGA) software (version 8.2) [48].
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2.3. Base Learners

Five ML models (Table 1) were used to identify the relationships between different
soil properties and environmental variables for our study area. These models included
Cubist, gradient boosting machine (GBM), generalized linear model (GLM), random forest
(RF), and support vector machines (SVM). RF [49] and GBM [50] are homogenous ensemble
models which consist of a non-parametric technique that combines predictions made by
multiple decision trees.

RF is based on a bagging algorithm. It uses the bootstrap strategy to resample obser-
vations, and it randomly selects a subset of the features to build an ensemble of regression
trees, whose predictions are averaged. Hereby, it effectively reduces the problem of over-
fitting each model. The RF prediction is performed using the “rf” function in the “caret”
package in R. GBM, instead, uses a boosting algorithm, which gradually builds a tree-based
model by fitting additional learners to the errors of the model built up to that point. In
this study, GBM was modeled by the “gbm” function of the “caret” package. Cubist is an
advanced regression tree algorithm [51] that combines decision trees and multiple linear
regression methods and adds multiple training committees and boosting to make the
weights of the trees more balanced. In this study, the “Cubist” package and the “caret”
package were combined for regression modeling.

SVMs are a popular supervised learning technique for classification and regression
that are capable of modelling nonlinear relationships that can be generalized to nonlinear
models using kernel functions, as proposed by Cortes [52]. The radial basis function (RBF)
kernel, which has been widely used in soil mapping research [53–55], was selected as the
kernel of the SVM algorithm. In this study, SVM was modeled by the “svmRadial” function
of the “caret” package. GLM is a linear regression algorithm which uses the ordinary-least-
squares method to determine the coefficients of its independent variables and the intercept
value by minimizing the sum of squared residuals. In this study, GLM was modeled by the
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“glm” function of the “caret” package. All the hyperparameters for each model (Table 1)
were tuned with internal cross-validation, i.e., by performing an ‘inner’ cross-validation on
the training set without looking at the test sample used for model assessment [56].

Table 1. List of models and corresponding hyperparameters in caret.

Base Learners Hyperparameters Grid Search Reference

Cubist Cubist committees 5 to 50 (step size 5) [57]
neighbours 1, 5, 9

Stochastic Gradient
Boosting GBM n.trees 100 to 800 (step size 50) [50]

interaction.depth 1, 3, 5, 5, 7
Shrinkage 0.001 to 0.01

minobsinnode 10, 15, 20
Generalized Linear

Model GLM None [58]

Random Forest RF mtry 2 to 15 [49]
Support Vector

Machine SVM σ 10−5 to 103 (length = 15) [59]

C 10−5 to 103 (length = 15)

2.4. Stacking Generalization

The ensemble machine learning approach, known as stacking generalization, was
employed to combine the individual ML model predictions (as base learners) and to
maximize the generalization accuracy. The predictions of the five base learners were
combined using a meta-learning model. Stacking helps to explore the solution space
with different models in the same study. In this study, two stacking ensemble learning
models were compared, as a simple meta-learner, to stack the five base learners using
the “caretStack” function in the “caretEnsemble” packages in R 3.5.2 [60]. The first was a
GLM model (Stack_GLM), which uses a linear model to calculate the weighted sum of the
predictions made by the base learners. The second was a GBM model (Stack_GBM), which
deals with non-linear trends and provides great predictive performance.

The ensemble machine learning modelling is a black-box algorithm, which poses the
challenge of quantifying and evaluating the exact contributions of the predictors to the final
model output. Model-agnostic interpretation tools help in handling this challenge, which
may be used for any ML model. Model-agnostic methods operate by changing the inputs of
the ML model and measuring the corresponding changes in the prediction output. In this
study, variable importance was estimated for the five base learners using the permutation
method, which is implemented in the iml package in R [61].

