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Abstract: Sustainable forest land management requires measuring and monitoring soil organic carbon.
Visible and near-infrared diffuse reflectance spectroscopy (Vis-NIR, 350–2500 nm), although it has become
an important method for predicting soil organic carbon (SOC), requires further studies and methods of
analysis to realize its full potential. This study aimed to determine if the size of the study area and soil
sampling density may affect the performance of Vis-NIR diffuse reflectance spectroscopy in the prediction
of soil organic carbon. Two forest sites in the Calabria region (southern Italy), which differ in terms of
area and soil sampling density, were used. The first one was Bonis catchment area (139 ha) with a cover
consisting mainly of Calabrian pine, while the second was Mongiana forest area (33.2 ha) within the
“Marchesale” Biogenetic Nature Reserve, which is covered by beech. The two study areas are relatively
homogeneous regarding parent material and soil type, while they have very different soil sampling density.
In particular, Bonis catchment has a lower sampling density (135 samples out of 139 ha) than Mongiana
area (231 samples out of 33.2 ha). Three multivariate calibration methods (principal component regression
(PCR), partial least square regression (PLSR), and support vector machine regression (SVMR)) were
combined with different pretreatment techniques of diffuse reflectance spectra (absorbance, ABS, standard
normal variate, SNV, and Savitzky–Golay filtering with first derivative (SG 1st D). All soil samples
(0–20 cm) were analyzed in the laboratory for SOC concentration and for measurements of diffuse
reflectance spectra in the Vis-NIR region. The set of samples from each study area was randomly
divided into a calibration set (70%) and a validation set (30%). The assessment of the goodness for
the different calibration models and the following SOC predictions using the validation sets was based
on three parameters: the coefficient of determination (R2), the root mean square error (RMSE), and the
interquartile range (RPIQ). The results showed that for the two study areas, different levels of goodness
of the prediction models depended both on the type of pretreatment and the multivariate method used.
Overall, the prediction models obtained with PLSR and SVMR performed better than those of PCR.
The best performance was obtained with the SVMR method combined with ABS + SNV + SG 1st D
pretreatment (R2 ≥ 0.77 and RPIQ > 2.30). However, there is no result that can absolutely provide
definitive indications of either the effects of the study area size and soil sampling density in the prediction
of SOC by vis-NIR spectroscopy, but this study fostered the need for future investigations in areas and
datasets of different sizes from those in this study and including also different soil landscapes.

Keywords: soil organic carbon; forest soil; Vis-NIR reflectance spectroscopy; spectral pretreatment

1. Introduction

The European vision for soil by 2050 is anchored in the EU biodiversity strategy for
2030 [1] and in the Climate Adaption Strategy [2] with the purpose of contributing significantly
to several objectives of the European Green Deal [3] and Sustainable Development Goal 15.3 of
the United Nations. This vision is aimed at achieving that all soil ecosystems are in a healthy
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condition and hence more resilient to global change and able to provide as many soil-related
ecosystem services as possible. In this context, soil organic carbon (SOC) plays a key role in
the terrestrial carbon (C) cycle and, particularly, in forest ecosystems, which together with
other wooded land, cover over 43.5% of European territory [4]. Forest soils are the largest C
sinks and about 80 percent of terrestrial organic carbon stocks involved in the active C cycle
are soil-related and only about 20 percent in vegetation [5,6]. Consequently, the increase of C
sequestration in form of soil organic carbon (SOC) has a critical role in the mitigation of global
warming [7–9]. Moreover, soil organic carbon has profound effects on soil and environmental
quality because it strongly affects soil properties (physical, chemical, and biological) and soil
processes; it is an important sink and source of main plant and microbial nutrients [10,11].

