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Abstract: Planners need to fully understand the quantity of land supply and its matching relationship
with population demand, as these are prerequisites for urban greenspace planning. Most papers
have focused on single cities and parks, with little attention paid to comparative analysis between
multiple cities on a macro scale, ignoring the influence of spatial effects and leading to a lack of
basis for regional green infrastructure planning. This paper selected 102 cities in Hunan province
as case studies to comprehensively conduct empirical research using the spatial mismatch model
and the geographically weighted regression method. The urban parkland in Hunan province are
characterized by significant spatial heterogeneity and correlation, and the mismatch between land
supply and population demand should not be ignored, with oversupply and undersupply co-existing.
The urban parkland and its mismatch with population are influenced by a number of factors, and
each factor has a stronger influence on the latter than the former. Different factors vary widely in the
nature and intensity of their effects, and the dynamics are more complex. Economic development,
financial capacity, and air quality are key factors, with the former having a negative impact and
the latter having opposite (positive) effects. We suggest that when the government allocates land
resources and targets for urban parks, it should formulate a differentiated allocation plan based on
the supply and demand conditions of each city; besides, it should also place emphasis on regional
integration and coordination and support mutual cooperation.

Keywords: land supply; population demand; spatial mismatch; urban park; China

1. Introduction

Urban parks are a part of greenspace and green infrastructure, and they play a positive
role in improving the urban ecological environment and enhancing the well-being of
residents. They are an important supply side to meet the needs of urban residents for a
better and livable life [1]. The population is the main body of urban life and comprises the
demand side of urban parks, which influences and feeds back into urban parks in many
ways. The matching between land supply and population demand for urban parks directly
determines the quality of the human habitat; furthermore, it is part of the urban planning
and public health system, which has become one of the key indicators influencing the
design of government policies and project decisions [2]. Therefore, analyzing the dynamic
characteristics of land supply and population demand for urban parks, quantitatively
measuring the matching relationship between supply and demand, and revealing their
driving mechanisms are of great value in promoting sustainable urban development and
improving citizens’ well-being.

In China’s ecological civilization construction, urban parks are regarded as the key
hand of livable city and eco-city construction, and the government is calling for a shift
from the construction of “urban parks” to the creation of “park cities” [3]. China has seen
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a spike in the number of urban parks and a rapid expansion of land area in recent years.
According to data released by China’s Ministry of Housing and Urban-Rural Development,
the number of urban parks in China grew from 9955 to 19,823 from 2010 to 2020, with an
average annual growth up to 99.13%; during the same period, the amount of land used for
urban parks increased from 258,177 hectares to 538,477 hectares, with an average annual
growth of 108.57%. It should be noted that because China is still in the rapid development
stage of urbanization and industrialization, the expansion of urban industrial, residential,
and infrastructure land is in strong demand; however, along with the increasingly stringent
protection of arable land, the sprawling expansion of cities to the suburbs is facing more
resistance and difficulties, which has led to the transformation of parkland located in urban
areas, especially in the city center, into industrial and commercial land from time to time [4].
Therefore, with the increasingly serious contradiction between urban population and land,
the expansion of urban parkland is under increasing pressure, and its matching with
the demand of the population has received increasing attention. In summary, analyzing
the matching between urban-parkland supply and population demand in the context of
ecological civilization, as well as revealing their driving mechanisms will provide a basis
for green space planning and park city construction.

Urban greenspace planning is an activity that is based on the unified planning and
systematic consideration of urban greenspace types to make reasonable arrangements and
form a certain layout form, so that the greenspace is capable of ecological protection and
satisfies living and production needs [5]. It provides leisure and sociocultural functions.
Urban greenspace consists of natural elements/natural remnants and man-shaped green
areas, including parks, lawns, flower beds, and other vegetation-covered areas. The
research scope of this paper is limited to urban parks. Urban greenspace is characterized
by hierarchy, systematicity, and continuity, and in general the green infrastructure inside
and outside the city is interconnected [6]. The construction of urban parks in the context of
park city and livable city construction, an important guarantee of a good and livable life
for urban population, has attracted much attention from the government and scholars, and
analyzing the matching relationship between its land supply and population demand holds
important value for enhancing the sustainability of urban development and the happiness
of residents.

This paper analyzed the evolution pattern of urban parkland in 102 cities in Hunan
province using the Boston Consulting Group matrix, the spatial mismatch model, and the
geographically weighted regression method; measured the matching relationship between
land supply and population demand; and revealed the mechanism of different factors
affecting them in an attempt to provide a basis for the higher government’s land resource
allocation and the local government’s green space planning. This paper is committed to the
following questions: What is the spatiotemporal evolution pattern of urban parkland in
Hunan province? How can we quantitatively measure the matching relationship between
land supply and population demand for urban parks in Hunan, especially identifying
which cities face spatial mismatch problems? What are the factors influencing the supply
of urban parkland and its matching with population demand?

The innovative contributions of this paper are the comparative analysis of multiple
cities on a regional scale and the analysis of the mismatch power mechanism of supply and
demand. The former is more valuable for the planning, construction, and management of
urban parks, while the latter further enriches the theoretical system of supply and demand
of urban parks. This paper expanded the study of the relationship between land supply and
demand in urban parks from a single-city case study to a multi-city analysis at the regional
scale. It also introduced a model that can quantitatively measure the direction and degree of
spatial mismatch to identify cities with imbalances in supply and demand, thus providing
a basis for land resource-allocation decisions and green space planning by provincial and
city governments. In addition, this paper analyzed the nature and direction of the role
of multidimensional influencing factors such as demographic and social; economic and
financial; and natural and environmental factors on the relationship between supply and
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demand by means of a geographically weighted regression model. It further revealed
the spatial effects of their influencing mechanisms and deepened scholars’ understanding
of the dynamics of the imbalance between supply and demand and spatial mismatch in
urban parks.

2. Literature Review
2.1. Supply and Demand of Urban Parkland

Urban-parkland supply and demand involves the number of parks, land area, spatial
distribution, and environmental quality, and relevant studies cover areas such as analysis
of urban park site selection and allocation; spatial distribution and planning studies; and
needs assessment.

For urban-park siting and land allocation, Li [7] integrated F-AHP (fuzzy hierarchical
analysis) and GIS (geographic information systems) to propose a methodology for urban-
park siting and made a map of urban-park siting potential in Nanjing, China. Using GIS
buffer technology and urban equity theory, Fasihi [8] analyzed and found that urban parks
in Ilam, Iran, are disproportionately clustered in the northern part of the city, and that the
city center and the southern part of the city need to be allocated more land resources by the
government to build urban parks.

For urban park planning and spatial distribution, Li [9] argued that most cities face
the challenges of park shortage and uneven distribution and proposed a spatial planning
approach for urban parks and green spaces based on equity of opportunity through a
case study of Taiyuan. Yilmaz [10] believed that vegetation is the core element of urban
parks, and by applying visual analysis and aesthetic theory, he proposed an alternative
planting-design method and landscape silhouette-analysis model for urban parks. Li [11]
and Liang [12] analyzed the impact of spatial distribution of urban parks on residents’
satisfaction in Shanghai using social media data sets.

For the assessment of urban-parkland demand, Zhang [13] identified the space of
insufficient urban park supply in the suburbs of Nanjing, China, based on the two-step
floating catchment area model, and suggested that the government increase the supply of
urban parkland in the identified area. Gelo [14] assessed the demand and willingness to
pay for urban parks by Kampala residents based on Bayesian and contingent valuation
methods (CVM) and clarified the conditions for the construction of new urban parks.

2.2. Benefits and Value Analysis of Urban-Parkland Use

Post-use evaluation of urban parkland includes economic, social, cultural, and eco-
logical benefits, with most studies focusing on the areas of cooling effect and air quality
improvement [15].

Economic effect research focuses on the economic externalities of land use in urban
parks, estimation of economic value, and analysis of the impact of industrial and business
development [16]. For example, Kim [17] and Long [18] argued that urbanization has
exacerbated the scarcity of land for urban parks, arguing that urban parks have positive
economic externalities on the value of land use in Korea and China. Neckel [19] and
Silva [20] quantitatively assessed the economic value of urban parks in Brazil and Portugal
using CVM, WTD (willingness to donate), and questionnaire methods. Kim [21] and
Chen [22] assessed the value of parks through changes in residential prices and concluded
that urban parks, especially green spaces, have a positive impact on residential prices.

Social benefit research focuses on the social value of land use in urban parks and the
analysis of social interactions, which has proposed the concept of green gentrification and
evaluated the impact of urban parks in the sense of security (crime) and well-being in hu-
man settlements. For example, Baltazar [23] analyzed the social value of urban parks in the
Philippines through fsQCA (fuzzy-set qualitative comparative analysis). Mullenbach [24],
Triguero-Mas [25], and Zhang [26] argued that urban parks have a positive value in land
development (green) gentrification (gentrification) and have become social healers of social
space. Nazmfar [27], Sezavar [28], and Taylor [29] tested the spatial association between
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urban park characteristics and crime based on GIS and generalized structural equation
modeling, revealing the impact of environmental variables such as park size, class, features,
guardrails, vegetation distribution, and density on crime. Schwartz [30] and Scopelliti [31]
measured the well-being benefits of urban parks in the United States and Colombia using
Twitter and questionnaire data.