2.5. Model Prediction Performance Assessment

The model performances were evaluated using a cross validation method, as it is
beneficial for small datasets, detects overfitting, and provides error estimates with compar-
atively good bias and variance properties [62,63]. The cross-validation approach provides
a structure for constructing several training/test sets from the dataset, guaranteeing that
each data point is part of the test set at least once. A nested cross-validation was applied to
build and test the base learners and the ensemble models [56]. Ten-fold cross validation,
with 20 repetitions, was applied to optimize the model settings (hyperparameter tuning)
and to validate the final performance of the base learners, built on optimized settings.
The prediction performance of all models was examined using the root mean square error
(RMSE) and Lin’s concordance correlation coefficient (CCC):

RMSE =

√
1
n

n

∑
i=1

(x_actual − x_predicted)2 (1)
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CCC =
2rσactual

σactual
2 + σpredicted

2 +
(
x¯_actual − x¯_predicted

)2 (2)

where n is the number of soil samples; x_predicted is the predicted value derived by each
model; x_actual is the actual soil property value; xactual and xpredicted are the averages
of actual and predicted values, respectively; σactual and σpredicted are the corresponding
standard deviations; and r is the correlation coefficient of the predicted and actual values.
These validation criteria were used to evaluate and choose the best-performing models.
While the RMSE has the advantage of measuring the prediction error in the original units
of the predicted variable, the CCC provides a measure of agreement between predictions
and observations. Both indicators account for both bias and random variability.

3. Results
3.1. Descriptive Summary of Soil Properties

A summary of the different soil properties in the study area is presented in Table 2.
The soil sand, silt, and clay contents in the study area varied from 37.0 to 98.6%, 0.30 to
49.10%, and 1.0 to 17.30%, respectively. SOC varied from 0.50 to 4.70 g/kg, pH from 4.40 to
7.80, and topsoil depth from 4 to 62.0 cm. The pH had the lowest coefficient of variation
(CV = 10.32%), followed by sand content, depth of topsoil, silt content, clay content, and
SOC content (CV = 18.36, 34.04, 39.33, 63.91, and 52.73%, respectively). The skewness
value of SOC shows that the statistical distribution of SOC values is skewed to the right
(skewness = 1.11). Therefore, a transformation with the natural logarithm was used to
obtain a more symmetric SOC data distribution. The transformed data was used for the
modelling, and the predicted values from the model outputs were back transformed before
accessing the model performance.

Table 2. Descriptive statistical summary of soil properties in the study area. Qi: i-th percentile; SD:
standard deviation; CV: coefficient of variation.

Soil Property Minimum Maximum Mean Q25 Q50 Q75 SD CV (%) Skewness

Sand (%) 37.0 98.6 67.92 59.20 69.75 76.22 12.46 18.36 −0.32
Silt (%) 0.30 49.10 26.01 18.07 25.55 32.85 10.23 39.33 0.25

Clay (%) 1.00 17.30 5.15 3.05 5.15 8.90 3.89 63.91 0.77
SOC (g/kg) 0.50 4.70 1.65 1.01 1.46 1.89 0.87 52.73 1.11

log(SOC) −0.69 1.55 0.38 0.01 0.38 0.64 0.48 128 0.31
pH 4.40 7.80 6.11 5.70 6.10 6.60 0.63 10.32 0.02

Topsoil depth (cm) 4.0 62.0 31.67 25.0 31.18 40.0 10.78 34.04 −0.65

The predictors were not strongly correlated to each other (Figure 4). The vertical
distance to channel network (VDCN) is significantly correlated with all the soil properties,
and pH is, in turn, significantly correlated with the channel network base level (CNBL)
(Table 3).

Table 3. Spearman’s rank correlation rho between soil properties and terrain attributes.

Topsoil Depth Sand Silt Clay pH SOC

CNBL −0.03 −0.21 * 0.25 ** −0.10 0.30 ** 0.35 ***
MCA 0.04 −0.11 0.04 0.21 * −0.09 −0.09

MRRTF −0.01 −0.20 * 0.19 * 0.15 0.03 −0.04
MRVBF −0.30 ** 0.05 −0.03 −0.09 −0.16 * 0.35 ***

SH 0.19 * 0.18 * −0.22 * 0.07 0.03 −0.12
TPI −0.08 −0.04 −0.01 −0.11 0.01 0.004
TWI −0.01 −0.10 −0.05 0.16 −0.19 * −0.07

VDCN 0.23 ** −0.25 ** 0.23 * 0.28 ** 0.02 −0.46 ***
* Correlation is significant at α = 0.05; ** Correlation is significant at α = 0.005; *** Correlation is significant at α = 0.0001.
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3.2. Base Learner Performances