Measuring and monitoring soil organic carbon is fundamental for the management
of forest ecosystems and there is also an increasing demand for SOC data to support
environmental monitoring and spatial modeling. In this context, visible and near-infrared
reflectance spectroscopy (Vis-NIR, 350–2500 nm) has become an important method for
measuring and monitoring soil organic carbon [12–18]. Vis-NIR diffuse reflectance spec-
troscopy is effective and less time-consuming, and cost-effective than conventional analytical
methods, especially when large numbers of samples need to be measured [13,16,18–20]. How-
ever, direct quantitative prediction of soil constituents from soil diffuse reflectance spectra
is almost impossible because individual absorptions are difficult to identify since a given
spectrum results from the interactions among these soil constituents and their absorption
of electromagnetic energy. In addition, the absorptions in the Vis-NIR spectral region
are largely non-specific, weak, and broad because of the overlapping absorptions of soil
constituents and their usually small concentrations [13,21]. Vis-NIR diffuse reflectance
spectroscopy is based on the assumption that the soil diffuse reflectance in the 350–2500
nm spectral region is a linear combination of the spectral signatures from its various
constituents, weighted by their abundance [18,22,23]. Accordingly, changes in different
soil constituents (physical, chemical, mineralogical, and biological) result in the different
spectral features which can be detected by diffuse reflectance spectroscopy [14,17,23,24].
Therefore, the analysis of soil diffuse reflectance spectra data requires complex mathe-
matical treatments to extract useful information and relate the traditional measures of the
soil constituents (which from now on will be referred to as soil properties and are the
calibration data) to the spectral data. The calibration data are the dependent predicted
(Y) data, whereas the spectra are the independent (X) data [21,25,26]. This mathematical
approach is known as chemometrics and is applied using specific wavelengths selected by
methods of stepwise regression or can embody full high-resolution spectra using multi-
ple linear regression (MLR), principal components regression (PCR), partial least-squares
regression (PLSR), and machine learning (ML) algorithms such as random forest (RF),
support vector machine regression (SVMR), and artificial neural network (ANN), and many
others [20,27–31].

The calibration process allows a model to be defined that relates the measures of the
soil property(-ies) (Y, calibration data) to the diffuse reflectance spectral data (X) and is one
of the biggest crucial issues that must be addressed for the quality of the prediction of the
soil property of interest. The developed calibration models will be used to predict chemical
or physical properties in unmeasured soil samples.

However, the results of the calibration process are affected by the mathematical model
and its required assumptions (e.g., linearity, no multicollinearity, number of observations,
homoscedasticy, etc.), by the pretreatment of the spectral calibration data to reduce the impact
of different effects (nonlinearities, additive and multiplicative effects, etc.) maintaining a
sufficient amount of useful information and fulfill the assumptions required by the chosen
model and improving calibration [15,21,25,27,32].

There is no best multivariate calibration method, and each one has advantages and
disadvantages that in some way affect their choice [21,33–35]. Methods such as PCR
or PLSR, compared to MLR, have the advantage of handling multicollinearity of data,
but implicitly assume a linear relationship between diffuse reflectance spectra and soil
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properties that, if not satisfied, mathematical treatments of the spectra are required to
establish it [25]. Instead, other methods, such as ANN and SVMR, account for nonlinearity
in the relationship between soil diffuse reflectance and soil properties [21].

Furthermore, the effectiveness and accuracy of the predictions are highly dependent
on the calibration set, whichever calibration method is chosen. Therefore, the calibration
set to ensure robustness and reliability of predictions, must be representative of the whole
set and selected according to the spectral characteristics [36] or analytical properties [37] or
both [38]. Other studies have demonstrated the usefulness of using different algorithms to
select calibration subsets that are representative of the total dataset [39,40] or optimizing the
number of soil samples to be included in the calibration dataset [41]. However, not much
consideration has been given to the fact that the accuracy and effectiveness of the calibration
set may vary depending on the size of the study area and, therefore, the variability of the
soil property(ies) of interest or on the soil sampling density.

The soil property chosen for this study is soil organic carbon (SOC), which belongs
to the primary group of soil constituents that causes spectral absorptions in the Vis-NIR
region and diffuse reflectance spectroscopy has been successfully applied [13,19,26,42–48].

The main objective of this study was to determine if the size of the study area and soil
sampling density may affect the performance of Vis-NIR diffuse reflectance spectroscopy
in the estimation of soil organic carbon. To this purpose, two forest areas in the Calabria
region (southern Italy), which differ in land cover, size, sampling density, content, and
range of variation of SOC, were selected.

2. Materials and Methods
2.1. Description of Study Areas

The forest areas are located in the Sila and Serre Vibonesi massifs (Calabria region,
southern Italy) (Figure 1a). The first study site is the Bonis catchment (Figure 1b), located in
the upland landscape of the Sila Massif (northern Calabria), which is a westward-draining
tributary of the Cino river. The catchment area is approximately 139 hectares with an
altitude ranging from 979 to 1300 m above sea level and mainly covered by Calabrian
pine (Pinus laricio Poiret) [49]. From a lithological perspective, the Bonis catchment is
predominantly characterized by Paleozoic granitoid rocks, which are often deeply fractured
and weathered. For most of the catchment area, the bedrock is covered with thick layers of
saprolite [50]. In the upper reaches of the catchment, the morphology is characterized by
a relatively flat to gentle-inclined crests, which consists of fragments of the old planation
surfaces (paleosurfaces), shaped during the Late Pliocene–Early Pleistocene [51,52]. Steep
slopes, often cut by deep incisions, surround these crests. Slope gradient varies from 0◦ to
about 50◦ with a mean value of 21◦. According to the Keys to Soil Taxonom [53], the most
common soils in the study area are mainly Typic Xerumbrepts and Ultic Haploxeralf [54].
The prevailing soil textural classes are sandy loam and sandy clay loam.