Ecological benefit research focuses on the performance evaluation of urban parks in
terms of air quality and heat island effect improvement [32] and has gradually developed
an approach to urban planning and park design that is oriented towards carbon reduction
and cooling. For example, Yin [33], Ji [34], and Gratani [35] analyzed their impacts on air
pollution (PM2.5 and CO2) and their influencing factors through empirical studies of green
spaces in urban parks in Beijing and Rome, providing a basis for improving air quality-
oriented green space design and construction. Simsek [36] measured the cooling capacity
of an urban park in Istanbul and further analyzed its interaction with the surrounding
architectural pattern and morphology. Yao [37], Du [38], Park [39], and Jo [40] proposed a
strategy for designing and constructing urban parks based on the life cycle assessment of
heat island effect and carbon budget. They analyzed how to plan urban parks in order to
obtain better cooling and carbon reduction. Sikorski [41] and Villasenor [42] conducted a
comparative analysis of Informal Green Spaces (IGS) and Urban Parks and Green Spaces,
revealing that the former has an important value in the conservation of biodiversity (e.g.,
bird conservation) and that the latter dominates in the area of cultural services.

Historical and cultural benefit studies have shown the mutually reinforcing effects
of urban parks and historical and cultural preservation. For one thing, the planning and
construction of urban parks is commonly viewed as a spatial tool for the preservation of a
city’s historical and territorial cultural heritage [43]. For example, Loughran [44] argued
that the transformation of historical and cultural heritage in post-industrial cities into urban
parks (e.g., High Line Park in New York) through architectural interventions, landscaping,
urban horticulture, the curation of cultural activities and events, and the experiencing
of creative projects is reshaping the social space of the contemporary city. For another,
the presence of cultural heritage has also become an important factor in determining the
location and layout of urban parks. For example, Uggla [45] found through a case study
of Stockholm’s National City Park that historical and cultural heritage and its coherence
are key factors in protecting urban parkland from encroachment and the impacts of urban
construction. Ozguner [46] found that cultural and ethnic differences lead to significant
differences in the attitudes of urban residents towards urban parks and green spaces. For
example, Turkish and Western perceptions of the safety of urban parks are opposite, with
the former perceiving the parks as safe and positive, while the latter holding that they are
negative and generally concerned about the safety of the parks.

2.3. Relationship between Urban Park and Population

The analysis of the relationship between urban parks and population has long been of
interest to scholars, with most efforts focused on accessibility and satisfaction evaluations,
visitor composition and preference analyses, and their impact on urban park design.

Accessibility and satisfaction evaluation is the most mature field, giving rise to succes-
sive analytical models based on spatial distance, time consumption, and spatio-temporal
integration. For example, Khahro [47] and Semenzato [48] conducted case studies on spatial
accessibility of urban parks in Pakistan and Italy using GIS tools and spatial distance mod-
eling. Li [49] introduced the concept of time sensitivity on the basis of distance accessibility
and analyzed the characteristics of the service radius and area of urban parks in Shanghai
based on actual time consumption. Shi [50] established an n-minute service circle system
for the Hangzhou urban park system based on integrated temporal and spatial parameters.
Long [51] further empirically analyzed the comprehensive accessibility of urban parks in
Changsha, China. by integrating global accessibility, perceived accessibility, local accessibil-
ity, and psychological accessibility through spatial syntax. Maniruzzaman [52] conducted
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an analysis of satisfaction with urban parks in Saudi Arabia and concluded that developing
new parks and upgrading old parks is a priority for the authorities of the city of Dammam.

Most of the analysis of the composition and preferences of visitors (Visitors) focuses
on the analysis of a single city park sample, using questionnaires and online big data to
analyze the structure and characteristics of the populations entering the park, with an
attempt to establish user profiles. For example, Yilmaz [53] studied the user profile of
urban parks in Turkey through questionnaire methodology, including parameters such
as gender, age, marriage, education, and income. Mantymaa [54] studied urban parks
in Finland through a latent class model and found that urban parks were more valued
by low-income groups than high-income groups. Van [55] and Song [56] analyzed what
attributes of urban parks would affect user preferences, based on online stated-choice
experiment and smartphone user mobility big data, in an attempt to provide reference
information for urban park planners, landscape architects, administrators, and investors.

2.4. Research Gap and Objectives

Urban parkland and its relationship with population have long been the focus of
scholars, and this has led to the production of a large number of high-quality papers that
have provided important inspiration and assistance in the design and implementation of
this study. However, there are shortcomings in the current research.

Research on land supply and population demand in urban parks is limited to the
micro-scale, with less attention to macro-scale analyses, resulting in an insufficient basis for
regional land resource allocation in urban parks. Most of the papers study a certain city or
park and analyze the match between population distribution and park distribution through
questionnaires or spatial econometric models, so as to identify the imbalance points of
park distribution, land mismatch, or mismatched space, thus providing a solid basis for
decision making by the city government and park managers. For example, Wang [57]
argued that the distribution of urban park green space supply in central Beijing, China,
is inequitable, and that the supply of land resources is in mismatch with the demand of
residents, offering a guide to ecosystem planning in Beijing. Notably, with the construction
of ecological civilization and park cities, the demand for park construction in every city
is increasing. However, as affected by the cultivated land protection system, the higher
government has increasingly less urban-parkland resources. Therefore, how to rationally
allocate limited urban-parkland resources to lower-level governments for maximized
overall regional efficiency and benefits is becoming a major challenge for higher-level
governments. In short, analysis at the micro-scale can serve decision making in the lower
levels of government, but it cannot provide decision-making information for higher-level
governments in the allocation of urban-parkland resources.

In addition, conducting a multi-city analysis of parkland allocation between cities at
the regional scale will provide an important basis for green infrastructure planning at the
provincial or central government level. Different cities are significantly different from each
other in natural and ecological conditions, resource endowment, stage of development, and
population needs, leading to possible spatial heterogeneity in the geographical distribution
of their urban parklands. And the greenspace and park planning constitute a complex adap-
tive system, where the greenspace inside the city extends to the outside and establishes an
interrelation with the neighboring city, thus contributing to a regional green infrastructure
system. In addition, the quota for urban parkland and the progress of park construction,
affected by the development environment and trends, vary across cities, resulting in spatial
mismatches within a region and leading to parkland oversupply or undersupply in some
cities. In sum, this paper expects to conduct a comparative analysis of greenspace between
multiple cities at the regional scale based on different spatial measurement models, so
as to identify their evolution patterns and spatial mismatches, and to reveal the driving
mechanisms and hidden orders behind them, which will provide a basis for governmental
decision making and spatial planning.
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3. Materials and Methods
3.1. Study Area

Hunan is located in south-central China, neighboring Guangdong, Jiangxi, Hubei,
Chongqing Municipality, Guizhou, and Guangxi. The study area covers all of Hunan,
including 102 cities. The study area encompasses 13 prefecture-level cities, with all the rest
being county-level cities (Figure 1). The land area of urban parks in Hunan expanded from
6763 hectares to 14,243.57 hectares from 2010 to 2020, with an average annual growth of
more than 110%; furthermore, the number of urban parks increased from 175 to 456, with
an average annual growth of more than 160%, indicating a rapid growth in the supply
of urban parks and land resources in the province. Over the same period, the average
urban park area went from 38.65 hectares to 31.24 hectares, indicating that urban parks are
becoming smaller. Per capita urban park green space increased from 8.89 m2 to 12.16 m2,
with an average annual growth of 36.78%, indicating a steady growth in the green space
per capita.
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3.2. Research Steps

The purpose of this research is to comprehensively use multiple methods to analyze the
distribution pattern, change trends, and supply and demand relationship, as well as their
influencing factors, of urban parkland in order to provide a basis for green space planning
and green infrastructure planning. The first step was to collect statistical data on urban
parkland, population, economic, and social development for each city in Hunan province,
and use the maximum–minimum method to standardize the data for preprocessing. Due to
the influence of natural and human factors, urban parks undergo constant changes in time
and space. So, the second step was to use the Boston Consulting Group matrix to analyze
the spatiotemporal dynamics of urban parkland in each city and reveal the evolution
pattern of urban parkland in Hunan province. Due to the multi-dimensional nature of
the land change process and its ecological, social, and economic outcomes in urban parks,
the third step was to use the spatial mismatch model to identify the relationship between
land supply and population demand as well as determine the rationality of land change
in urban parks. Natural and human factors may lead to the expansion or contraction of
land supply in urban parks, resulting in oversupply or undersupply. Therefore, scientists
need to use scientific methods to analyze the impact intensity, nature, and spatial effects of
each factor. The fourth step was to use the geographically weighted regression method to
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analyze the impact of each factor on the land supply of urban parks and its relationship
with population demand in Hunan province. Finally, we promote the application of the
aforementioned analysis results to provide a basis for green space planning and green
infrastructure planning (Figure 2).
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3.3. Research Methods
3.3.1. Boston Consulting Group Matrix