The prediction performance assessments for each base learner are summarized in
Table 4. The average CCC values of the base learners ranged from 0.27 to 0.77 for sand
content, 0.26 to 0.74 for silt content, 0.18 to 0.76 for clay content, 0.31 to 0.35 for SOC, 0.37 to
0.55 for pH, and 0.30 to 0.60 for topsoil depth; RMSE ranged from 5.07 to 10.79% for sand
content, 4.99 to 8.89% for silt content, 1.85 to 3.72% for clay content, 0.73 to 0.76 g/kg for
SOC, 0.32 to 0.50 for pH, and 5.38 to 9.27 cm for topsoil depth. Our results indicated that
the RF model predicts well in all the soil properties. However, the GLM model had the
poorest performances in all the soil properties, with a RMSE of 10.86% for sand content,
8.98% for silt content, 3.49% for clay content, 0.76 g/kg for SOC, 0.50 for pH, and 9.27 cm
for topsoil depth. Although the standard deviations of these performance estimates show
that there was substantial variation across cross-validation repetitions, it is evident that
the observed differences in performance estimates are mostly substantial, relative to the
random variability.

Table 4. Performance of base learners to predict soil properties based on 20 repeats, ten-fold
cross validation.

Soil Properties Learners CCC RMSE
Mean SD Mean SD

Sand Cubist 0.65 0.20 7.46 1.54
GLM 0.27 0.20 10.79 2.31
GBM 0.50 0.18 9.12 1.79

RF 0.77 0.04 5.07 1.04
SVM 0.47 0.23 9.56 2.21

Silt Cubist 0.61 0.21 6.21 1.32
GLM 0.26 0.22 8.89 2.01
GBM 0.41 0.22 7.85 1.70

RF 0.74 0.07 4.99 0.96
SVM 0.31 0.22 8.45 1.74
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Table 4. Cont.

Soil Properties Learners CCC RMSE
Mean SD Mean SD

Clay Cubist 0.61 0.12 2.52 0.58
GLM 0.18 0.14 3.72 0.48
GBM 0.32 0.07 3.39 0.41

RF 0.76 0.08 1.85 0.53
SVM 0.54 0.19 2.71 0.61

SOC Cubist 0.35 0.13 0.74 0.26
GLM 0.31 0.13 0.76 0.29
GBM 0.33 0.15 0.75 0.30

RF 0.34 0.13 0.73 0.29
SVM 0.32 0.12 0.73 0.28

pH Cubist 0.59 0.22 0.42 0.12
GLM 0.42 0.15 0.50 0.12
GBM 0.40 0.20 0.50 0.11

RF 0.55 0.06 0.32 0.07
SVM 0.37 0.21 0.50 0.13

Topsoil depth Cubist 0.60 0.18 7.45 2.02
GLM 0.49 0.22 9.27 2.12
GBM 0.30 0.19 8.59 2.18

RF 0.60 0.10 5.38 1.28
SVM 0.50 0.26 8.03 2.43

Note: the best-performing models are printed in bold, SD is standard deviation.

3.3. Stacked Ensemble Performances

The results of the two stacking approaches (Stack_GLM and Stack_GBM) for the
prediction of the six soil properties are presented in Table 5. The GBM stacking model
(Stack_GBM) achieves nominally better predictive performance than the GLM stacking
model (Stacking_GLM) for sand, silt, and pH, while the GLM stacking model performs
better for clay, SOC, and topsoil depth. Nevertheless, the standard deviation values indicate
that performances show substantial variation and are statistically indistinguishable. Overall,
the RF model exhibited the best performance and performed better than or equal to the
stacking approaches.

Table 5. Ensemble model performance based on repeated ten-fold cross-validation.

