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Abstract: Salinization is a serious land degradation phenomenon. This study identified the salinity
stress threshold as a causal factor for salinization, focusing on global maize fields as the study area.
By excluding environmental stressors and setting salinization scenarios, the EPIC model was used to
simulate the daily salinity stress threshold during the corn growth process. The global intensity and
risk of salinization-induced disaster for maize were evaluated. Based on the principle of information
diffusion, the intensity of salinization-induced disaster was calculated for different return periods.
The main conclusions were as follows: (1) By excluding environmental stress factors and setting
salinization scenarios, algorithms for the salinization index during the growing season and the
intensity of salinization-induced disaster were proposed. (2) The salinity hazard factor is highly risky
and concentrated in arid and semi-arid regions, while it is relatively low in humid regions. (3) As the
recurrence period increases, the risk of salinization-induced hazard becomes higher, the affected area
expands, and the risk level increases. (4) The salinization intensity results of this study are consistent
with the research results of HWSD (R2 = 0.9546) and GLASOD (R2 = 0.9162).

Keywords: information diffusion; risk of hazard factor; salt stress; EPIC model

1. Introduction

With the advent of the “Anthropocene”, land systems increasingly face complex
challenges [1,2], salinization being a prime example requiring human attention. Soil
salinization, a severe land degradation phenomenon, arises from the buildup of soluble
salts in both the soil cultivation and surface layers [3]. Salinization undermines land
productivity, diminishing agricultural output in irrigation areas and impeding agricultural
development and food production [4]. Over a hundred countries and regions around the
globe deal with varying levels of saline soils. According to data from the United Nations
Educational, Scientific and Cultural Organization (UNESCO, Paris, France) and the Food
and Agriculture Organization (FAO, Rome, Italy) of the United Nations, the total area of
saline soils is around 954.38 million hectares. Salinization poses a significant agricultural
risk (risk = hazard factors × exposure × vulnerability) [5]. In some timeframes and regions,
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exposure remains relatively steady, with the hazard severity typically determining the risk
magnitude. Consequently, several scholars concentrate on the salinization hazards [6–8].

Despite decades of research, comprehensive, large-scale land salinization assessments
remain an enduring challenge [9]. Numerous studies concur that obtaining accurate mea-
sures of salinization at large scales is a complex task [10–13]. When assessing hazards
contributing to salinization, scholars typically select salinization-specific indicators for
a comprehensive evaluation, such as cation exchange rate (ECe), average annual evapo-
transpiration volume, groundwater characteristics, and dry humidity [14]. Initially, the
soil’s conductivity is usually identified by the ECe of the saturated paste extraction [15–18].
Most studies employ ECe as an index to gauge soil salinization, considering soils with
ECe exceeding 4 dsm−1 as saline. Secondly, elevated evapotranspiration intensifies water-
salt movements, increasing the salt concentration in soil water and on the surface [19,20].
Consequently, the average annual evapotranspiration volume serves as a significant index
for assessing salinization risk. Thirdly, groundwater impacts on salinization manifest in
two ways: i the depth of the water table, where shallow, semi-closed aquifers can trigger
salinization by impeding surface soil drainage [21]; and ii groundwater mineralization,
linked to irrigation, as the quality of groundwater used for irrigation influences soil texture.
Long-term unsuitable irrigation increases salinization risk [22]. Data acquisition limitations
and model parameter validity concerns lead some investigators to select alternate indicators
for assessing salinization risk. Some base their evaluation on the depth of the saline soil
and the groundwater table [23], others incorporate soil and climate attributes, irrigation
water properties, conductivity, cation exchange rate, and dry humidity [14].

Additionally, many scholars have used models to assess the hazards of salinization
factors. Currently, the models primarily used to evaluate salinization risk include UN-
SATCHEM [24], SALTMED [25], BUDGET [26], Pla [27], and Riverside [18], among others.
The first three are complex models, requiring large amounts of data, suitable for assessing
small-scale areas, such as farmland and small watersheds, while Pla [19] and Riverside [18]
are simpler models, suitable for larger-scale areas, such as farms and large river basins.
It is noteworthy that many new methods have emerged in recent years. For instance,
Hassani and others utilized machine learning algorithms to make long-term predictions
on global salinization issues based on EC′e′′ [28]; FAO constructed The Global Map of
Salt-Affected Soils (GSASmap) platform based on indices like EC′e, ESP, PH [29]; Kaya and
others adopted remote sensing methods to assess soil salinization conditions in the western
part of Turkey based on EC′e′′ [30].