The second study area, known as Mongiana, is part of the “Marchesale” Biogenetic
Nature Reserve (Serre Massif, southern Calabria) (Figure 1c) with an extension of about
33 ha and elevation ranging from 1112 to 1236 m above sea level. Beech (Fagus sylvatica)
characterizes the plant cover [55], whereas the outcrop rocks consist of Paleozoic granitic,
frequently weathered and covered by a thickness of several meters of regolith, some of
which are colluvial deposits [56,57]. The morphology of the landscape is characterized by
paleosurfaces that are the remnants of flat or gently sloping highlands, which are often
sharply separated by steep slopes and V-shaped valleys [56,58]. Slope gradient ranges
between 0◦ to about 45◦ with a mean slope of 10◦. Soils of the study area can be classified
as Humic Dystrudept and Lithic Udipsamments [58]. The prevailing soil textural classes
are sandy loam, loam, and silt loam [59].

2.2. Soil Sample Collection and Preparation

Soil samples in both study areas were collected according to the ISO international
standard [60]. In the Mongiana area, approximately 75% of the soil samples collected
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were in areas with soils classified as Humic Dystrudepts, while the remaining 25% were
collected in areas with soils classified as Lithic Udipsamments. In the Bonis catchment area,
about 85% of the topsoil was collected in areas characterized by Typic Xerumbrepts and
15% in soils classified as Ultic Haploxeralf. Topsoil (0–20 cm) samples were collected in
2012 in Mongiana and in 2016 in the Bonis catchment area. At each soil sampling location,
surface litter was removed and soil was sampled using a metallic core cylinder with a
diameter of 7.5 cm and a height of 20 cm (883.1 cm3). The position of the soil sampling
sites was recorded using a hand-held GNSS device (Figure 1b,c) and 135 topsoil samples
(density sampling = 0.97 samples/ha) were collected within the Bonis catchment, whereas
231 topsoils were sampled in the Mongiana area (density sampling = 7 samples/ha).
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The soil samples were brought to the laboratory, oven dried at 40 ◦C for 48 h, then
were gently crushed in an agate mortar to break up larger aggregates and remove visible
roots; next, each sample was sieved at 2 mm. These procedures homogenized soil samples
moisture and roughness, minimizing their effect on the spectra measurements.
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2.3. SOC and Spectroscopic Analyses

Soil samples were finely ground, then were passed through a 0.25 mm sieve, and
analyzed for SOC concentration by dry combustion using a Shimadzu TOC-L analyzer with
an SSM-5000A solid sample module (Shimadzu Corporation, Kyoto, Japan). In addition,
each SOC measurement was replicated three times.

The diffuse reflectance spectra were measured in laboratory using an ASD FieldSpec
IV spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) with a range of
wavelength between 350 and 2500 nm and a spectral sampling interval of 1 nm. The soil
spectra were measured in a dark room to reduce the effect of external light and with the
spectroradiometer held in the nadir position at a distance of 10 cm from the soil sample.
The latter was placed inside a petri dish (9 cm in diameter and 1 cm deep) and levelled
with a spatula to obtain a smooth surface. For the artificial illumination, a 50-watt halogen
lamp with a zenith angle of 30◦ was used, placed at a distance of approximately 25 cm from
the soil sample. Before the first scan and after every set of five samples, under the same
lighting conditions, the diffuse reflectance spectrum of a Spectralon panel (20 cm × 20 cm,
Labsphere Inc., North Sutton, NH, USA) was measured as a white reference [59].

To reduce the noise level, the average of 50 spectra for each soil sample was calculated.
Finally, the diffuse reflectance spectra were resampled every 10 nm wavelength to reduce
the total number of raw reflectance bands and avoid overfitting [14].