For a conglomerate with multiple business departments, selecting the appropriate
development strategy for each department is a key task in enterprise strategic planning.
The Boston Consulting Group matrix is a commonly used method for enterprise strategic
planning, established by the Boston Company in the United States. In the process of enter-
prise development strategy planning and analysis, the sales growth rate and market share
of products are selected, and their high and low (above and below threshold) combinations
are divided into four types of business development strategies: star, question, cow, and
dog. At present, urban development generally adopts an entrepreneurial model, and for
Hunan province, its subordinate cities have similarities in the development of business
departments under the group company. This article introduces the Boston Consulting
Group matrix to analyze the spatiotemporal evolution dynamics of urban parkland in
Hunan province. During the analysis process, relative share (RS) and growth rate (GR)
were used, with their median values as thresholds. Through the Cartesian coordinate
system, the spatiotemporal evolution patterns of urban parkland in 102 cities in Hunan
were divided into four types (four quadrants)—high-scale–high-growth, high-scale–low-
growth, low-scale–high-growth, and low-scale–low-growth. Among them, RS represents
the competitiveness of urban parkland in Hunan province from the spatial dimension,
while GR represents the growth power of urban parkland in each city from the temporal
dimension. Their calculation formula is [58]:

RS =
UPLi

UPLmax
× 100% (1)
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GR =

(
UPLi −UPL′i

UPL′i
− 1
)
× 100% (2)

In the formula, UPLi is the current (2020) statistical value of urban parkland in county
or city i, UPL′i is the statistical value of urban parkland in i county or city base period (2015),
UPLmax is the maximum value of urban parkland in 102 counties of Hunan province. High-
scale–high-growth represents the optimal trend of land change in urban parks, high-scale–
low-growth represents a large-scale land supply for urban parks, low-scale–high-growth
represents the rapid growth rate of urban parkland, low-scale–low-growth represents the
worst trend of land change in urban parks.

3.3.2. Spatial Mismatch Model

With the development of suburbanization and reverse urbanization, a large population
work in urban centers while shifting their residence from the center to the suburbs, thus
leading to a spatial mismatch between employment and residence. To analyze the degree
of occupational and residential spatial mismatch and its influencing factors, Kain created
the spatial mismatch index in the 1960s to measure the degree of mismatch between the
spatial distribution of urban employment opportunities and places of residence [52]. The
spatial mismatch model has a wide application value. On the basis of the research on the
spatial separation of urban-population occupation and residence, it has been subsequently
introduced into the research fields of urban land spatial allocation [59], spatial allocation of
food resources and financial capital [60,61], development of tourism resources and scenic
spots [62], and spatial distribution of education and health facilities [63,64] to provide a
basis for land-use planning and spatial planning of health facilities. This paper analyzes
the relationship between land supply and population demand in urban parks through
spatial mismatch modeling to determine whether there is a negative phenomenon of
oversupply (waste and inefficiency of land resources) or undersupply (unsatisfactory
population demand, reduced green perception and experience). The spatial mismatch and
contribution indices were calculated as follows [65]:

SMIi =

(
PDi
PD ×UPL−UPLi

)
UPL

× 100% (3)

SMI =
∑n

i=1

∣∣∣ PDi
PD ×UPL−UPLi

∣∣∣
UPL

(4)

CRIi =
|SMIi|
SMI

× 100% (5)

where SMIi is the spatial mismatch index between urban-parkland supply and population
demand in the i-th city, UPLi and UPL represent the number of resident population
in the i-th city and Hunan, PDi and PD represent the area of urban-parkland resource
supply in the i-th city and Hunan, respectively, SMI is the sum of the absolute values of
the spatial mismatch indexes of all the cities in Hunan, and CRIi is the contribution of
spatial mismatch indexes of the i-th city to the spatial mismatch between urban-parkland
supply and population demand in Hunan. Therefore, based on the related research and
the characteristics of the distribution of the value of SMIi in this study, we classified the
spatial mismatch into high negative-spatial mismatch, low negative-spatial mismatch, low
positive-spatial mismatch, and high positive-spatial mismatch by thresholds of 0.5 and
−0.5 (Table 1) [66].
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Table 1. Types and meanings of spatial mismatch between urban-parkland supply and
population demand.

Type Index Meaning

High Positive-Spatial
Mismatch SMIi ≥ 0.5

A serious shortage of land supply for urban parks, reducing the quality of
urban habitat; a serious imbalance between supply and demand, requiring
the government to increase land supply.

Low Positive-Spatial
Mismatch 0.5 > SMIi > 0

Slightly insufficient land supply for urban parks, with highly intensive
utilization of land resources and self-regulation by the city, requiring no
government intervention but to keep the current land supply pattern
unchanged.

Spatial Matching SMIi = 0
Land supply and population demand for urban parks in a mutual match,
with supply and demand in balance in an ideal state; rare in reality, requiring
the current land supply pattern to remain unchanged.

Low Negative-Spatial
Mismatch 0 > SMIi > −0.5

Slight oversupply of land for urban parks, with sloppy utilization of land
resources and self-regulation by the city, requiring no government
intervention but to keep the current land supply pattern unchanged.

High Negative-Spatial
Mismatch SMIi ≤ −0.5

Serious oversupply of land for urban parks, a prominent waste of land
resources; serious imbalance between supply and demand, requiring the
government to control or reduce land supply.

3.3.3. Geographically Weighted Regression Method

The analysis of influencing factors was based on the regression model. The first step
was to test the spatial effects of urban-parkland supply and its mismatch relationship with
population demand. If there is spatial heterogeneity and autocorrelation, the analysis
requires a spatial regression model [67]. The coefficient of variation was adopted to test
spatial heterogeneity during the study and a value greater than 0.36 indicates greater
spatial variation in the dependent variable [68,69]. Moran’s I index was adopted to test
spatial autocorrelation, and a value that is not zero indicates a positive or negative spatial
autocorrelation of the dependent variable [70,71]. Larger absolute values of the coefficient
of variation and Moran’s I represent greater spatial heterogeneity and autocorrelation. The
second step was to analyze the covariance of the influencing factors by least squares linear
regression model (OLS). VIF (variance inflation factor) is a key indicator for determining
the covariance, and a larger value indicates a stronger covariance between the factors.
When VIF is less than 10, it indicates that the covariance between the different factors is
weak and largely negligible [72]. The third step is to calculate the geographical weighted
regression (GWR) analysis results to reveal the local spatial variation in each influencing-
factor force. The final step was to determine the influence of each factor on the supply
of land in urban parks and its mismatch relationship with population demand through a
comparative analysis of GWR and OLS calculations. In the comparative analysis between
GWR and OLS, if the R2 of the former is greater than that of the latter, especially if the
difference between the AICc (Akaike Information Criterion, corrected) of the former and
the latter is more than 3, it indicates that the fitting effect of GWR is better than that of OLS,
and that the inclusion of spatial effects in the regression model significantly improves the
precision of the results of the analysis [73]. The equations are as follows [74,75]:

CV = S/Y,=

√√√√∑n
i=1

(
Yi − ∑n

i=1 Yi
n

)2

n
, Y ∑n

i=1 Yi

n
(6)

Moran′s I =
n ∑n

i=1 ∑n
j=1 Wij

(
Yi −Y

)(
Yj −Y

)
(∑n

i=1 ∑n
j=1 Wij)∑n

i=1
(
Yi −Y

)2 (7)
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Yi = β0(µi , vi)
+ ∑

k
βk(µi , vi)

Xik + εi (8)

where, CV represents the coefficient of variation of the dependent variable, Yi represents
the dependent variable, Y and S represent its mean and standard deviation, respectively,
and the dependent variable includes the amount of land supply in urban parks (PDi), the
contribution of spatial mismatch between land supply in urban parks, and the population
demand (CRIi). n represents the number of cities in the study area (i.e., 102). i and j
represent the ordinal numbers of the dependent variable and the city, respectively. Wij
represents the spatial weights, and the spatial adjacency matrix was used in this paper (i.e.,
the weight is 1 when the two are adjacent, or zero when not adjacent). β0 is a constant term,
(µi, vi) is the spatial coordinates of the i-th city (the coordinates of the center of gravity
point of the city polygon), βk(µi , vi)

is the regression coefficient of the independent variable
of the i-th city, and εi is the error in the regression equation.

3.4. Variable Selection and Data Source

The dependent variables included urban-parkland supply and the spatial mismatch-
contribution rate index, labeled with Y1 and Y2, respectively. The former was used to
analyze the current urban-parkland supply characteristics of each city in Hunan, and the
latter was used to analyze the role each city plays in the spatial mismatch between urban-
parkland supply and population demand in the province. The dependent variables were
obtained from the statistical yearbooks of the construction of cities and counties in China.
Urban-parkland supply and its changes are affected by many factors, so the selection of in-
dependent variables should take into account the influence of social, economic, and natural
conditions. In this paper, we chose to use 6 factors, labeled with X1 to X6 (Tables 2 and A1).
The population-related data of the independent variables came from the seventh population
census, with the economic obtained data from the Hunan Provincial Statistical Yearbook,
the natural environment data obtained from the Global Change Research Data Publishing
and Repository [76], and the air quality data obtained from the Atmospheric Composition
Analysis Group of Dalhousie University in Canada. The data were standardized by the
maximum–minimum method, with 0.001 added to each value to avoid the influence of
zero values on the data. Equation (9) was used for positive indicators and Equation (10)
for negative indicators in the data normalization. With V′i as the standardized data of the
variable, Vi as the original data of the variable, and VMax and VMin as the maximum and
minimum values of the original data of the variable, the calculation is as follows:

V′i =
Vi −VMin

VMax −VMin
+ 0.001 (9)

V′i =
VMax −Vi

VMax −VMin
+ 0.001 (10)

The F values of the least squares linear regression analysis of urban-parkland supply
and spatial mismatch-contribution rate index were 7.51 (p < 0.001) and 3.24 (p < 0.001),
respectively, and the maximum value of VIF for the six independent variables was only 4.72,
much smaller than 10, indicating no covariance between the influencing factors (Table 3).
In addition, the R2 of GWR was slightly higher than that of OLS, and the difference in AICc
between the two was much larger than 3, suggesting that the fit of GWR is superior to that
of OLS.
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Table 2. Indicator selection of independent variables.