Soil Properties Ensemble
Models CCC RMSE

Mean SD Mean SD
Sand Stack_GLM 0.42 0.22 11.43 2.59

Stack_GBM 0.55 0.13 8.94 1.48
Silt Stack_GLM 0.04 0.15 10.52 2.45

Stack_GBM 0.33 0.15 7.98 1.25
Clay Stack_GLM 0.55 0.13 2.42 0.50

Stack_GBM 0.57 0.14 2.50 0.60
SOC Stack_GLM 0.34 0.17 0.75 0.28

Stack_GBM 0.34 0.16 0.73 0.29
pH Stack_GLM 0.25 0.24 0.52 0.15

Stack_GBM 0.32 0.20 0.51 0.14
Topsoil Stack_GLM 0.50 0.17 7.02 1.88

Stack_GBM 0.50 0.17 7.92 1.94
Note: the best-performing models are printed in bold.

3.4. Variable Importance

Figure 5a–f shows the set of environmental variables, used in the prediction of each
soil property, in terms of their permutation-based importance, with respect to the RMSE.
The most effective variables in the particle size distribution models (sand, silt, and clay
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content) were VDCN and CNBL, while LULC is the most important variable in predicting
topsoil depth, soil pH, and SOC content.
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3.5. Spatial Distribution of Soil Properties

The spatial distribution of all six soil properties, using the best-performing models, is
depicted in Figure 6a–f. Low sand contents were predicted at high terrain units and high
sand content at low terrain elevation. Moreover, there is a low clay content in low terrain
units and low silt content at lower elevations, but silt and clay were predicted as being
evenly distributed at higher terrace levels. The soil pH values were spatially predicted to
be low on lower elevations and high on higher terrain units. Additionally, the topsoil depth
and SOC content were spatially predicted, with low SOC content at higher terrace levels
and high SOC content at lower terrain units.
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4. Discussion

Cubist, GBM, and RF are popular ensemble models used in DSM, all of which are
based on regression trees. In this study, the RF model, as a bagging ensemble model,
performed better than or at least equal to the Cubist and GBM models, based on the
comparison of two statistical indicators (CCC and RMSE). This suggests that RF provides
an excellent trade-off between model flexibility and the ability to avoid overfitting by
tuning the hyperparameters [56]. The built-in sub-sampling of predictor variables also
provides some protection against an over-reliance on a specific variable. Several studies
have reported low RMSE for soil properties, developed by RF models, compared to other
ML models [16,64–66]. Moreover, in Taghizadeh-Mehrjardi et al. [37], RF was indicated
to be the best base learner among the 12 models used. However, RF models often vary
significantly from study to study, and no single algorithm is ‘best’ within DSM and for
every study area [12,17]. In addition, in our study, these three tree-based models mostly
performed better than SVM and GLM. Though SVM can model nonlinear relationships, its
performance is still susceptible to overfitting, and seeking optimal hyperparameters can
be highly unstable. The GLM exhibited a poor performance in this study area because it
cannot deal with the nonlinear relationships between the soil properties and environmental
variables. Previous studies also showed that, when comparing both linear and nonlinear
models, the tree-based learners are more effective than linear models [38,66].

The predictions from five individual models with different principles were combined
using two stacking approaches: GLM and GBM. Neither of these two approaches were
generally superior to the other one, considering variability in cross-validated performance
estimates. However, in this study, the stacking models, in comparison to the base learners,
seem to lag behind RF. This contradicted our original expectations based on previous
studies [37,38,67,68]. In the study of Taghizadeh-Mehrjardi et al. [37], the super learner
showed an improved performance in comparison to linear regression approaches by de-
creasing the RMSE by 46% on average. However, our results are similar to Zhang et al. [43],
where nine models were used to construct an ensemble learner, using a super learner (SL)
as a meta-learner to map soil pH for the Thompson-Okanagan region of British Columbia,
and their overall finding was that the SL did not outperform all the other base learners.
Moreover, Dobarco et al. [32] found that the ensemble predictions did not improve for silt
and sand content but improved for clay content in their study.