2.4. Spectral Pretreatments

Before developing calibration models that relate SOC measurements to spectral data,
several pretreatments were applied to the raw diffuse reflectance spectra to minimize noise
and optimize calibration accuracy. A soil spectrum contains irrelevant information, such as
electrical noise, sample background, and stray light. Therefore, it is necessary to eliminate
this irrelevant information to improve the prediction models by using chemometric meth-
ods [33,61,62]. The commonly used spectral pretreatments techniques include apparent
absorbance, mean centering, auto-scaling, normalization, smoothing, derivatives, standard
normal variate transformation, and multiplicative scatter correction [33,62,63].

In this study, three different pretreatments were applied to each spectrum of both
datasets. In the first pretreatment, the diffuse reflectance (R) spectra were transformed into
absorbance (ABS) spectra by ABS = Log (1/R) to improve the identification of characteristic
absorption bands. Then, the standard normal variate (SNV) was applied. SNV is a row-
oriented transformation, which centers and scales individual spectra and removes the
scatter effect from spectral data. A result of the transformation is that on the vertical scale,
each spectrum is centered on zero and varies roughly from −2 to +2 [27,32]. Finally, the
Savitzky–Golay (SG) filtering method [64] and first derivative (1st D) [61] were applied: the
Savitzky–Golay (SG) filtering method reduces the random noise of the measurements [65],
whereas the first derivative (1st D) enhances the spectral resolution and removes the
additive constant background effects [61].

2.5. Calibration Model Construction

The spectral data and corresponding SOC measurements are used to develop calibration
models, which form functional models between the two sets of measurements (spectral
data and SOC concentrations) and find out if these functional models are good (accurate)
and, finally, to predict the SOC concentrations of new and unmeasured soil samples from
spectral data. The accuracy of a calibration model is a measure of its systematic error, which
is measured by the difference between the predicted SOC value and the true one. The
assessment of the calibration model accuracy is made using an independent validation
set [26,65]. Therefore, it is essential to split both datasets (spectral and SOC) into a calibration
set and a validation set. For this purpose, both datasets were randomly partitioned into
calibration set (70% of total samples) and validation set (remaining 30% of total samples).

To construct the calibration models for the two study areas and evaluate the effect
of the different pretreatments, three multivariate calibration methods were used: princi-
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pal components regression (PCR) [66], partial least squares regression (PLSR) [67], and
support vector machine regression (SVMR) [68]. Each method was combined with the
three pretreatments techniques mentioned above and a total of 18 prediction models were
developed. All prediction models were generated by using the Unscrambler 11 (Aspen
Technology, Inc., Bedford, MA, USA).

In the PCR method, principal component analysis (PCA) and multiple linear regression
(MLR) are combined to reduce the number of spectral bands, which are potentially correlated,
and to solve multicollinearity problems [69]. The PCA decomposes the matrix of the spectral
data (X) into orthogonal Principal Components (PCs). The first PCs explaining most of the
raw data variance will be used as predictors instead of spectral bands against the soil property
(Y) using MLR.

The PLSR method is widely used to construct predictive models when there are
many predictor variables that are highly collinear [16,70]. The PLSR aims to find a few
linear combinations which explain most of the variation in both predictors (X, spectra)
and response variable (Y, soil property) [16,66]. A set of orthogonal factors called latent
variables, which maximize the covariance between X and response variable Y, is extracted
from the spectra. In practice, X and Y are decomposed into factor scores and factor loadings
in such a way that the most relevant part of the X-variation is used for regression and the
noise ignored. The choice of the number of factors to be retained is made for each model by
leave-one-out cross-validation.

The SVMR is based on statistical learning theory and can efficiently handle large input
spaces and works well with sparse data [71]. The SVMR algorithm transfers the raw data
into a feature space of higher dimensionality and transforms the original predictors using
kernel functions. The objective is identifying an interpolation function by fitting the training
data to a tube with radius ε using boundary samples (support vectors) close to the margin
defined by ε. A cost function aiming to simultaneously minimize the coefficients’ size
and the prediction errors allows to obtain the best regression model. The method requires
selecting the kernel function, the parameterization of a cost parameter C, and a kernel
parameter γ. Here, a linear kernel was used, whereas by cross validation the optimization
of the parameters C and ε was solved [41]. More details about the implementation of SVMR
for soil spectroscopic modeling can be found in Viscarra Rossel and Behrens [21].