Indicator Code Nature Meaning VIF

Urban-parkland supply Y1 + The total amount of land allocated by the superior government to
each city for the urban park construction. --

Spatial Mismatch-Contribution
Rate Index Y2 -

The contribution of each city to the spatial mismatch between
urban-parkland supply and population demand in

Hunan province.
--

Population Aging X1 - The proportion of population aged 60 and above in the total
permanent population [77]. 1.69

Population Outflow X2 - The Proportion of population with different registered residence
and permanent residence in the total population [78]. 1.59

Economic Development X3 + Per capita GDP—the GDP of each city divided by its resident
population [79,80]. 4.72

Financial Capacity X4 + Fiscal self-sufficiency rate—the fiscal revenue of each city divided
by fiscal expenditure [81,82]. 4.91

Natural Environment X5 + The undulation of the topography in each city [83]. 2.57

Air Quality X6 - The average concentration of PM2.5 in each city [84]. 2.84

Table 3. Comparative analysis of GWR and OLS model analysis results.

Urban-Parkland Supply Spatial Mismatch-Contribution Rate Index

OLS GWR OLS GWR

AICc −162.42 −156.06 320.10 325.94
R2 0.32 0.36 0.17 0.22

4. Results
4.1. Evolution Pattern and Spatial Effects Analysis
4.1.1. Urban-parkland supply Scale

By relative share of urban-parkland supply, Changsha city in Hunan had the largest ur-
ban parkland, reaching 1809 hectares; Luxi had the smallest area of only 12 hectares, with an
average of 166 hectares. We classified urban-parkland supply in Hunan into high, medium,
and low levels using the quartile spatial clustering analysis tool of GIS. Yueyang, Chen-
zhou, Hengyang, Changde, Shaoyang, Yiyang, Xiangtan, Ningxiang, Zhuzhou, Yongzhou,
Huaihua, Shimen, Changshaxian, Loudi, Ningyuan, Chaling, Pingjiang, Leiyang, Wugang,
Qidong, Xinhua, and others were assigned to the high level with a high supply of land
for urban parks. Yanling, Shuangfeng, Shaoshan, Longhui, You, Linli, Sangzhi, Xinhuang,
Hengnan, Anhua, Zixing, Li, Shuangpai, Zhijiang, Guidong, Nanyue, Xinshao, Huayuan,
Chengbu, Hanshou, Luxi, Datonghu, Huitong, Taojiang, and others were assigned to
the low level with a low supply of land. Yizhang, Linwu, Dong’an, Dongkou, Huarong,
Guiyang, Cili, Hengshan, Jiangyong, Lanshan, Hongjiang, Shaoyangxian, Tongdao, Nan,
Yuanling, Chenxi, Jin, Lianyuan, Jiahe, and others were assigned to the medium level
with land supply between high and low levels. From the spatial effects, the coefficients of
variation in urban-parkland relative share in 2020 was 1.21, much larger than 0.36, indi-
cating a higher level of spatial heterogeneity; during the same period, the Moran’s I value
was 0.06 (Z = 2.02, p = 0.04), indicating positive spatial autocorrelation of urban-parkland
supply, with statistical significance. Among them, hot cities were mainly distributed in
the western part of Changsha, while cold cities were concentrated in the Xiangxi–Huaihua
region (Figure 3).
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4.1.2. Urban-parkland supply Speed

By growth rate of urban-parkland supply, the largest was seen in Dong’an, reaching
988.89%; You showed the smallest, at only −84.26%, with an average value of 121.91%.
Zhongfang, Guzhang, Huarong, Leiyang, Suining, Jiangyong, Yueyangxian, Dao, Xin-
tian, Ningxiang, Xiangtan, Yongshun, Shimen, Shuangpai, Pingjiang, Ningyuan, Heng-
shan, Mayang, Liuyang, Xupu, Luxi, Shuangfeng, Linxiang, Zhangjiajie, Nan, Tongdao,
Anxiang, Xiangtanxian, Dongkou, Hengdong, Fenghuang, Xinhua, Yueyang, and others
have the fastest growth rates, belonging to the high level. Hengnan, Chengbu, Huitong,
Miluo, Zhijiang, Changde, Liangshuijiang, Qiyang, Longhui, Shaoshan, Hengyang, Yan-
ling, Li, Sangzhi, Taojiang, Anhui, Datonghu, Guiyang, Jishou, Huayuan, Jiahe, Zixing,
Anren, Xinhuang, Xiangxiang, Hanshou, Guidong, Zhuzhou, Baojing, and others’ urban-
parkland-supply growth rate was the slowest, belonging to low level. Longshan, Qi-
dong, Xiangyin, Xinning, Wugang, Linwu, Changning, Huaihua, Taoyuan, Yuanjiang,
Wangcheng, Loudi, Yongxing, Jin, Yiyang, Changshaxian, Jianghua, Rucheng, Changsha,
Shaoyangxian, Chenxi, Lanshan, Linli, Yongzhou, Shaodong, Liling, Chaling, Chenzhou,
Jingzhou, Cili, Xinshao, and others were assigned to the medium level with a land-supply
growth rate between the high and low levels. From spatial effects, the coefficient of varia-
tion in urban-parkland growth rate in 2015–2020 was 1.50, much larger than 0.36, indicating
a higher level of spatial heterogeneity. During the same period, Moran’s I value was
0.01 (Z = 0.45, p = 0.29), indicating a positive spatial autocorrelation in urban-parkland
supply-growth rate, which was not statistically significant. Among them, hot spots were
mainly distributed in Yongzhou, while the cold spots formed three clusters, including
Zhuzhou–Chenzhou, Shaoyang–Loudi–Hengyang, and Changde–Yiyang (Figure 4).
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4.1.3. Urban-Parkland Supply Trends

The median values of relative share and growth rate were 6.42% and 41.14%, respec-
tively. Using these values as thresholds, 102 cities in Hunan province were classified
into four categories (Table 4). The members of high-scale–high-growth were randomly
distributed, including Ningxiang, Liuyang, Wangcheng, and others. The members of high-
scale–low-growth were relatively concentrated in the Changsha–Xiangtan and Hengyang–
Yongzhou regions, including Changsha, Changshaxian, Zhuzhou, Liling, and others. The
members of low-scale–high-growth are randomly distributed, including Suining, Yueyangx-
ian, Xiangyin and others. The members of low-scale–low-growth are distributed in a
concentrated and continuous belt pattern, including You, Yanling, Xiangxiang, Shaoshan
and others. In 2015, Moran’s I index was 0.03 (Z = 0.99, p = 0.16), indicating an insignif-
icant positive spatial autocorrelation. In 2020, Moran’s I index was −0.06 (Z = −1.37,
p = 0.06), indicating a significant negative spatial autocorrelation. Both hot and cold spots
formed three small clusters, the former being located in the provincial capital metropoli-
tan area, Yongzhou–Hengyang, and Zhangjiajie–Xiangxi and the latter being located in
Xiangxi–Shaoyang, Loudi–Huaihua, and Chenzhou (Figure 5).

Table 4. Evolution pattern of urban parklands in Hunan province.

Type Cities

High-Scale–High-Growth

Ningxiang, Liuyang, Wangcheng, Xiangtan, Xiangtanxian, Leiyang, Changning, Hengshan,
Hengdong, Qidong, Wugang, Dongkou, Xinning, Yueyang, Linxiang, Huarong, Pingjiang, Anxiang,
Shimen, Zhangjiajie, Yiyang, Yuanjiang, Yizhang, Linwu, Dong’an, Dao, Jiangyong, Ningyuan,
Huaihua, Hongjiang, Xupu, Mayang, Tongdao, Loudi, Xinhua, Yongshun.

High-Scale–Low-Growth Changsha, Changshaxian, Zhuzhou, Liling, Chaling, Hengyang, Shaoyang, Shaoyangxian, Changde,
Cili, Chenzhou, Guiyang, Yongzhou, Qiyang, Lanshan, Lengshuijiang.
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Table 4. Cont.

Type Cities

Low-Scale–High-Growth Suining, Yueyangxian, Xiangyin, Jin, Taoyuan, Nan, Yongxing, Shuangpai, Xintian, Zhongfang,
Shuangfeng, Luxi, Fenghuang, Guzhang, Longshan.