Contemporary research frequently employs external factors such as soil characteristics,
climate variability, and groundwater dynamics as metrics to assess the hazards of soil
salinization to agricultural productivity. Nonetheless, these indicators may inadvertently
sidestep the direct effects of salinization on the crops themselves, potentially obscuring
the isolated impact of saline conditions on plant growth. Addressing this gap, our study
proposes the utilization of normalized salt stress values, correlated to the crop growth cycle,
as a more precise measure of salinization impact, thereby elucidating the independent
extent of salt-induced stress on crop vitality. The EPIC crop growth model, known for its
robustness, is employed to establish salinization scenarios, which delineates the day-to-day
susceptibility of crops to saline disturbances. The selection of crop species is pivotal for the
applicability of such growth models. Maize, with its global significance as a staple crop [31],
wide cultivation range [32], and intermediate salinity tolerance [33], represents an ideal
candidate for this analysis.This research focuses on global cornfields, uses the EPIC0509
model to simulate the salinity stress value [34–37] during corn growth with days as steps,
attempts to evaluate the risk of salinization hazard intensity about corn on a global scale,
and calculates the salinization hazard intensity under different recurrence periods based
on the principle of information diffusion [38].
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2. Materials and Methods
2.1. Basic Concepts and Research Framework
2.1.1. The EPIC Crop Growth Model

The erosion-productivity impact calculator (EPIC) model was developed in 1981 by
Williams et al. to study the relationship between soil erosion and soil productivity [39–41].
Initially, the value of the EPIC model in simulating crop growth was not noticed. It was
not until 1989 that the EPIC model began to be used as a crop growth model [42]. In 1996,
Williams et al. incorporated environmental factors such as water quality, carbon cycle, and
climate change into the EPIC model, subsequently renaming it the “Environmental Policy
Impact Climate” model [43]. Due to the EPIC model’s ability to simulate crop productivity
over hundreds or even thousands of years in various climate scenarios, environmental con-
ditions, and management systems, assessing the impact of multiple agricultural disasters
on crop yield and land productivity, it has become one of the most popular crop growth
models [44–46]. Some studies even suggest that, in terms of model calibration and crop
yield evaluation, the EPIC model performs better than the CSM-CERES-Maize [47].

2.1.2. Mechanism of Salt Stress in Maize

Salinity stress affects almost all crucial metabolic processes of corn growth [48]. Based
on previous research, the damaging mechanisms of salinity stress on corn mainly include
the following aspects: (1) Salinity stress leads to difficulties in corn water absorption. Due to
the high salt content in saline soils, the soil solution water potential significantly decreases,
causing difficulties in water absorption of corn roots, or they cannot absorb water at all. In
severe cases, it even leads to the outward discharge of water, causing osmotic dehydration
of the tissue and harming corn [49,50]. (2) Salinity stress has detrimental effects on the
corn biomembrane. Studies indicate that the membrane plays a crucial role in generating
primary and secondary stress responses. Salt stress influences various aspects of membrane
function, including ion selective permeability, transport of inorganic and organic matter,
membrane secretion function, membrane lipid composition, and ultrastructure [51–53].
(3) Salinity stress causes physiological disorders in corn. Salinity stress affects the physio-
logical activities of corn, for instance, salt stress causes a decline in the net photosynthesis
rate of corn [54–56], and salinity stress disrupts normal respiratory metabolism and protein
synthesis of corn [57–59].

2.1.3. Hazard Intensity Assessment and Information Diffusion Method

The core of the disaster factor hazard assessment is to establish a relationship between
the disaster intensity and frequency. The hazard assessment of disaster-inducing factors can
be divided into the average expected disaster intensity and the probability that the intensity
of the disaster factor exceeds a certain value (the frequency of the disaster factor) [60]. Cal-
culating the frequency of disaster factors requires a large amount of sample data. However,
when the sample information is incomplete, the information diffusion method can be used
to calculate the frequency of disaster factors, and a fuzzy set is obtained after diffusing the
original incomplete information. This is a method of treating samples collectively using
fuzzy mathematical methods to compensate for information deficiencies [61]. Specifically,
using the diffusion function to convert sample data into sample sets, the simplest model is
the normal diffusion model [38]. This paper calculates the intensity of disaster factors with
different probabilities of occurrence (recurrence periods of 10, 20, 50, 100 years) by diffusing
the salinization hazard factors of the 30-year samples through information diffusion.