2.6. Performance of Prediction Models

As is well known, the basis of the criteria for assessing the prediction performance of
models are the errors obtained from estimating the measured values of SOC (in this case)
using them. For this purpose, the classical coefficient of determination (R2) and the root
mean square error of prediction (RMSE) were used. The coefficient of determination (R2)
measures how strong the relationship is between measured and estimated SOC values. The
higher R2 is, the better the prediction performance of the model. The RMSE is the parameter
commonly used to describe the prediction ability of a model [29] and is calculated as root
mean squared error:

RMSE =

√
1
n
(yn − ŷn)

2 (1)

where ŷ is the predicted value and y the true value, and n the number of samples in the
calibration or validation set. Since RMSE is a measure of an average error, the smaller it is,
the better.

Furthermore, the ratio of performance to interquartile distance (RPIQ) was calculated,
in order to better represent the data spread and remove any range effect, regardless of the
distribution [65]. The RPIQ is defined as:

RPIQ =
(Q3 − Q1)

RMSE
(2)

where Q3 is the upper quartile and Q1 is the lower quartile. Comparing models, the best
performance is achieved by the model with the largest RPIQ.
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3. Results
3.1. Descriptive Statistics of SOC and Vis-NIR Spectra Features

The soil organic carbon concentration data have greater values at the Mongiana area
than at Bonis catchment (Table 1). Indeed, the mean (6.26%) at Mongiana as well as the
maximum value (13.20%) are higher than the mean (2.66) and maximum value (11.02%) at
the Bonis catchment area. Furthermore, the SOC data at Mongiana have a fairly symmetrical
distribution with a skewness of just 0.15, while the SOC data at the Bonis catchment have a
highly asymmetric distribution with a positive skewness of 2.65. The large asymmetry of
the SOC data at the Bonis catchment area is well reflected by the large difference between
the maximum SOC value and the upper quartile (Q3) (Table 1).

Table 1. Summary statistics of soil organic carbon (SOC) at the two study areas of the whole sets of
data and calibration and validation sets.

Parameter
Bonis Catchment Mongiana Area

Whole Set Calibration Set Validation Set Whole Set Calibration Set Validation Set

N 135 95 40 231 162 69
Mean (%) 2.66 2.65 2.70 6.26 6.15 6.53

Minimum (%) 0.67 1.07 0.67 1.01 1.01 2.57
Q1 1.87 1.90 1.77 5.11 4.90 5.34

Median (%) 2.38 2.38 2.40 6.31 6.30 6.45
Q3 3.21 3.12 3.40 7.44 7.35 7.61

Maximum (%) 11.02 11.02 7.64 13.2 11.80 13.2
St. Dev. (%) 1.30 1.29 1.35 1.89 1.91 1.80
Skewness (-) 2.65 3.25 1.34 0.15 −0.01 0.65
Kurtosis (-) 12.35 17.11 2.40 0.69 0.21 1.61

CV (-) 0.49 0.49 50.00 0.31 0.31 0.28

N = number of observations; St. Dev. = standard deviation; Q1 = lower quartile; Q3 = upper quartile; CV = coefficient
of variation.

In addition, the degree of variation in SOC values is greater in the Bonis catchment
(CV = 0.49) than in the Mongiana area (CV = 0.31) (Table 1).

The basic statistics for the calibration and validation sets of SOC at both study areas
are enough similar to those of the whole SOC data set (Table 1) indicating their sufficient
statistical homogeneity.

The diffuse reflectance spectra (Figure 2) show similar shape and typical absorption
bands near 1400, 1900, and 2200 nm, but a high variation in reflectance intensities. Since the
shape and reflectance intensities of the spectral curves are strongly influenced by different
soil constituents (e.g., organic carbon, iron oxides, or soil texture) [29,72,73], the visual
inspection of diffuse reflectance spectra reveals that the reflectance response is influenced
by SOC concentration, specifically reflectance has a tendency to decrease with increasing
SOC and vice versa.

In some soil diffuse reflectance spectra, the absorption peaks related to the bending
and stretching of the hydroxyl (OH) features of hygroscopic or free water (close to 1400
and 1900 nm) are small while in others they are large (Figure 2). The same behavior can
be observed for absorption at the bands around 2200 nm that are related to the OH of clay
minerals lattice (Figure 2).