We suggest that the non-superiority of the stacked models could be explained by
the fact that the base learners are highly correlated (Appendix A Table A1). Moreover,
stacked-model performance may depend on the quality of input datasets and the diversifi-
cation of the input models [69]. An available literature review revealed that researchers
often employed different methods or models in DSM, depending on the circumstances.
Almost all of them stated that each model has its unique performance profile and specific
strengths and weaknesses [12]. This uniqueness is mainly related to the complex nature and
distinct mathematics of each model. Therefore, a comprehensive comparison of machine
learning models for base learners and meta-learners is advisable, in order to check if the
model outputs will yield substantially different results, before applying ensemble machine
learning techniques as a means for improving predictions. Similarly, there might be an im-
provement in the performance if the ensemble model’s residuals are spatially interpolated
and then added to the deterministic spatial trend in the form of a regression kriging model.
In addition, other studies have shown that each model could be strongly affected and
improved by an increasing number of soil samples and additional environmental variables
derived from remote sensing data or parent materials [70,71]. In our further studies, we will
consider leveraging additional environmental variables to represent vegetation patterns
and parent materials in the study area.

Mapping soil properties in an agricultural lowland area can be a challenge since
soil forming factors, such as topography and vegetation, may not substantially correlate
with soil properties, in space, to an extent at which they can be incorporated effectively
in DSM [72]. However, terrain attributes, derived from high-resolution elevation data,
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can capture local spatial variation that resulted from the interaction of water flows and
topography [73]. Among the terrain attributes used in this study, VDCN and CNBL
had highly significant correlations with all the soil properties and were ranked among
the most influential variables. A similar trend was observed in a study presented by
Kokulan et al. [74], where VDCN reflected the relationships between texture and erosion,
and in Zhang et al. [39], where pH values were significantly correlated with CNBL and
elevation. Both VDCN and CNBL are calculated from the drainage network, and they give
information on the hydraulic gradients, in turn triggering soil erosion, as well as lateral
and ground water fluxes [75]. Moreover, they facilitate the redistribution of fine material
in this study area. However, since we are in a fluvial landscape, VDCN also reflects the
age of the soils. Generally, higher elevations represent older terrace levels and hence, are
characterized by mature and deep soils. Instead, the areas close to the river network are
much younger, and thus, show only rudimentary and shallow soils. Concerning SOC, pH,
and topsoil depth, land use seems to be the most important variable (Figure 5). This agrees
with Adhikari et al. [76] who showed that land use was identified as one of the important
variables that are related to SOC distribution at five standard soil depths. This can be
explained by the direct relationship of land use and SOC in terms of plant cover and plant
residues released to the soil. SOC content, predicted by the RF models, is generally higher
on the lower terrace levels mainly covered by woodlands (forest and bushlands). Despite
the distribution of agricultural areas and woodlands that show distinct differences in the
SOC and pH, there are also differences in the agricultural areas themselves. In turn, they
reflect the spatial distribution of certain crops like rice fields, simple arable lands, stable
meadows, and permanent crops, as well as their respective irrigation schemes. Specific
crops and/or vegetation need a certain top and subsoil water budget. These plants are
influenced by their root system pH vales or SOC contents that, in turn, facilitate nutrient
uptake. Particularly, lower pH is predicted in woodlands, whereas, on average, higher pH
is modelled for arable land, while accounting for the other variables in the RF model. The
latter might be due to carbonate applications by farmers. Moreover, vegetation directly
affects pH by their residues and chemistry. Finally, in a lowland agricultural area, there
might be changes in topography due to intensive agricultural activities; thus, using terrain
attributes instead of absolute elevation can effectively explain soil patterns. However, it
is striking that the predicted spatial distribution of SOC, pH, topsoil depth, and the soil
texture classes, is illustrating the general distribution pattern related to the fluvial terrace
levels and the vegetation, land use, and management.

5. Conclusions

In this study, linear and nonlinear machine learning models were applied to build a
reliable and accurate estimation model to provide the spatial distribution of particle size
distribution (sand, silt, and clay content), SOC content, pH, and the topsoil depth in an
agricultural lowland area of Lombardy region, Italy, using terrain attributes and land use
information. The nonlinear machine learning models generally show a good performance
compared to the linear models. Overall, out of the five individual machine learning
methods, RF performed best in this study. However, if RF and the other base learners
are compared to the stacked ensemble models, none of these meta-learners stood out
with superior performances. This suggests that a comprehensive comparison of machine
learning models, for base learners and meta-learners, is advisable in order to check if the
model outputs will yield substantially different results before applying ensemble machine
learning techniques as a means for improving predictions.