2.1.4. Research Framework

This study is conducted in four steps. The first step is to establish the database. The
second step is to determine the hazard-inducing factor-salt stress and eliminate other
environmental stress factors. The third step is to simulate the growth process of corn using
the EPIC model and, based on the daily salt stress value, calculate the index of salinization
hazard intensity. The results are then compared with existing salinization results (HWSD
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and GLASOD). The fourth step, based on the principle of information diffusion, is to
calculate the hazard intensity of corn salinization under the recurrent periods of 10 years,
20 years, 50 years, and 100 years (Figure 1).
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Figure 1. The research framework.

2.2. Data

Based on the research approach, this paper uses the EPIC0509 model to calculate the
hazard intensity of salinization. In the research, a data list required was constructed, as
shown in Table 1.

Table 1. Datasets for world corn salinization.

Data Name Data Content Spatial Resolution Temporal Resolution Data Sources

DEM Global elevation 0.0833◦ × 0.0833◦ 1997 USGS [62]

Slope Global slope 0.0833◦ × 0.0833◦ 1997 GAEZ [63]

Soil Properties

Global soil distribution
raster image and soil

physical and chemical
properties such as PH,

soil depth,
conductivity, etc.

0.0833◦ × 0.0833◦ 1995 ISRIC
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Table 1. Cont.

Data Name Data Content Spatial Resolution Temporal Resolution Data Sources

Meteorological

Global precipitation,
temperature, solar

radiation, and other
information

0.5◦ × 0.5◦ 1971–2099
Cross-sector impact
model comparison
projectRCP2.6 [64]

Planting Area Global cultivation crop
region 5 min × 5 min 1992

Sustainability and the
Global Environment,

University of
Wisconsin-

Madison [65]

Corn Parameter Data Corn EPIC Model
Reference (US) Site -

Texas A&M University
College of Agriculture

and Life Sciences

Growth Period Corn planting time and
growth period length 0.5◦ × 0.5◦ 2000–2015

Nelson Institute for
Environmental Studies

at the University of
Wisconsin-Madison

[66]

Irrigation
Global annual

irrigation water of
agriculture(mm)

0.5◦ × 0.5◦ 1995
Institute of Industrial
Science, University of

Tokyo [67]

Fertilizer Global annual fertilizer
application for maize 0.5◦ × 0.5◦ 2012 Earth stat [68]

Corn production

Production data for
global country units Vector unit 1995–2004 FAO

China provincial unit
production data Vector unit 1995–2004

Department of
Plantation

Management, Ministry
of Agriculture, China

US state unit
production data Vector unit 1995–2004

United States
Department Of

Agriculture

Australian state unit
production data Vector unit 1995–2004 Australian Bureau of

Statistics

India state unit
production data Vector unit 1995–2004

Department of
Agriculture and

Cooperation

Evaluation unit
World administrative

divisions, rivers,
lakes, etc.

Vector unit 1995–2004

ESRI, China Surveying
and Mapping
Geographic

Information Bureau,
CRU TS2.1, DIVA-GIS

Aridity Index Global Map of Aridity 10 arc minutes 1961–1990 FAO [69]

Other salinization
research results

Excess salts 0.5◦ × 0.5◦ 1971–1981 Harmonized World Soil
Database [70]

Cs Vector unit 1991 GLASOD [71]

2.3. Method
2.3.1. Features and Simulation Process of EPIC0509

The version of the EPIC model used in this study is EPIC0509, which is a classic version
officially developed by EPIC and released in 2006 [34]. This version has the following
features: It operates on a daily timestep, capable of simulating crop growth conditions
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for 1–4000 years; the model provides basic soil, weather, tillage, and crop parameters;
the soil can be divided into 10 layers; there is an optional weather generator; and the
site-specific model has been improved to a field-scale model. It is widely used in crop
growth simulation [28,72–74]. The main simulation process of the EPIC0509 model can be
divided into 4 steps (Figure 2): (1) based on temperature (temperature and heat required
by crops) to simulate the phenological development of crops, with heat unit index as the
characterization index, this process affects the calculation of leaf area and root weight;
(2) the growth of potential biomass of crops was simulated based on light energy (solar
radiation, sunshine hours and light energy conversion rate), with leaf area index as the
core index; (3) simulated the environmental stress (water, salt, temperature and nutrients)
during the growth of crops. Among them, the maximum stress value was involved in the
simulation calculation of leaf area and aboveground biomass; and (4) simulated crop yield
based on aboveground biomass and harvest index, in which aboveground biomass was
comprehensively affected by root weight, potential biomass, and environmental stress, and
harvest index was affected by environmental stress and potential harvest index.
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2.3.2. Identifying Hazard Factors for Corn Salinization