Clear differences between the diffuse reflectance spectra for the two study areas can
be observed and are likely to be mainly due to differences in soil type, mineralogy, and
soils physico-chemical composition. The average diffuse reflectance values of soil spectra
of the two study areas are significantly different, mainly because of the difference in the
mean values of SOC concentration (Figure 2).
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3.2. Performance of Pretreatment Methods on SOC Prediction Models

Eighteen calibration models were obtained using PCR, PLSR, and SVMR coupled with
different pretreatment methods. The performances of the 18 models are reported in Table 2.
In general, the prediction models obtained different levels of accuracy depending on the
pretreatment(s) and multivariate calibration method used. The values of R2 in the calibration
models vary between 0.53 and 0.86 for SOC in the Bonis catchment and between 0.72 and
0.85 in the Mongiana area (Table 2). The RMSE values vary between 0.50 and 0.88 for SOC in
the Bonis catchment, and between 0.75 and 1.01 in the Mongiana area. Finally, RPIQ values
range between 1.35 and 2.40 for SOC at the Bonis catchment and between 2.38 to 3.23 at the
Mongiana area.

The best calibration model for SOC prediction at the Bonis catchment was obtained
by using the SVMR coupled with absorbance spectra pretreated with standard normal
variate (SNV), Savitzky–Golay (SG) filtering and the first derivative (1st D). It obtained the
highest value of R2 equal to 0.86 (Table 2), but the lowest RMSE (0.50%) and the highest
RIPQ (2.40) were obtained using PLSR with only the transformation of reflectance spectra
to absorbance (Table 2). The worst performance resulted for the calibration model obtained
using PCR coupled with the spectra of diffuse reflectance pretreated with ABS + SNV + SG
1st D (Table 2).

The best calibration model in the Mongiana area resulted by applying the SVMR
method coupled with absorbance spectra pretreated with standard normal variate (SNV),
Savitzky–Golay (SG) filtering and the first derivative (1st D) (Table 2). It obtained the
highest value of R2 and RPIQ and lowest RMSE. Finally, the lowest accuracy resulted



Land 2023, 12, 44 9 of 16

for the calibration model obtained from the SVMR coupled with the reflectance spectra
transformed into absorbance. (Table 2).

Table 2. Performance of the calibration models obtained by PCR, PLSR, and SVMR, coupled with
different spectroscopic pretreatment techniques for SOC prediction at the two study areas. The best
results of the models are highlighted in bold.

Dataset Pretreatment Method
R2 (-) RMSE (%) RPIQ (-)

PCR PLSR SVMR PCR PLSR SVMR PCR PLSR SVMR

Bonis ABS 0.80 0.85 0.75 0.57 0.50 0.75 2.09 2.40 1.58
(n = 90) ABS + SNV 0.79 0.81 0.83 0.59 0.56 0.59 2.03 2.11 2.01

ABS + SNV + SG 1st D 0.53 0.84 0.86 0.88 0.51 0.55 1.35 2.32 2.15

Mongiana ABS 0.81 0.82 0.72 0.83 0.81 1.01 2.89 2.97 2.38
(n = 162) ABS + SNV 0.74 0.73 0.78 0.98 0.99 0.90 2.46 2.43 2.68

ABS + SNV + SG 1st D 0.77 0.78 0.85 0.92 0.90 0.75 2.62 2.67 3.23

The next step was to evaluate the performance of all calibration models obtained
using an independent SOC dataset (validation set) for both study areas. The results of this
evaluation are summarized in Table 3. The values of R2 vary from 0.52 to 0.82, whereas
RPIQ from 1.67 to 2.84 (Table 3). Generally, these results are in accordance with those
obtained for the calibration models. The best validation performance for SOC in the Bonis
catchment was obtained using PLSR coupled with the soil reflectance spectra transformed
into ABS (Table 3). In contrast, for SOC prediction in the Mongiana area, limited predictive
abilities were found using the ABS + SNV and ABS + SNV + SG 1st D pretreatment
techniques coupled with PCR (Table 3).

Table 3. Validation results of the models obtained by PCR, PLSR, and SVMR, coupled with different
spectroscopic pretreatment techniques for SOC prediction at the two study areas. The best results of
the models are highlighted in bold.

Dataset Pretreatment Method
R2 (-) RMSE (%) RPIQ (-)

PCR PLSR SVMR PCR PLSR SVMR PCR PLSR SVMR

Bonis ABS 0.79 0.82 0.79 0.61 0.57 0.68 2.64 2.84 2.37
(n = 45) ABS + SNV 0.70 0.72 0.72 0.74 0.71 0.76 2.17 2.25 2.12

ABS + SNV + SG 1st D 0.75 0.73 0.82 0.67 0.70 0.63 2.38 2.30 2.54

Mongiana ABS 0.73 0.73 0.52 1.03 1.01 1.36 2.21 2.24 1.67
(n = 69) ABS + SNV 0.62 0.67 0.71 1.20 1.13 1.08 1.89 2.01 2.11