In this study, we documented that, among the terrain attributes, CNBL and VDCN
are the most important predictor variables explaining differences in soil properties in the
study area. VDCN is related to the river terrace levels and, hence, to soil evolution stages,
resulting in different soil depth, texture composition, and SOC content. However, land
use and, particularly, crops are also related to the soil (pH, SOC, and topsoil depth) or
reflect certain soil properties, like water availability and soil porosity. Furthermore, we
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show that DSM, using ML models, has a high potential to effectively predict the spatial
properties of soil attributes in lowland areas. We expect that further improvements in
model accuracy could be achieved by incorporating additional environmental variables
that represent vegetation patterns or the mineralogical composition of the topsoil.
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Appendix A

Table A1. Correlation among the predictions of the base learners.

Cubist GLM GBM RF SVM

Sand Cubist 1.00 0.81 0.86 0.87 0.86
GLM 0.86 0.81 1.00 0.87 0.86
GBM 0.81 1.00 0.81 0.77 0.80

RF 0.87 0.77 0.87 1.00 0.88
SVM 0.86 0.80 0.86 0.88 1.00

Silt Cubist 1.00 0.84 0.89 0.89 0.91
GLM 0.84 1.00 0.85 0.77 0.82
GBM 0.89 0.85 1.00 0.91 0.87

RF 0.89 0.77 0.91 1.00 0.89
SVM 0.91 0.82 0.87 0.89 1.00

Clay Cubist 1.00 0.82 0.80 0.82 0.89
GLM 0.82 1.00 0.82 0.72 0.77
GBM 0.80 0.82 1.00 0.82 0.80

RF 0.82 0.72 0.82 1.00 0.82
SVM 0.89 0.77 0.80 0.82 1.00

SOC Cubist 1.00 0.77 0.78 0.85 0.72
GLM 0.77 1.00 0.86 0.85 0.84
GBM 0.78 0.86 1.00 0.91 0.82

RF 0.85 0.85 0.91 1.00 0.80
SVM 0.72 0.84 0.82 0.80 1.00

pH Cubist 1.00 0.76 0.77 0.83 0.81
GLM 0.76 1.00 0.85 0.70 0.79
GBM 0.77 0.85 1.00 0.82 0.79

RF 0.83 0.70 0.82 1.00 0.74
SVM 0.81 0.79 0.79 0.74 1.00

Topsoil depth Cubist 1.00 0.73 0.79 0.84 0.81
GLM 0.73 1.00 0.83 0.68 0.74
GBM 0.79 0.83 1.00 0.82 0.82

RF 0.84 0.68 0.82 1.00 0.80
SVM 0.81 0.74 0.82 0.80 1.00



Land 2023, 12, 494 15 of 17

References
1. Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [CrossRef]
2. Zhu, A.X.; Hudson, B.; Burt, J.; Lubich, K.; Simonson, D. Soil Mapping Using GIS, Expert Knowledge, and Fuzzy Logic. Soil Sci.

Soc. Am. J. 2001, 65, 1463–1472. [CrossRef]
3. McBratney, A.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [CrossRef]
4. Minasny, B.; McBratney, A.; Malone, B.; Wheeler, I. Digital Mapping of Soil Carbon. Adv. Agron. 2013, 118, 1–47.
5. Florinsky, I.V.; Eilers, R.; Manning, G.; Fuller, L.G. Prediction of soil properties by digital terrain modelling. Environ. Model. Softw.

2002, 17, 295–311. [CrossRef]
6. Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital

soil mapping using Random Forests analysis. Geoderma 2008, 146, 102–113. [CrossRef]
7. Seibert, J.; Stendahl, J.; Sørensen, R. Topographical influences on soil properties in boreal forests. Geoderma 2007, 141, 139–148.