In the previous experimental studies on the effects of salinization on crops, the evalua-
tion was generally based on soil salinity combined with certain environmental conditions
to construct hazard indicators, which cannot accurately reflect the independent impact of
salinity on crops. The EPIC model simulates various environmental stress values in the
crop growth process on a daily basis, which reflect the independent severity of different
stresses on crop growth. The salinity stress value is calculated based on the crop’s irrigation
conditions and original soil conditions, and it quantifies the yield loss caused by the final
soil salinity concentration.

Soil salinity is closely related to irrigation, and its calculation formula is as follows [42]:

WSLTi+1 = WSLTi + 0.01× AIRi × CSLTi (1)

WSLT: Soil salinity content; AIR: maximum irrigation amount per time; CSLT: salt
concentration in irrigation water.

Soil moisture content has a significant impact on soil salinity stress, and its calculation
formula is as follows [42]:

STi+1 = STi + AIRi (2)

ST: Soil moisture content; AIR: maximum irrigation amount per time.
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The daily salt stress value is the hazard factor of this study, and its calculation formula
is as follows [42]:

SWRZi+1 = SWRZi + STi × (RZ− Zi−1)/(Zi−1 − Zi) (3)

TSRZi+1 = TSRZi + WSLTi × (RZ− Zi−1)/(Zi−1 − Zi) (4)

SS = a× (0.15625× TSRZ/SWRZ− b) (5)

SS: The daily salinity stress value. In addition, SWRZ and TSRZ are the intermediate
variable, the initial value is 0.

The calculation formula for salinity stress during the maize growth period is as
follows [75]:

SSTotal = ∑total
i=1 SSi (6)

SSTotal represents the total salinity stress value during the maize growth period, and
SSi represents the salinity stress value for the i-th day.

2.3.3. Intensity of Hazard Caused by Corn Salinization

Constructing an index for the intensity of salinization hazard based on daily salinity
stress values [75].

SI =
SSi

total
max

(
SSi

total
) (7)

Among them, SSi
total : total salt stress in the scenario i, max

(
SSi

total
)
: the largest total

salt stress value of scenarios in the current year.
The maximum value of salinity stress in a given year is obtained through the simulation

of salinization scenarios. In the EPIC model simulation, there are three main aspects that
can cause yield reduction in crops, and corresponding measures are taken to mitigate
them. First, field management measures, including diseases, pests, and management errors,
are automatically excluded in the simulation. Second, soil erosion conditions, such as
water erosion and wind erosion, are eliminated by disabling the water erosion and wind
erosion modules in the model, thus not considering their influence during the simulation.
Third, environmental stress factors, including temperature stress, nutrient stress (nitrogen,
phosphorus, potassium), water stress, and ventilation stress, are addressed by setting
appropriate parameters in the model to exclude these environmental stress factors (Table 2).

Table 2. Elimination of environmental stress elements.

Elimination of Coercion Type Elimination Method

Temperature stress Management measures automatic fertilization
Nutrient stress Management measures automatic fertilization

Water stress Set up automatic irrigation to meet crop water requirements

Ventilation stress Pre-experiment setting the maximum water supply so that
no ventilation stress is generated

According to the calculation formula of the salinity stress value, it can be inferred that
salinity is involved in the hazard process of salinization through the initial soil salinity and
irrigation water salinity, while the final soil salinity content affects crop yield. Therefore, in
the model simulation process of the scenarios with the highest total salt stress, we set the
initial soil salt concentration, namely conductivity, as 0, and established the highest salt
concentration of irrigation water to obtain the extreme yield loss scenario.
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2.3.4. Calculation of Crop Yield

The salt tolerance of crops to salinization is closely related to their species and vari-
ety [76]. The classification criteria for determining the salt tolerance of crops are based on
soil salinity, evapotranspiration loss, and water daily stress index. The calculation formulas
for crop yield under salt stress caused by different dominant factors vary [77]. In cases
where the dominant factor of salt stress is soil salinity, the crop yield formula is as follows:

Y = 100− b(ECe − a) (8)

Y is relative yield, ECe is the electrical conductivity of soil solution (dS/m), a is the
threshold electrical conductivity tolerance of the crop (dS/m), and b is the slope, which
represents the reduction rate of yield per unit electrical conductivity.