ABS + SNV + SG 1st D 0.62 0.65 0.77 1.20 1.16 0.97 1.89 1.96 2.34

Overall, the validation results show that calibration models built using PLSR and
SVMR as methods perform better than those obtained by PCR (Table 3). Therefore, the
average R2 value for the models built with PLSR and SVMR is 0.72, while that for the
models built with PCR is 0.70. Based on the R2 and RPIQ values of the validation, the SOC
prediction models for the Bonis catchment area performed better than those obtained for
the Mongiana area (Figure 3). That might be due to the lower degree of variation of the
SOC in terms of coefficient of variation (Table 1) in the Mongiana area compared to those
in the Bonis catchment.

In order to summarize the results obtained, Figure 3 shows the scatter plots of the best
performance of the SOC prediction models in the two study areas obtained by PLSR and SVMR
coupled with each of the three combinations of diffuse reflectance spectra pretreatments.
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4. Discussion

The different degree of spatial variation of the SOC concentration in the two study
areas (Table 1) likely affected the spectral response of the soil samples (Figure 2) as also
reported in the literature [21,74–76].

In the two study areas, SOC concentrations ranged from 0.67%, in the Bonis basin,
to 13.2%, in the Mongiana area (Table 2). The lowest SOC concentrations were observed
mainly in the Lithic Udipsamments and secondarily in the Typic Xerumbrepts; whereas the
highest SOC values were observed in the Humic Dystrudepts and the Ultic Haploxeralf.
Furthermore, the different distribution pattern of SOC can probably be related to the
morphological characteristics of the two study areas [54,57,58]. In particular, high and very
high concentrations of SOC were found in topsoils collected on the summit palaeosurface,
gentle slopes and valley floors. In contrast, low to moderate SOC concentrations (<3%)
were measured on convex slopes with slopes generally greater than 20◦, which are often
affected by water erosion processes [54,57].

The visual inspection of the soil spectra (Figure 2) showed that the Vis-NIR diffuse
reflectance spectra of soil samples were similar in appearance with respect to spectral shape,
but there were evident differences in terms of reflectance intensity because variation in
SOC content.

Also confirmed in the literature is the apparent similarity in the shape of the diffuse
reflectance spectra coupled with the different intensity of the reflectance values (Figure 2)
probably related to variations in SOC concentration [24,41,63,77]. The spectral signatures
with lower reflectance generally refer to soil samples with higher content of SOC whereas in
soil spectra with high reflectance, SOC is relatively low [24,63,76]. Spectra with low diffuse
reflectance values have a concave or linear shape, which results in a decrease in the slope
of the curve between the 500 and 800 nm domains (Figure 2) that is typical of soils with
high SOC concentrations [78,79]. Moreover, the soil reflectance spectra showed important
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absorption bands that could be related to some soil constituents (Figure 2). Particularly, the
absorption bands around 1400 and 1900 nm mainly due to OH and metal-OH bonds of soil
clay minerals, and the absorption bands at 2200 nm due to the interaction of near-infrared
radiation with lattice minerals [16,78].

The results suggest that coupling Vis-NIR spectroscopy with the three multivariate
calibration methods (PCR, PLSR, SVMR) allows to discriminate the spatial variability of
SOC content, which represent the key pedogenetic features for evaluate soil quality, as
well as soil development or degradation [79]. Moreover, the pretreatments of spectral
reflectance data can help to fulfil the assumptions of linear multivariate calibration and
improve the calibration models [25]. That would explain the high performance of PLSR.
These pretreatment techniques have their own specific purposes as well as effects on
the diffuse reflectance spectra and can allow to highlight absorption bands or portion of
reflectance spectra more sensitive to SOC or remove noise caused by particle size and light
scattering [62,63]. Thus, in a context of great variability of SOC content as in these two study
areas, which are characterized by different land cover, soil types, and soil samples size,
spectroscopy pretreatments methods may be useful to increase the accuracy of prediction
models [33,76,80–82]. For the SOC in the two study areas, the capability of the PCR, PLSR,
SVMR methods coupled with three pretreatments (ABS, ABS + SNV, ABS + SNV + SG
1st D) showed different performances, which may be related to the different SOC spatial
variation between the two study areas. However, the results also showed that each of the
pretreatments used in this study had different effects on the SOC calibration models, either
improving or worsening the performance of the prediction models (Table 2). This finding is
confirmed by several studies in which spectra pretreatment has been reported to improve
the accuracy of SOC prediction models [72,81,82], while other studies show acceptable
results without the application of pretreatment to spectral data [72,83,84].