Low-Scale–Low-Growth

You, Yanling, Xiangxiang, Shaoshan, Hengyangxian, Hengnan, Nanyue, Shaodong, Xinshao,
Longhui, Chengbu, Miluo, Hanshou, Li, Linli, Sangzhi, Taojiang, Anhua, Zixing, Datonghu, Jiahe,
Rucheng, Guidong, Anren, Jianghua, Yuanling, Chenxi, Huitong, Xinhuang, Zhijiang, Jingzhou,
Lianyuan, Jishou, Huayuan, Baojing.
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4.2. Spatial Mismatch and Spatial Effects Analysis
4.2.1. Spatial Mismatch Analysis

The spatial mismatch analysis results between urban-parkland supply and population
demand in 2015 and 2020 are shown in Table 5. In terms of the spatial mismatch index, the
geographical distribution of cities in low negative-spatial mismatch and low positive-spatial
mismatch states in 2015 and 2020 showed agglomeration, while the cities in high positive-
spatial mismatch states showed randomness. It is worth noting that the distribution of cities
in the high negative-spatial mismatch state has shifted from agglomeration to randomness.
In terms of the contribution of spatial mismatch index, most of the high-contributing cities in
2015 were clustered in Changsha–Zhuzhou and its neighboring regions in the east. The year
2020 saw an increase in the number, but they were spatially decentralized and dominated
by prefectural-level cities or their peripheral cities. In 2015, low-contribution cities were
clustered in Shaoyang and Huaihua in eastern Hunan, and in 2020, only Changde, Yiyang,
and Xiangtan regions saw the formation of large, banded clusters. In 2015, the cities with
medium contribution were concentrated in Zhangjiajie–Changde in northern Hunan and
Loudi–Hengyang in the central part, and in 2020, only Zhangjiajie–Huaihua–Loudi showed
the formation of a large agglomeration belt (Figure 6).
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Table 5. Spatial mismatch of urban parkland in Hunan province.

Type 2015 2020

High Negative-Spatial
Mismatch

Xinning, Wugang, Wangcheng, Jiahe, Qiyang,
Lengshuijiang, Changsha, Changshaxian,
Chaling, You, Zhuzhou.

Linwu, Qiyang, Lengshuijiang, Jiangyong,
Linxiang, Xupu, Mayang, Leiyang, Xinhua,
Pingjiang, Xinning, Qidong, Anxiang, Wugang,
Hengdong, Yongshun, Ningxiang, Chaling,
Ningyuan, Shimen.

Low Negative-Spatial
Mismatch

Linli, Jiangyong, Hengshan, Liling, Yongxing,
Miluo, Longshan, Lianyuan, Shaoyangxian,
Chengbu, Zixing, Huayuan, Datonghu,
Linxiang, Zhijiang, Yizhang, Changning,
Fenghuang, Ningyuan, Yongshun, Yuanjiang,
Mayang, Nanyue, Hongjiang, Tongdao,
Sangzhi, Xinhua, Jianghua, Rucheng, Shimen,
Xiangxiang, Anxiang, Jin, Qidong, Linwu,
Yuanling, Xinhuang, Cili, Chenxi, Yanling,
Hengdong, Guidong, Jingzhou, Shaoshan,
Anren, Lanshan, Guiyang.

Yongxing, Huayuan, Chengbu, Linli,
Datonghu, Yueyangxian, Sangzhi, Lianyuan,
Xiangyin, Wangcheng, Shaoyangxian, Miluo,
Guiyang, Guidong, Longshan, Shuangpai,
Nanyue, Xinhuang, Nan, Suining, Rucheng,
Anren, Xintian, Changshaxian, Yanling,
Fenghuang, Dongkou, Shaoshan, Jianghua,
Yuanling, Huarong, Cili, Zhongfang, Yizhang,
Jiahe, Xiangtanxian, Guzhang, Jingzhou,
Yuanjiang, Chenxi, Dao, Changning, Jin,
Lanshan, Hongjiang, Hengshan, Tongdao,
Dong’an.

Low Positive-Spatial
Mismatch

Ningxiang, Yueyangxian, Huarong, Changde,
Shuangfeng, Dong’an, Shaodong, Hengnan,
Hengyangxian, Dao, Xinshao, Li, Nan,
Hanshou, Taoyuan, Luxi, Xiangyin, Pingjiang,
Suining, Longhui, Xintian, Xupu, Shuangpai,
Baojing, Zhongfang, Huitong, Anhua,
Dongkou, Chenzhou, Xiangtanxian, Guzhang.

Liuyang, Shaodong, Li, Hanshou, Longhui,
Yiyang, Hengnan, Zhangjiajie, You, Xinshao,
Hengyangxian, Baojing, Taoyuan, Xiangxiang,
Anhua, Shuangfeng, Liling, Xiangtan, Huitong,
Zixing, Zhijiang, Luxi.

High Positive-Spatial
Mismatch

Yueyang, Yongzhou, Huaihua, Xiangtan,
Shaoyang, Jishou, Hengyang, Loudi, Liuyang,
Leiyang, Yiyang, Zhangjiajie, Taojiang.

Changsha, Zhuzhou, Shaoyang, Hengyang,
Yongzhou, Jishou, Huaihua, Changde,
Yueyang, Loudi, Chenzhou, Taojiang.

By high positive-spatial mismatch, about 10% of the cities in Hunan had long-term
parkland supply that seriously failed to meet the population demand, while there was the
smallest number of cities with serious oversupply. Liuyang, Xiangtan, Hengyang, Leiyang,
Shaoyang, Yueyang, Zhangjiajie, Yiyang, Taojiang, Yongzhou, Huaihua, Loudi, and Jishou
were clustered in bands in eastern Hunan in 2015. While Changsha, Zhuzhou, Hengyang,
Shaoyang, Yueyang, Changde, Taojiang, Chenzhou, Yongzhou, Huaihua, Loudi, and Jishou
were spatially dispersed in 2020, and most of them were prefectural-level cities.

By low positive-spatial mismatch, the proportion of cities in Hunan where the land
supply of urban parks barely met the population demand decreased from 30.39% in
2015 to 21.57% in 2020, and they formed a number of clusters. Ningxiang, Xiangtanxian,
Hengyangxian, Hengnan, and others were concentrated in the junction areas of Huaihua,
Shaoyang, Yiyang, and Loudi in 2015. Liuyang, Liling, You, Xiangtan, and others formed
cluster-like agglomerations in Changde–Yiyang, Loudi–Xiangtan, and Zhuzhou–Changsha
regions in 2020.

By low negative-spatial mismatch, Hunan had the largest number of cities with a
slight oversupply of land for urban parks, with more than 45% in the long term, and most
of them were in the fringe areas of the province. Liling, Yanling, Xiangxiang, and others
had greater concentration densities in the northwest and southeast of the province in 2015.
Changshaxian, Wangcheng, Yanling, Shaoshan, and others covered a geographical area
that gradually expanded from the fringe to the center, with a high degree of agglomeration
in Yongzhou, Shaoyang, and Yueyang in 2020.

By high negative-spatial mismatch, Hunan had an increasing number of cities with
land supply seriously exceeding the population demand for urban parks, expanding from
10.78% in 2015 to 19.61% in 2020. This change shows that in the context of ecological
civilization and park city construction, more cities have seen the supply of land allocated
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for urban parks exceeding the demand, and the serious oversupply of land has resulted in
wasteful use of land resources. Changsha, Changshaxian, Wangcheng, and others in 2020
were relatively decentralized in space in 2015.
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4.2.2. Spatial Effects Analysis

From the spatial effects, the Moran’s I values of spatial mismatch index in 2015 and
2020 were 0.03 (Z = 0.99, p = 0.16) and −0.06 (Z = −1.37, p = 0.06), respectively, indicating
that the spatial autocorrelation shifted from an insignificant positive to a significant negative.
In 2015, most of the hot cities were concentrated on the northeast southwest axis, including



Land 2023, 12, 2071 17 of 31

Yueyang, the junction of Changsha–Yiyang–Xiangtan, and Shaoyang–Yongzhou–Hengyang.
There were fewer cold spot cities, all located in Zhuzhou City. In 2020, most of the hot
cities were concentrated in three clusters in central Hunan province, including the western
part of Changsha to the northern part of Zhuzhou, the northern part of Shaoyang to the
northern part of Hengyang, and the southern part of Changde. Cold spot cities formed
four clusters, including the southern part of Yongzhou, the southern part of Zhuzhou,
the junction of Shaoyang–Loudi, and Zhangjiajie–Changde. The Moran’s I values for the
contribution of spatial misalignment in 2015 and 2020 were 0.02 (Z = 0.78, p = 0.21) and
−0.03 (Z = −0.57, p = 0.32), respectively, indicating a shift from positive to negative spatial
autocorrelation, but this was not statistically significant. In 2015, most of the hot cities
were concentrated in Changsha, Xiangtan, and Zhuzhou. The cold spots formed three
clusters, including the junction of Changde–Huaihua–Xiangxi–Yiyang-Loudi, Shaoyang–
Huaihua, and Chenzhou–Yongzhou. In 2020, four small clusters of hot cities were formed,
including the western part of Changsha, the southern part of Hengyang, the northern part
of Yongzhou, and the western part of Changde. During the same period, cold spot cities
formed three small clusters, located in the eastern part of Chenzhou, the southern part of
Shaoyang, and the junction of Yueyang–Yiyang–Changsha (Figure 7).
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4.3. Influencing Factors and Impact Mechanism Analysis
4.3.1. The Impact of Factors on Urban-Parkland Supply