2.3.5. Salinization Hazard Intensity Recurrence Algorithm

Information diffusion is a method based on fuzzy set theory for comprehensive
evaluation of regional environmental risks [78]. Its specific application in this study is
as follows:

The indices of salinization hazard intensity are statistically analyzed, with these hazard
intensity indices denoted as x1, x2, · · ·, xm, then

X = {x1, x2, · · · , xm} (9)

X is the observation sample set, xi is the index of the hazard intensity caused by
salinization of a cornfield in the ith year (i = 1, 2, . . . , m; m = 24);

Let the domain of the hazard intensity index be U:

U = {u1, u2, · · · , un} (10)

Each individual data sample, denoted as xi, can diffuse the information it carries to all
points in the domain of hazard intensity index U using Formula (10):

fi
(
uj
)
=

1
h
√

2π
exp

[
−
(
xi − uj

)2

2h2

]
(11)

The variable h is referred to as the diffusion coefficient, and its value can be determined
based on the maximum and minimum values of the hazard intensity index in the sample
set, as well as the number of samples m. The calculation formula for h is as follows:

h = 2.6851(b− a)/(m− 1) (12)

where a = min
1≤i≤m

{xi}, b = max
1≤i≤m

{xi}.
Based on this value, an estimation of the hazard intensity beyond the probability can

be obtained [2].

3. Results
3.1. Mean Expected Hazard Intensity of Global Corn Salinisation

In this study, meteorological station data from 1971 to 2004 were selected. The actual
conductivity content in the soil was used as a substitute for irrigation water salinity to
calculate the salinization index (SI) for each year and grid in the 0.5 × 0.5 grid unit. The
expected results of salinization hazard intensity were obtained and presented in Figure 3.
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Figure 3. Mean expected hazard intensity of global corn salinization.

According to Figure 3, the red areas in the graph (with hazard index > 0.8) indicate
the highest salinization hazard intensity for maize. These areas are primarily distributed
in Central Asia, northwestern China, southern South America, and the western coast
of southern Africa. Asia is identified as the region facing the most severe salinization
threat. Oman, the southern part of the high mountains and basins in northwestern China,
the plains and hills in central-western Kazakhstan, and the mountainous regions in the
northeastern plains all have an average salinization hazard index above 0.5. Additionally,
the Nile River Delta and the western side of the South African plateau, as well as the
central-northern plateau in Algeria, are also high-risk areas for salinization.

The salinization hazard intensity is related to aridity levels [79]. Based on the aridity
classification data from the FAO Global Map of Aridity, the salinization hazard intensity is
correlated with the aridity level. Subsequently, the salinization data are categorized based
on the aridity level to study the distribution of salinization grid points in each category
(Figure 4).

Land 2023, 12, x FOR PEER REVIEW 9 of 19 
 

 

Figure 3. Mean expected hazard intensity of global corn salinization. 

According to Figure 3, the red areas in the graph (with hazard index > 0.8) indicate 

the highest salinization hazard intensity for maize. These areas are primarily distributed 

in Central Asia, northwestern China, southern South America, and the western coast of 

southern Africa. Asia is identified as the region facing the most severe salinization threat. 

Oman, the southern part of the high mountains and basins in northwestern China, the 

plains and hills in central-western Kazakhstan, and the mountainous regions in the north-

eastern plains all have an average salinization hazard index above 0.5. Additionally, the 

Nile River Delta and the western side of the South African plateau, as well as the central-

northern plateau in Algeria, are also high-risk areas for salinization. 

The salinization hazard intensity is related to aridity levels [79]. Based on the aridity 

classification data from the FAO Global Map of Aridity, the salinization hazard intensity 

is correlated with the aridity level. Subsequently, the salinization data are categorized 

based on the aridity level to study the distribution of salinization grid points in each cat-

egory (Figure 4). 

 

Figure 4. Boxplots of salinization index for different aridity types. 

According to Figure 4, the salinization hazard intensity index is highest in hyper-arid 

regions, with a median value of 0.77 and an interquartile range of approximately 0.4, in-

dicating a relatively high and concentrated salinization intensity in that area. Arid and 

Figure 4. Boxplots of salinization index for different aridity types.