[CrossRef]
8. Tu, C.; He, T.; Lu, X.; Luo, Y.; Smith, P. Extent to which pH and topographic factors control soil organic carbon level in dry farming

cropland soils of the mountainous region of Southwest China. CATENA 2018, 163, 204–209. [CrossRef]
9. Song, X.; Liu, F.; Zhang, G.; Li, D.; Zhao, Y.; Yang, J. Mapping Soil Organic Carbon Using Local Terrain Attributes: A Comparison

of Different Polynomial Models. Pedosphere 2017, 27, 681–693. [CrossRef]
10. Zhu, A.X.; Liu, F.; Li, B.; Pei, T.; Qin, C.; Liu, G.; Wang, Y.; Chen, Y.; Ma, X.; Qi, F.; et al. Differentiation of Soil Conditions over

Low Relief Areas Using Feedback Dynamic Patterns. Soil Sci. Soc. Am. J. 2010, 74, 861–869. [CrossRef]
11. Pahlavan-Rad, M.R.; Akbarimoghaddam, A. Spatial variability of soil texture fractions and pH in a flood plain (case study from

eastern Iran). CATENA 2018, 160, 275–281. [CrossRef]
12. Heung, B.; Zhang, J.; Schmidt, M.; Ho, H.; Knudby, A.; Bulmer, C. An overview and comparison of machine-learning techniques

for classification purposes in digital soil mapping. Geoderma 2016, 265, 62–77. [CrossRef]
13. Wadoux, A.M.J.-C.; McBratney, A.B. Hypotheses, machine learning and soil mapping. Geoderma 2021, 383, 114725. [CrossRef]
14. Wadoux, A.M.J.C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and

suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [CrossRef]
15. Minasny, B.; Setiawan, B.; Saptomo, S.; McBratney, A.B. Open digital mapping as a cost-effective method for mapping peat

thickness and assessing the carbon stock of tropical peatlands. Geoderma 2018, 313, 25–40. [CrossRef]
16. Brungard, C.W.; Boettinger, J.; Duniway, M.; Wills, S.; Edwards, T.C. Machine learning for predicting soil classes in three semi-arid

landscapes. Geoderma 2015, 239–240, 68–83. [CrossRef]
17. Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020,

81, 401–418. [CrossRef]
18. Henderson, B.L.; Bui, E.; Moran, C.; Simon, D.A.P. Australia-wide predictions of soil properties using decision trees. Geoderma

2005, 124, 383–398. [CrossRef]
19. Keskin, H.; Grunwald, S.; Harris, W.G. Digital mapping of soil carbon fractions with machine learning. Geoderma 2019, 339, 40–58.

[CrossRef]
20. Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and mapping of soil organic

carbon using machine learning algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [CrossRef]
21. Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Minasny, B.; Triantafilis, J. Comparing data mining classifiers to predict spatial

distribution of USDA-family soil groups in Baneh region, Iran. Geoderma 2015, 253–254, 67–77. [CrossRef]
22. Guevara, M.; Olmedo, G.F.; Stell, E.; Yigini, Y.; Aguilar Duarte, Y.; Arellano Hernández, C.; Arévalo, G.E.; Arroyo-Cruz, C.E.;

Bolivar, A.; Bunning, S.; et al. No silver bullet for digital soil mapping: Country-specific soil organic carbon estimates across Latin
America. Soil 2018, 4, 173–193. [CrossRef]

23. Taghizadeh-mehrjardi, R.; Schmidt, K.; Zeraatpisheh, M.; Behrens, T. Soil organic carbon mapping using state-of-the-art machine
learning algorithms and deep neural networks in different climatic regions of Iran. Geophys. Res. Abstr. 2019, 21, 1164573.

24. Diks, C.G.H.; Vrugt, J.A. Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch.
Environ. Res. Risk Assess. 2010, 24, 809–820. [CrossRef]

25. Swiderski, B.; Osowski, S.; Kruk, M.; Barhoumi, W. Aggregation of classifiers ensemble using local discriminatory power and
quantiles. Expert Syst. Appl. 2016, 46, 316–323. [CrossRef]
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