Population aging showed a negative force, with a minimum value of −0.0269 and a
maximum value of −0.0050. The population aging factor showed a gradient influence in
the spatial pattern, gradually increasing from southwest to northwest with Huaihua as the
depression and Changsha and Yueyang as highlands. Population outflow showed a positive
force, with a minimum value of 0.0033 and a maximum value of 0.0183. The influence of the
population outflow factor was also a gradient in the spatial pattern, with Western Hunan
and Zhangjiajie as depressions and Yongzhou as the highland, and gradually increasing
from north to south as a whole. Economic development showed a negative force, with a
minimum value of −0.0481 and a maximum value of −0.0104. The spatial pattern of its
influence was opposite to that of population aging. Financial capacity showed a positive
force, with a minimum value of 0.0451 and a maximum value of 0.0703. The force of the
factor in the spatial pattern formed a monocentric circle structure, centered on Loudi, with
the intensity of influence gradually decreasing in all directions. Of note, the decay was
significantly faster to the east than to the east and was essentially similar in both north
and south directions. The force of natural environment had two sides, and the influence
of the factor formed a double-center circle structure in the spatial pattern. The factor
had a minimum value of −0.0131 and, centered on Loudi, formed a depression-collapse
structure in southwestern Hunan. The factor had a maximum value of 0.0138 and formed a
highland-radiation structure in the northern part of Hunan, centered on Zhangjiajie and
Changde. Air quality showed a positive force, with a minimum value of 0.0301 and a
maximum value of 0.0480. The air quality factor showed a gradient influence in the spatial
pattern, gradually increasing from west to east with Western Hunan as the depression and
Changsha as the highland. The mean and median of the different factor forces roughly
determined the order of factor influence as financial capacity > air quality > economic
development > population aging > population outflow > natural environment (Table 6 and
Figure 8).

Table 6. Forces impact statistics on urban-parkland supply based on GWR in Hunan province.

Code Variable Min Max Mean Median

X1 Population Aging −0.0269 −0.0050 −0.0165 −0.0168
X2 Population Outflow 0.0033 0.0183 0.0107 0.0099
X3 Economic Development −0.0481 −0.0104 −0.0266 −0.0260
X4 Financial Capacity 0.0451 0.0703 0.0565 0.0566
X5 Natural Environment −0.0131 0.0138 0.0005 −0.0006
X6 Air Quality 0.0301 0.0480 0.0378 0.0366

In summary, different factors had relatively weak but very complex effects on urban-
parkland supply in Hunan. From the nature of factor effects, population aging and eco-
nomic development acted negatively; population outflow, financial capacity, and air quality
acted positively; while natural environment acted both positively and negatively. From
the intensity of the factors, financial capacity, air quality, and economic development were
more influential as key factors, while population aging, population outflow, and natural
environment were less influential as auxiliary factors. From the spatial pattern, population
aging, population outflow, economic development, and air quality showed a gradient
influence, with different axes of the spatial decay direction. The financial capacity and
natural environment showed a circular influence. The former displayed a monocentric
structure, while the latter showed a bi-center structure.
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4.3.2. The Impact of Factors on Spatial Mismatch Contribution Rate Index

Population aging showed a negative force, with a minimum value of −0.1420 and a
maximum value of −0.0115. The influence of this factor showed a center-periphery circle in
the spatial pattern, centered on Loudi and gradually decreasing to the surrounding areas. It
should be noted that the spatial decay of factor influence was symmetrical in the east–west
and north–south directions, but the former decayed slower than the latter. Population
outflow showed a positive force, with a minimum value of 0.0863 and a maximum value of
0.2711. The influence of the population outflow factor was a gradient in the north–south
direction in the spatial pattern, with Zhangjiajie as the depression, and Yongzhou as the
highland, gradually increasing from north to south as a whole. Economic development
showed a negative force, with a minimum value of −0.8930 and a maximum value of
−0.3557. The influence of this factor showed a monocentric circle in the spatial pattern,
with Shaoyang as the highland. Notably, this factor’s influence decayed fastest spatially in
the northeast direction, with Changde and Yueyang being obvious depressions. Financial
capacity showed a positive force, with a minimum value of 0.4589 and a maximum value
of 0.7209. It was similar to economic development in the spatial pattern of forces, except
that the depression expanded in extent and the center of gravity moved further towards
Yueyang. Natural environment showed a negative force, with a minimum value of −0.2900
and a maximum value of −0.0290. Its spatial pattern of influence was largely the same as
that of economic development. Air quality showed a positive force, with a minimum value
of 0.1300 and a maximum value of 0.3797. The spatial pattern of its influence was similar to
that of population aging, except that the center of gravity of the depression moved further
towards Changde. The mean and median of the different factor forces roughly determined
the order of factor influence as economic development > financial capacity > air quality >
population outflow > natural environment > population aging (Table 7 and Figure 9).

Table 7. Forces impact statistics on spatial mismatch based on GWR in Hunan province.

Code Variable Min Max Mean Median

X1 Population Aging −0.1420 −0.0115 −0.0693 −0.0706
X2 Population Outflow 0.0863 0.2711 0.1788 0.1754
X3 Economic Development −0.8930 −0.3557 −0.6040 −0.6138
X4 Financial Capacity 0.4589 0.7209 0.5867 0.5926
X5 Natural Environment −0.2900 −0.0290 −0.1343 −0.1253
X6 Air Quality 0.1300 0.3797 0.2464 0.2477

In summary, different factors had a strong influence on the spatial mismatch-contribution
rate index of Hunan, and the influence of each factor was substantially higher compared
to urban-parkland supply, except for a slightly reduced complexity. From the nature of
factor effects, population aging, economic development, and natural environment acted
negatively, while population outflow, financial capacity, and air quality acted positively.
From the intensity of the factors, economic development, financial capacity, and air quality
were more influential as key factors, while population outflow, natural environment, and
population aging were less influential as auxiliary factors. From the spatial pattern, the
population outflow and air quality showed a gradient influence, with axes of the spatial
decay in the north–south direction; the population aging, economic development, finan-
cial capacity, and natural environment showed a circular influence. All the factors were
monocentric.
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5. Discussion

In this study, we found that urban-parkland supply and population demand in Hunan
are characterized by significant spatial heterogeneity and correlation, and are influenced by
many factors. Furthermore, the contradiction between parkland supply and population
demand is becoming more acute, and there are more cities with mismatch between supply
and demand. These findings are similar to the conclusions of relevant research, including
that the distribution of urban parkland is spatially unbalanced and faces the challenge
of imbalance between supply and demand [85]. For example, Rigolon [86] concluded
that there are significant spatial inequalities in urban parkland and quality, and Tan [87],
Gao [88], Zhu [89], and Wang [57] found spatial mismatches between the supply of park
services and the demand of user groups in Wuhan, Shenzhen, and Beijing. Lee [90] and
Yang [91] further integrated the analysis of supply–demand relationship and accessibility
of urban parks, and categorized community spaces into high-supply–medium-demand–
medium-accessibility, low-supply–medium-demand–low-accessibility, high-supply–low-
demand–high-accessibility, and medium-supply–high-demand–low-accessibility in an
attempt to provide a basis for urban planning in Zhengzhou. Notably, all of these studies
focus on analyzing park dynamics, spatial patterns, and supply and demand in a single
city, and can only help a single city government [92,93]. However, this paper focuses on
the analysis of the match between land supply and population demand in regional urban
parks, helping to identify cities with imbalance in supply and demand, and to quantitatively
measure the direction and degree of spatial mismatch. As a result, it can serve as a basis
for the provincial government’s allocation of land resources and as a reference for all city
governments in the study area.

An urban park is a complex project involving many elements such as nature and
ecology, society and system, and history and culture. The balance between supply and
demand also requires the collaboration of departments and stakeholders, such as the Urban
Landscape Bureau, the Housing and Urban Renewal Bureau, the Land Bureau, and the
Cultural Affairs Bureau, making it vulnerable to external factors. This paper found that the
urban-parkland supply and spatial mismatch-contribution rate index in Hunan is affected
by multiple factors, and that the power mechanism is very complex, with different factors
varying greatly in intensity, nature, and spatial effect. Scholars have discussed the factors
influencing changes in urban parks. For example, Cheng [94], Nam [95], and Smith [96]
argued that government funding plays a key role in the management of urban parks
in China and the United Kingdom. Luo [97], Feng [98], and Kim [99] argued that both
population density and size have significant spatial correlations with the level of service of
urban parks. Guo [100,101] found that house prices, transportation accessibility, and the
status of the surrounding commercial-facility package are important factors influencing
the accessibility of urban parks. Their findings corroborate with those of this paper, but
comparative analyses show that scholars mainly used multiple linear regression equations,
structural equations, questionnaires, and interview analyses, with ignorance of the spatial
effects of factors. The important contribution of this paper is in revealing the spatial
effects of factor influences, such as the spatial gradient or circular variability of factor
influences, and the opposite role of natural environment on the land supply of urban
parks in southwestern and northeastern Hunan (negative for the former and positive for
the latter). More importantly, this paper expands the analysis of the driving mechanism
from the field of land supply in urban parks to the supply and demand relationship,
and it explains the impact of different factors on the spatial mismatch (oversupply or
undersupply) of land in urban parks, providing a more precise basis for the government’s
efforts to promote the balance between supply and demand in urban parks.