According to Figure 4, the salinization hazard intensity index is highest in hyper-arid
regions, with a median value of 0.77 and an interquartile range of approximately 0.4,
indicating a relatively high and concentrated salinization intensity in that area. Arid and
semi-arid regions also exhibit high salinization hazard intensity, with median values of
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0.51 and 0.44, respectively, and interquartile ranges of 0.5 and 0.6, suggesting relatively
high salinization intensity but with more dispersed values in these regions. Dry sub-humid
regions, as transitional zones between arid and humid areas, show a median salinization
hazard intensity index of 0.37, lower than the previous three types, indicating a decrease
in salinization intensity. Humid regions have the lowest salinization hazard intensity
index, with a median value of 0.29 and an interquartile range of approximately 0.3. The
values are concentrated between 0.2 and 0.5, indicating a relatively low and concentrated
salinization intensity in that area. Additionally, the boxplot reveals some outliers with
higher salinization hazard intensity index in the humid region. This suggests that the
salinity index is generally low in Humid, but there are some areas of high salinity along the
coast of the sea and inland lakes. In summary, arid and semi-arid regions exhibit higher
salinization levels, while humid regions experience relatively lower salinization intensity.

3.2. Global Risk Assessment of Salinization Hazard Factors with Different Return Periods

When sample information is incomplete in the assessment of hazard factor risk, the in-
formation diffusion method can be used to calculate the exceedance probability of a certain
hazard intensity. In this study, based on the information diffusion model, the salinization
hazard factors of a 30-year sample were calculated for different occurrence probabilities
(return periods of 10, 20, 50, and 100 years). Figure 5 illustrates the results of salinization
hazard intensity calculation. This study also conducted a statistical analysis of the top ten
countries in terms of average salinization intensity under different return periods, as shown
in Table 3. Additionally, we calculated and ranked the average salinization intensity under
different return periods for the top ten largest countries in the world by land area (Table 4).
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Table 3. Top ten countries and their average salinization intensity values under different return
periods.

Rank
10-Year-Return-Period 20-Year-Return-Period 50-Year-Return-Period 100-Year-Return-Period

Country Mean Country Mean Country Mean Country Mean

1 Oman 0.99 Oman 0.99 Oman 1.00 Oman 1.00
2 Egypt 0.90 Egypt 0.91 Egypt 0.92 Egypt 0.92
3 Mongolia 0.73 Mongolia 0.78 Mongolia 0.82 Mongolia 0.84
4 Kuwait 0.65 Kuwait 0.66 Kuwait 0.66 Kyrgyzstan 0.67
5 Turkmenistan 0.62 Turkmenistan 0.64 Turkmenistan 0.65 Kuwait 0.66
6 Yemen 0.58 Kyrgyzstan 0.61 Kyrgyzstan 0.65 Turkmenistan 0.66
7 Uzbekistan 0.57 Yemen 0.60 Yemen 0.61 Yemen 0.62
8 Kyrgyzstan 0.56 Uzbekistan 0.58 Uzbekistan 0.59 Uzbekistan 0.60
9 Algeria 0.56 Algeria 0.57 Algeria 0.58 Saudi Arabia 0.59

10 Iraq 0.54 Saudi Arabia 0.56 Saudi Arabia 0.58 Algeria 0.58
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Table 4. Ranking of the 10 largest countries in terms of average intensity of salinization for different
return periods and their average salinization intensity values.

Country
10-Year-Return-Period 20-Year-Return-Period 50-Year-Return-Period 100-Year-Return-Period

Rank Mean Rank Mean Rank Mean Rank Mean

Russia 28 0.19 29 0.20 29 0.20 29 0.21
Canada 68 0.00 68 0.00 69 0.01 69 0.01
China 21 0.30 21 0.31 21 0.32 21 0.33

United States 69 0.00 69 0.00 70 0.00 70 0.00
Brazil 76 0.00 76 0.00 76 0.00 76 0.00

Australia 35 0.09 36 0.09 36 0.10 36 0.10
India 63 0.01 64 0.01 63 0.01 63 0.01

Argentina 27 0.20 27 0.20 28 0.21 28 0.21
Kazakhstan 14 0.45 14 0.46 14 0.47 14 0.48