Overall, the lowest variations in performance of the prediction models were obtained
for the PLSR method, which consequently provides more stable models for predicting
SOC content than PCR and SVMR methods. Additionally, when the raw spectra were
transformed into ABS, the PLSR models presented the best performances for both sites
(Tables 2 and 3). These results are in agreement with the findings of Carvalho et al.
(2022) [63] in which different pretreatments and multivariate calibration methods for
predicting SOC by Vis-NIR spectroscopy in southern Brazil were compared. Nevertheless,
for both sites studied, coupling SVMR and ABS + SNV + SG 1st D was the best combination
of multivariate calibration method and pretreatment techniques (Table 2).

The performance of the calibration models in the validation fully agreed with that of
the calibration models. Consequently, confirming the combination of multivariate calibration
methods and spectra preprocessing techniques used in model calibration (Tables 2 and 3). The
best accuracy in the SOC predictions of the validation set data was obtained always by SVMR
combined with and ABS + SNV + SG 1st D pretreatments.

However, the results of the validation for both areas showed that all the prediction models
underestimate the higher SOC concentrations, especially for the PCR models. That may be due
to the low number of samples having high SOC concentrations in the calibration set.

The findings highlighted that the different size of soil dataset, as well as the soil
sampling density, for the two areas, do not have a direct effect on SOC prediction models.
Therefore, the performance of the local prediction models can be mainly related to the
SOC range of variation and to the combination of different multivariate methods and the
spectral pretreatments used [41,72]. Furthermore, according to Gholizadeh et al. [85] and
Vašát et al. [86], applying different pretreatment techniques could improve the results of
prediction; the pretreatments might remove physical phenomena in the reflectance spectra
and increase the performance of the prediction models or exploratory analysis [33,62]. That
suggests the need to test different multivariate calibration methods and investigating the
effect of different spectral pretreatments [72,87].

In addition, large soil property datasets generally have larger variances due to the
great heterogeneity of soils and the variability of soil morphology and land use/cover;
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therefore, it is more difficult to obtain high performance prediction models. In these cases,
therefore, it may be necessary to use soil and spectral databases with an adequate number of
soil samples for different environments and soil types. Conversely, small rather than large
spectral databases for estimating SOC at a local scale could provide accurate prediction
models [88].

5. Conclusions

This study was carried out in two forested areas of the Calabria region (south Italy) to
determine if the performance of calibration models obtained combining Vis-NIR diffuse
reflectance spectra and some multivariate calibration methods for predicting SOC content
in forest soils might depend on the size of the study area and on the soil sampling density.

It was found that, generally, the performance of the multivariate calibration methods
in the prediction of SOC depended on the spectral pretreatments both in calibration and
validation procedures. In the model validation, support vector machine regression (SVMR)
outperformed with the increase of pretreatments.

Regarding the study areas, in the prediction of SOC at the Bonis catchment (139 ha
and sampling density = 0.97 samples/ha), PLSR outperformed with all pretreatments in
calibration procedure, whereas in validation PLSR was the best method 2 out 3 pretreat-
ments. The performance of SVMR increased with the number of pretreatments, but PLSR
performed slightly better. However, in validation, the absolute best model was obtained by
PLSR using absorbance spectra.

In the prediction of SOC at the Mongiana area (33 ha and sampling density = 7 samples/ha),
using absorbance spectra, PCR outperformed in the calibration models, whereas PLSR outper-
formed in validation. Using the other two pretreatments, the best method was SVMR both in
calibration and validation. In validation, the absolute best model was obtained by SVMR and
absorbance spectra with SNV and SG 1st order derivative.

The results of this study highlighted various aspects of the use of Vis-NIR spectroscopy
in the prediction of SOC under two conditions of study area size and sampling density
using different calibration methods in combination with a variety of spectra pretreatments.
However, there was no result that can absolutely provide definitive indications of either
the effects of the study area size and soil sampling density. In fact, a detailed analysis of the
results of the calibration and validation models would still allow further discussion on the
best performance achieved, but no clear conclusions about the effects of the study area size
and soil sampling density in predicting SOC by Vis-NIR spectroscopy. What apparently
seems to be a failure of the study actually fosters the need to future investigations in
areas and datasets of different sizes from those in this study and including different soil
landscapes, which may allow generalizing the results obtained.
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