Improvement of living standards drives residents’ increasing demand for urban parks;
however, the mismatch between park supply and demand is becoming more prominent
due to a number of factors, thus prompting the research focus to gradually shift from acces-
sibility, satisfaction, and benefit spillover to supply and demand [102]. An urban park is an
ecological and cultural service system for the public, and it is impossible to balance supply
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and demand directly through the market, which requires the government, especially the
higher-level government, to further optimize the allocation plan of land resources for urban
parks. With the development of urban economy and the gathering of urban population,
land has become a scarce resource in cities. Urban land use in the new period should meet
the needs of urban industrial and economic development, and it should also constantly
meet the needs of urban residents for a better life and the needs of ecological civilization
construction, with focus on the harmonious unity of economic, social, and environmental
benefits. Urban parkland is an indispensable green, recreational, social, and cultural space
for cities and is an important direction for urban land-use transformation. According to
this empirical study of Hunan, we suggest to implementing zoning management strategies
for 102 cities.

Cities in high positive-spatial mismatch should implement the quantity-priority sup-
ply strategy, and provincial governments should give special conditions to cities in this
sub-district when allocating land resources for urban parks, provide them with more land
resources, and put forward more detailed construction indicators and assessment require-
ments. Local governments should also actively promote land exchange and build more
parks by means of “plugging in greenery wherever possible” during the transformation
of old cities, historical buildings, abandoned factories, and old industrial areas [103]. The
government should also step up its survey of unused land resources and lost spaces in
urban areas, make good use of vacant land such as viaducts and street corners, drive the
transformation of lost spaces, and create more pocket parks. In addition, local governments
should focus on the implementation of the “neighborhood system” to boost the opening up
of more parks and green spaces in private communities, so as to satisfy, to a certain extent,
the needs of non-community residents for access to nature and recreation in the vicinity.

Cities in high negative-spatial mismatch should implement the quality-priority supply
strategy, and local governments should try to improve the service quality and characteristics
of urban parks. For example, as China steps into an aging society, the need for parks for
the elderly attracts more attention. The analysis of the driving mechanism showed that
population aging has a non-negligible impact on both the land supply and spatial mismatch
of parks in Hunan, and the land supply for urban parks in this subregion exceeds the
demand. The local government should build age-friendly parks or implement age-adapted
renovation in existing parks [104,105], so as to enhance the characteristics and quality
of park services. Cities in this policy area should also take advantage of the rich land
area of urban parks; seize the opportunity of the provincial government and the central
government to support the construction of park cities; accelerate the promotion of the
organic integration of park forms and urban space; speed up the construction of parks
around the city, community parks, street gardens and pocket parks; enlarge the coverage of
parks; and improve the quality of parks to build themselves into demonstration sites of park
cities. In addition, cities in the subregion should strengthen intercity cooperation and may
jointly establish a trading platform for parkland indicators, so that surplus indicators can
be replaced with other resources and elements needed for high-quality urban development.

Cities in the low positive-spatial mismatch and low negative-spatial mismatch should
implement a free market debugging strategy. Green infrastructure is regional and system-
atic, and greenspace planning should meet the needs of population, social, and economic
development. According to the natural conditions of plant resources, soil, topography,
and climate, as well as the relationship with neighboring land use, this paper proposes the
type, area, and distribution structure of parks in the region to shape a complete green net-
work system. Regional cooperation should be strengthened not only among governments,
residents, and businesses in the same city, but also among different cities, thus further
improving satisfaction and accessibility for residents. For example, the government should
take the Changsha–Zhuzhou–Xiangtan Ecological Green Zone as the core to link up with
surrounding areas such as Dato, Muyun, Tiaoma, Yunlong, and Shaoshan to create an urban
central park in the Changsha–Zhuzhou–Xiangtan metropolitan area. The governments
involved in the construction of the Central Park should strengthen regional cooperation;
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jointly formulate its spatial planning, protection, and utilization regulations as soon as
possible; jointly create a national horticultural (garden) expo and a flower expo; and commit
themselves to making it a regional green heart of world-class quality.

A limitation of this paper is the ignorance of the “quality” of the supply of urban parks
and the demand of the population, as well as of the influence of the “soft settings” such
as planning, policies, and institutions in the analysis of the influencing factors. Due to the
limited availability of data, the analysis of parkland supply and population demand in the
empirical study only considered quantitative indicators and failed to include “qualitative”
indicators—such as park service quality; vegetation condition; brand image; and demo-
graphic, education, and income levels—thus falling short of the context of high-quality
development [106]. In addition, the “soft settings” such as urban planning, local policies,
and park management systems have an impact on changes over the whole life cycles of land
supply, planning, development, construction, management, use, renovation, and renewal
of urban parks. However, due to the lack of reasonable representing variables, they were
not included in the analytical model [107,108].

6. Conclusions

With the advent of the era of ecological civilization, the construction of eco-cities,
livable cities, and park cities has called on governments and scholars around the world to
further increase their attention on urban parks. The matching of land supply and population
demand for urban parks is related to residents’ proximity to nature and access to leisure and
recreation, and also determines the efficiency and fairness of the government’s allocation
of land resources. This paper is an analysis of the characteristics of urban-parkland supply
and population demand in 102 cities in Hunan using the spatial mismatch model and the
geographically weighted regression method. It measures the supply–demand matching
between the two and reveals the dynamic mechanism that affects the matching between
supply and demand. The main conclusions of this study are as follows.

Land supply and population demand for urban parks in Hunan are characterized
by significant spatial heterogeneity and correlation, and the mismatch between supply
and demand should not be ignored, with oversupply and undersupply co-existing. It
should be noted that, with the rise in the construction of park cities, the increasingly
serious oversupply results in sloppy and wasteful use of land resources. Therefore, when
allocating future land resources and targets for urban parks, higher-level governments
should develop differentiated allocation plans according to local conditions. They should
also attach importance to regional integration and coordination, and support cooperation
between lower-level governments.

The influence of each factor on the spatial mismatch-contribution rate index is much
larger than that of the urban-parkland supply, and different factors vary considerably
in their nature and intensity, with a complex dynamical mechanism. From the nature
of factor effects, population aging and economic development played a negative role;
population outflow, financial capacity, and air quality played a positive role; while natural
environment played both positive and negative roles. From the intensity of the factors,
financial capacity, air quality, and economic development acted as key factors, while
population aging, population outflow, and natural environment acted as auxiliary factors.
As for the spatial pattern of influence, population outflow and air quality were gradient,
while financial capacity and natural environment were circular. Population aging and
economic development showed a gradient influence on urban-parkland supply, and a
circular influence on the spatial mismatch-contribution rate index.

In general, it is becoming a new trend in the green and high-quality development
of cities around the world to face up to the human–land conflict in urban parks, drive
the construction of urban parks in an orderly manner in accordance with the idea of
“people-centered and land-based”, and build up park cities to enhance the livability and
sustainability of cities. On the basis of this research on the “quantitative” supply–demand
relationship between land supply and population demand in urban parks, we call for
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more efforts from scholars and to work together on the “qualitative” supply–demand
contradiction and its solution.
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Appendix A

Table A1. (Standardized) Data on the spatial mismatch analysis of urban-parkland supply and
population demand in Hunan province.

NO. Cities UPLi PDi CRIi X1 X2 X3 X4 X5 X6

1 Changsha 1.00 1.00 6.97 0.14 0.96 0.90 1.00 0.02 0.91
2 Ningxiang 0.22 0.09 1.74 0.55 0.31 0.59 0.73 0.10 0.60
3 Liuyang 0.10 0.10 0.94 0.40 0.39 0.75 0.83 0.23 0.40
4 Changshaxian 0.19 0.12 0.42 0.00 1.00 1.00 0.87 0.04 0.70
5 Wangcheng 0.12 0.08 0.15 0.10 0.96 0.70 0.90 0.02 0.89
6 Zhuzhou 0.20 0.33 4.83 0.47 0.73 0.52 0.56 0.03 0.72
7 Liling 0.09 0.06 0.13 0.59 0.14 0.55 0.49 0.09 0.57
8 You 0.03 0.04 0.50 0.76 0.12 0.40 0.34 0.21 0.45
9 Chaling 0.15 0.03 2.13 0.46 0.05 0.22 0.18 0.29 0.38

10 Yanling 0.04 0.01 0.45 0.62 0.24 0.30 0.19 0.83 0.08
11 Xiangtan 0.28 0.21 0.12 0.61 0.59 0.58 0.50 0.02 0.89
12 Xiangxiang 0.04 0.04 0.27 0.76 0.12 0.42 0.30 0.08 0.62
13 Shaoshan 0.03 0.00 0.50 0.68 0.65 0.64 0.45 0.06 0.70
14 Xiangtanxian 0.09 0.04 0.60 0.78 0.22 0.38 0.34 0.04 0.78
15 Hengyang 0.35 0.43 4.70 0.48 0.45 0.28 0.36 0.03 0.82
16 Leiyang 0.15 0.06 1.15 0.37 0.03 0.13 0.27 0.08 0.53
17 Changning 0.10 0.04 0.70 0.37 0.01 0.21 0.20 0.17 0.62
18 Hengyangxian 0.04 0.04 0.38 0.60 0.19 0.17 0.16 0.11 0.61
19 Hengnan 0.03 0.04 0.56 0.58 0.21 0.21 0.19 0.05 0.66
20 Hengshan 0.07 0.01 0.82 0.67 0.29 0.27 0.32 0.11 0.63
21 Hengdong 0.12 0.02 1.68 0.62 0.10 0.27 0.19 0.07 0.63
22 Qidong 0.13 0.03 1.55 0.65 0.11 0.17 0.16 0.12 0.60
23 Nanyue 0.02 0.00 0.22 0.24 0.90 0.45 0.52 0.68 0.57
24 Shaoyang 0.31 0.41 4.81 0.52 0.29 0.12 0.18 0.13 0.75
25 Wugang 0.14 0.03 1.67 0.56 0.10 0.05 0.12 0.29 0.59
26 Shaodong 0.05 0.07 0.92 0.54 0.18 0.34 0.29 0.15 0.56
27 Xinshao 0.02 0.03 0.47 0.56 0.22 0.05 0.14 0.43 0.55
28 Shaoyangxian 0.06 0.04 0.16 0.61 0.28 0.03 0.05 0.21 0.61
29 Longhui 0.03 0.05 0.66 0.46 0.10 0.02 0.12 0.47 0.46

https://www.mohurd.gov.cn/index.html
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https://www.geodoi.ac.cn/WebCn/doi.aspx?Id=887
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Land 2023, 12, 2071 26 of 31

Table A1. Cont.