Algeria 9 0.56 9 0.57 9 0.58 10 0.58

The influence range of high salinization-induced disaster intensity expands with an
increase in the return period, as evidenced by Figure 5, Tables 3 and 4. Conversely, the
influence range of low salinization-induced disaster intensity decreases. The ranking of
total salinization intensity remains relatively stable across different recurrence periods.
Specifically, during return periods of 10, 20, 50, and 100 years, Oman, Egypt, and Mon-
golia consistently ranked in the top three countries worldwide, with an average disaster
intensity of over 0.7 (Table 3). However, the rankings of the last seven countries within
the top ten for average salinization intensity have shown slight fluctuations. For instance,
Kuwait ranked fourth during the 10-year and 20-year return periods, but dropped to fifth
during the 100-year return period. Similarly, Kyrgyzstan ranked eighth during the 10-year
return period but improved to fourth during the 100-year return period. In terms of the
recurrence periods of 10, 20, 50, and 100 years, the rank of mean salinity intensity among
the ten countries with the largest areas remained stable (Table 4). Among the countries
mentioned, Algeria, Kazakhstan, China, and Russia exhibit relatively high average salin-
ization intensity, ranking 9th, 14th, 21st, and 28th, respectively, worldwide. Remarkably,
despite being the smallest among them, Algeria achieves the highest ranking. Algeria
consistently experiences an average intensity of salinization greater than 0.5 during the
four recurrence periods, placing it around 9th globally. This phenomenon is closely linked
to the predominantly dry climate in Algeria’s savanna and tropical desert climate zones. In
contrast, Brazil, ranking fifth in terms of area, faces comparatively low salinization, with a
ranking of 76. This occurrence can be attributed to the majority of Brazil’s geographical
location in a humid area.

4. Discussion
4.1. Comparison of Salinization Results
4.1.1. Model Validation

We conducted parameter sensitivity analysis, parameter adjustment, and validation
on the model using corn yield to ensure the simulation accuracy of the EPIC0509 model.
The specific process can be found in the Yin’s paper [80–82].

4.1.2. Compared to the Excess Salts Data

In order to evaluate the stability of the research results, we conducted a non-parametric
correlation test, specifically the Spearman’s rank correlation test, between the results of this
study and the excess salts data from the Harmonized World Soil Database v 1.2 (HWSD), at
the national and comparable geographical unit scales [60]. The results showed a significant
correlation between the two at the 0.01 level. Additionally, the comparison results between
the national and comparable geographical units were depicted as scatter plots and data
distribution graphs for the salinization levels (as shown in Figure 6).
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Figure 6. Comparison with Excess Salts at national unit and comparable geographic unit scales.
((a): scatter plot of salinity classes at the national unit scale; (b): Data distribution of salinity levels at
the national unit scale; (c): Scatter plot of salinity levels at the comparable geographical unit scale;
(d): Data distribution of salinity levels at the comparable geographical unit scale).

The scatter plot (a) and the data distribution graph (b) at the national unit scale show a
strong consistency between the salinization intensity map of this study and the excess salts
data from HWSD, with a high R2 value of 0.95. However, due to the disparate areas between
countries, the distribution of salinization total levels is highly concentrated, with a majority
falling below 1000. From the scatter plot of salinization total levels at the comparable
geographical unit scale, it can be observed that there is good consistency between the
salinization intensity map of this study and the excess salts data from HWSD, with an R2

value of 0.86. According to the data distribution graph of salinization total levels at the
comparable geographical unit scale, the salinization levels of this study are slightly higher
overall compared to those of HWSD’s “Excess salts”.

4.1.3. Compared to the Salinization Data from GLASOD

The Cs index in the World map of the status of human-induced soil degradation,
created by GLASOD, is used to measure the degree of salinization. To compare the results
of this study with the salinization data from GLASOD, we conducted a non-parametric
correlation test, specifically the Spearman’s rank correlation test, at the national and com-
parable geographical unit scales [60]. The results showed a significant correlation between
the two at the 0.01 level. Additionally, the comparison results between the national and
comparable geographical units were depicted as scatter plots and data distribution graphs
for salinization levels (Figure 7).
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Figure 7. Comparison with GLASOD at national unit and comparable geographic unit scales.
((a): scatter plot of salinity classes at the national unit scale; (b): Data distribution of salinity levels at
the national unit scale; (c): Scatter plot of salinity levels at the comparable geographical unit scale;
(d): Data distribution of salinity levels at the comparable geographical unit scale).

Although there are not many studies that have the same research scope as this study
and GLASOD at the national and comparable geographical unit scales, they still have a
strong comparability. As shown in Figure 7, this study and GLASOD had high consistency
in their research results at the national unit scale, with an R2 of up to 0.92. The consistency
at the comparable geographical unit scale was slightly lower, with an R2 of 0.89. Overall,
both at the national unit scale and the comparable geographical unit scale, the salinization
intensity in this study is slightly higher than the salinization grade in GLASOD.