NO. Cities UPLi PDi CRIi X1 X2 X3 X4 X5 X6

30 Dongkou 0.08 0.04 0.47 0.70 0.23 0.07 0.10 0.51 0.44
31 Suining 0.04 0.01 0.38 0.55 0.10 0.12 0.00 0.60 0.27
32 Xinning 0.11 0.02 1.47 0.55 0.11 0.02 0.09 0.59 0.49
33 Chengbu 0.02 0.01 0.06 0.39 0.15 0.04 0.05 0.94 0.23
34 Yueyang 0.39 0.37 2.18 0.49 0.53 0.51 0.33 0.01 0.83
35 Miluo 0.05 0.03 0.17 0.64 0.36 0.54 0.24 0.06 0.75
36 Linxiang 0.10 0.03 1.07 0.49 0.17 0.44 0.18 0.10 0.57
37 Yueyangxian 0.05 0.03 0.11 0.59 0.49 0.39 0.15 0.05 0.68
38 Huarong 0.08 0.03 0.54 0.72 0.16 0.38 0.10 0.01 0.93
39 Xiangyin 0.06 0.03 0.14 0.64 0.32 0.33 0.54 0.01 0.90
40 Pingjiang 0.15 0.06 1.34 0.47 0.17 0.13 0.15 0.23 0.41
41 Changde 0.33 0.35 2.91 0.83 0.47 0.44 0.37 0.02 0.83
42 Jin 0.06 0.01 0.75 0.99 0.33 0.57 0.21 0.01 0.87
43 Anxiang 0.11 0.02 1.61 1.00 0.38 0.28 0.07 0.00 1.00
44 Hanshou 0.02 0.04 0.74 0.66 0.23 0.22 0.16 0.01 0.80
45 Li 0.03 0.05 0.84 1.00 0.18 0.29 0.22 0.04 0.83
46 Linli 0.03 0.02 0.07 0.94 0.32 0.30 0.15 0.03 0.82
47 Taoyuan 0.04 0.04 0.28 0.96 0.20 0.29 0.21 0.14 0.47
48 Shimen 0.19 0.03 2.86 0.94 0.24 0.31 0.19 0.55 0.36
49 Zhangjiajie 0.10 0.09 0.54 0.60 0.30 0.14 0.16 0.65 0.19
50 Cili 0.07 0.03 0.58 0.90 0.15 0.11 0.13 0.44 0.38
51 Sangzhi 0.03 0.01 0.12 0.63 0.06 0.06 0.04 0.78 0.17
52 Yiyang 0.29 0.23 0.57 0.66 0.36 0.24 0.22 0.02 0.77
53 Yuanjiang 0.08 0.03 0.66 0.69 0.19 0.23 0.11 0.00 0.90
54 Nan 0.06 0.03 0.36 0.79 0.19 0.24 0.11 0.00 1.00
55 Taojiang 0.00 0.04 1.02 0.72 0.24 0.18 0.16 0.11 0.45
56 Anhua 0.03 0.03 0.27 0.65 0.26 0.09 0.11 0.37 0.27
57 Chenzhou 0.37 0.33 1.48 0.31 0.34 0.29 0.38 0.49 0.35
58 Zixing 0.03 0.02 0.11 0.63 0.14 0.71 0.48 0.62 0.19
59 Datonghu 0.01 0.00 0.10 0.80 0.95 0.23 0.11 0.01 0.77
60 Guiyang 0.07 0.04 0.21 0.31 0.00 0.29 0.34 0.28 0.44
61 Yizhang 0.08 0.03 0.59 0.21 0.13 0.16 0.25 0.46 0.32
62 Yongxing 0.05 0.03 0.05 0.39 0.02 0.34 0.45 0.18 0.37
63 Jiahe 0.06 0.02 0.60 0.28 0.34 0.19 0.34 0.16 0.55
64 Linwu 0.08 0.02 0.99 0.25 0.02 0.21 0.33 0.48 0.40
65 Rucheng 0.05 0.02 0.39 0.37 0.07 0.06 0.12 0.66 0.07
66 Guidong 0.02 0.00 0.21 0.45 0.14 0.07 0.11 1.00 0.00
67 Anren 0.05 0.02 0.40 0.45 0.05 0.11 0.12 0.18 0.43
68 Yongzhou 0.20 0.30 3.92 0.45 0.21 0.17 0.30 0.18 0.67
69 Qiyang 0.10 0.03 1.02 0.65 0.18 0.19 0.32 0.23 0.60
70 Dong’an 0.08 0.02 0.88 0.64 0.14 0.16 0.29 0.32 0.59
71 Shuangpai 0.02 0.00 0.22 0.41 0.27 0.26 0.27 0.52 0.43
72 Dao 0.08 0.03 0.67 0.35 0.02 0.14 0.27 0.42 0.52
73 Jiangyong 0.07 0.01 1.06 0.40 0.32 0.13 0.19 0.49 0.41
74 Ningyuan 0.17 0.04 2.14 0.44 0.08 0.12 0.31 0.40 0.44
75 Lanshan 0.07 0.02 0.76 0.38 0.12 0.16 0.23 0.54 0.37
76 Xintian 0.05 0.02 0.41 0.38 0.06 0.07 0.17 0.20 0.47
77 Jianghua 0.05 0.02 0.52 0.32 0.22 0.09 0.20 0.63 0.34
78 Huaihua 0.20 0.26 2.97 0.55 0.49 0.14 0.23 0.20 0.33
79 Hongjiang 0.06 0.01 0.80 0.89 0.25 0.14 0.20 0.43 0.29
80 Zhongfang 0.05 0.01 0.59 0.58 0.69 0.29 0.22 0.36 0.31
81 Yuanling 0.06 0.02 0.53 0.72 0.16 0.13 0.20 0.30 0.20
82 Chenxi 0.06 0.02 0.67 0.67 0.06 0.08 0.13 0.27 0.30
83 Xupu 0.09 0.02 1.11 0.63 0.16 0.04 0.08 0.53 0.24
84 Huitong 0.01 0.01 0.12 0.60 0.14 0.09 0.12 0.26 0.30
85 Mayang 0.08 0.01 1.14 0.61 0.12 0.08 0.09 0.21 0.25
86 Xinhuang 0.03 0.01 0.30 0.63 0.39 0.11 0.16 0.36 0.18
87 Zhijiang 0.02 0.01 0.04 0.69 0.16 0.12 0.19 0.25 0.24
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Table A1. Cont.

NO. Cities UPLi PDi CRIi X1 X2 X3 X4 X5 X6

88 Tongdao 0.06 0.01 0.85 0.40 0.21 0.15 0.11 0.40 0.26
89 Jingzhou 0.05 0.01 0.64 0.46 0.10 0.07 0.09 0.34 0.28
90 Loudi 0.19 0.21 2.06 0.42 0.40 0.21 0.28 0.11 0.52
91 Lengshuijiang 0.09 0.03 1.04 0.36 0.44 0.46 0.35 0.26 0.57
92 Lianyuan 0.06 0.04 0.13 0.57 0.18 0.13 0.10 0.22 0.46
93 Shuangfeng 0.03 0.03 0.18 0.63 0.06 0.16 0.12 0.10 0.59
94 Xinhua 0.12 0.04 1.18 0.38 0.12 0.03 0.13 0.43 0.40
95 Jishou 0.04 0.15 3.20 0.40 0.42 0.08 0.19 0.25 0.15
96 Luxi 0.01 0.01 0.04 0.54 0.13 0.09 0.08 0.18 0.20
97 Fenghuang 0.05 0.01 0.46 0.39 0.27 0.04 0.18 0.31 0.15
98 Huayuan 0.02 0.01 0.05 0.36 0.76 0.09 0.13 0.44 0.17
99 Baojing 0.00 0.01 0.28 0.57 0.17 0.10 0.03 0.48 0.15
100 Guzhang 0.04 0.00 0.61 0.57 0.28 0.07 0.09 0.43 0.08
101 Yongshun 0.12 0.02 1.74 0.45 0.05 0.01 0.06 0.47 0.11
102 Longshan 0.05 0.02 0.22 0.41 0.10 0.00 0.09 0.65 0.17
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