4.2. Research Value and Policy Recommendations

Salinization significantly affects crop yields, particularly for irrigated crops. Examining
the risk of salinization as a hazard can provide vital information for mitigating agricul-
tural losses caused by salinization and promoting sustainable agricultural development.
This study utilized salt stress as an indicator to assess hazardous factors, surpassing the
limitations associated with using external environmental conditions to establish hazard
indicators. The EPIC0509 model was employed to simulate the growth of corn, obtaining
results on the global distribution and quantification of corn salinization intensity. This
research has made valuable contributions to quantifying regional land degradation and
addressing the gap in global salinity risk assessment mapping.

The risk assessment of corn salinization hazard factors under different return periods
was conducted based on the principle of information diffusion. This paper introduces
a novel approach to studying hazard factors of large-scale salinization, which sets the
groundwork for salinization risk assessment. Using salt stress as an indicator for assessing
the risk of salinization hazard factors may offer a potential direction for future research. It
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serves as a warning against irrational land cultivation practices and the use of transitional
groundwater irrigation in ecological transition zones.

Based on the findings of this study, we propose the following recommendations:

(1) Adapt to climate change by adjusting agricultural production structure and selecting
crop varieties with strong resilience to climate impacts.

(2) Optimize land use and resource allocation by planning agricultural layout based
on differences in land productivity potential, improving resource efficiency, and
enhancing land protection and improvement measures to prevent salinization.

(3) Promote carbon-neutral agriculture by reducing greenhouse gas emissions from
farming, promoting low-carbon agricultural technologies such as organic farming
and precision fertilization, and increasing farmland carbon sequestration through
afforestation and wetland conservation.

(4) Strengthen salinization prevention and control efforts by enhancing monitoring and
assessment, developing scientific prevention and control measures such as ratio-
nal irrigation, drainage infrastructure construction, and soil improvement, and pro-
viding training and technical guidance to farmers to enhance their ability to cope
with salinization.

4.3. The Outlook and Shortcomings

While this study introduces a new approach to assessing the risk of salinization factors,
it overlooks the evaluation of salinization risk in conjunction with corn yield loss rates. The
salinization scenario in this study only considers salt stress while disregarding the impact
of temperature, precipitation stress, and other forms of land degradation. Additionally, the
optimal scenario is applied to all other stress factors without considering their relationship
with salinization. In future studies, the following steps will be taken: (1) Integrate disaster
risk and production loss rates to construct a global corn salinization vulnerability curve
and evaluate the risk of corn salinization worldwide. (2) Further examine the relationship
between salinization, temperature stress, and precipitation stress. (3) Investigate the
connection between salinization and other forms of land degradation, such as soil erosion
and desertification, to achieve a comprehensive evaluation of land degradation. These
efforts aim to provide a more comprehensive assessment of salinization and its impact on
land degradation.

5. Conclusions

In this study, the salinization hazard factor was determined by the salt stress value.
The global cornfield served as the research area, and salinization scenarios were established
by eliminating environmental stress factors. Using the EPIC model, the day-step-length salt
stress value during the corn growth process was simulated. The risk of corn salinization
intensity was evaluated on a global scale, and the intensity of salinization under different
return periods was calculated based on the principle of information diffusion. The main
conclusions are as follows: (1) Environmental stress factors were eliminated, salinization
scenarios were established, and algorithms for the growth season salinization index and
disaster intensity index were proposed. (2) High-risk areas (with disruption index > 0.8)
for corn salinization were primarily located in Central Asia, northwestern China, southern
South America, and the southern coast of Africa. Hazard factors in arid and semi-arid
regions posed a high risk, while wet areas had relatively lower risk. (3) The risk of
salinization hazard increased with longer return periods (i.e., 10, 20, 50, and 100 years). The
impact scope expanded, and the level of danger increased. Oman, Egypt, and Mongolia
had an average salinization intensity greater than 0.7, ranking as the top three countries for
all return periods. (4) The salinization intensity map produced in this study exhibited high
consistency with the Excess salts of HWSD and Cs of GLASOD. The R2 values between
the two results at the country and regional units exceeded 0.9, while the R2 values at the
comparable geographic unit exceeded 0.8. However, the salinization grades in this study
were slightly higher overall than those of excess salts of HWSD and Cs of GLASOD.
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