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Abstract: The increase in atmospheric CO2 caused by land use and land cover change (LUCC) is one
of the drivers of the global climate. As one of the most typical high-urbanization areas, the ecological
conflicts occurring in Guangdong Province warrant urgent attention. A growing body of evidence
suggests LUCC could guide the future ecosystem carbon storage, but most LUCC simulations are
simply based on model results without full consistency with the actual situation. Fully combined with
the territorial spatial planning project and based on the land use pattern in 2010 and 2020, we have
used the Markov and Patch-generating Land Use Simulation (PLUS) model to simulate the future
four land use scenarios: the Business as Usual (BU), Ecological Protection (EP), Farmland Protection
(FP), and Economic Development (ED) scenario, and the ecosystem carbon storage was assessed by
the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The results show that
the built-up area experience further expansion in all scenarios, the largest scale happened in ED and
the smallest in FP. Besides, the forest area in the EP scenario is the largest, while the land use pattern
developed based on the previous circumstances in the BU scenario. Furthermore, the carbon storage
plunged from 1619.21 Tg C in 2010 to 1606.60 Tg C in 2020, with a total decrease of 12.61 Tg C. Urban
expansion caused 79.83% of total carbon losses, of which 31.56% came from farmland. In 2030, the
carbon storage dropped in all scenarios, and their storage amount has a relationship of FP > BU >
EP > ED. To better resolve the ecological problems and conserve ecosystem carbon storage, not only
ecological protection but also the protection of the land near the city such as farmland protection
strategies must be considered.

Keywords: carbon storage; LUCC; Markov model; PLUS model; InVEST model; Guangdong province

1. Introduction

During the Industrial Revolution from 1850 to 2019, the total increase in global surface
temperature caused by human beings range from 0.8–1.3 ◦C [1], which posed a series of
widespread threats to humans [2]. The main global warming was caused due to the sudden
rise of atmospheric CO2 concentration [3], which is attributed to the burning of fossil
fuels and land use and land cover change (LUCC) caused by deforestation, urbanization,
and other anthropogenic activities [4]. LUCC, as one of the most important factors in
the augmentation of atmospheric CO2, exerts a profound impact on regional and global
climate [5]. On the one hand, from the aspect of the process of LUCC, the carbon in
ecosystems has been released by factors such as forest steppe fires and soil erosion. The
cumulative carbon emissions caused by those LUCC processes were unexpected in the
past few centuries [6,7]. On the other hand, the impact after LUCC alters the biophysical
properties of the land surface. For example, when forests are replaced by grasslands and
croplands, it leads to a decrease in evaporation and surface roughness as well as an increase
in albedo [8–11]. These biophysical changes have caused severe perturbations to carbon in
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ecosystems and seriously compromised the capacity of the ecosystem to store carbon [12].
Although the carbon emission caused by LUCC is uncertain [13,14], it has been agreed that
the concentration of CO2 in the atmosphere has increased by about 25% in history [15].
Ecosystem’s carbon storage service is a cost-effective nature-based solution for reducing
atmospheric CO2 concentrations [16–19]. Therefore, to meet global carbon challenges it is
vital to take full advantage of the ecosystem services, especially in a LUCC way.

Earlier studies of ecosystem carbon storage have shown the importance of LUCC. The
carbon storage characteristics differ from the land use type and the conversion between
different land use types could cause severe storage change, which has been proved in many
places such as Asia, Oceanic, Europe, and America [20–23]. With the development of the
geographic information system (GIS), the large-scale geographic analysis technology is
gradually improved, making it more closely integrated with the spatial analysis model,
in which the carbon storage and sequestration module in the Integrated Valuation of
Ecosystem Services and Tradeoffs (InVEST) model is the most popular evaluation model.
Especially in Asia, each ecosystem’s carbon storage change might be derived from LUCC,
no matter an increase or decrease. For example, in the eastern coastal areas of Bangladesh
from 1988 to 2018, the total carbon stocks rose with the increase in the trees and vegetation
around rural settlements [24]. Xishuangbanna area in China witnessed a sharp decline
during the 22-year period from 1988 to 2010, which was dominated by the decrease in
natural coverage [25]. Moreover, as for China, the national carbon balance (carbon emission
and storage) has been investigated, and the results showed that land use changes led
to a large amount of carbon loss, mainly because the ecological land was occupied by
construction areas [26,27]. With the development of information technology, more accurate
land use simulation methods emerge in endlessly. The system dynamics (SD) model and
Markov model are applied to future land use demand forecasting, and deep learning based
on Cellular Automata (CA) is used in the spatial change strategy analysis, such as the
Conversion of Land Use and its Effects (CLUE-S), Future Land Use Simulation Model
Software (FLUS), Patch-generating Land Use Simulation (PLUS) model, etc. Combining
future LUCC with ecosystem carbon storage is becoming a common trend in this field.
Several scholars have undertaken the simulation experiment in plenty of areas, from
the southern, central, and northern parts of China, where the model’s applicability and
accuracy were verified [28–31]. However, from previous studies, when predicting future
ecosystem carbon storage, the land demand often relies simply on model results, with less
or little consideration of integration with relevant planning projections, so the simulation
results tend to deviate from the actual situation. Therefore, this study will improve the
shortcomings of previous research and set the simulation scenarios in a way that not
only fully grasps the development direction but also strictly follows the land use quantity
according to relevant planning projections.

Guangdong Province is located at the southern end of the Chinese mainland, with a
tropical and subtropical climate. As a strong economic province in China, ecological and
environmental problems caused by land use changes such as urban sprawl and farmland
expansion recently have become common, resulting in a large number of ecosystem carbon
loss. Although the department concerned managed to resolve those ecological issues, the
environmental problem continued to have a profound effect on their production and life.
Therefore, it is urgent to give full support to the advantages of ecosystem services, to tackle
the conflict between LUCC and carbon storage.

In order to learn about the future ecosystem carbon storage spatial pattern in Guang-
dong, we conducted our research via the following steps. Firstly, after fully considering the
territorial spatial planning project, the Markov model was used to predict the future land
use demand in 2030 under four scenarios. Then, the PLUS model was utilized to simulate
the spatial land use patterns. Finally, the ecosystem carbon storage was assessed by InVEST
model in separate scenarios.
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2. Materials and Methods
2.1. Study Area

Guangdong Province is located in the southernmost part of mainland China, adjacent
to the South China Sea, and across the sea from Hainan Province. There are 21 cities with
a total area of 179,725.07 km2. The whole territory lies between 20◦09′ N–25◦31′ N and
109◦45′ E–117◦20′ E. The overall topography here is high in the north and low in the south,
with complex and diverse landform types (Figure 1). There are mostly mountains and
high hills in the north, plains and platforms in the south, and with dense distribution of
rivers and lakes. Guangdong has a subtropical monsoon climate, with an annual average
precipitation of more than 1500 mm and an average temperature of around 22 ◦C [32].

Figure 1. Administrative divisions in Guangdong Province, China. The blue area represents the
Guangdong province in China.
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In addition, Guangdong is the most economically developed province in China, with
a GDP of 12.44 trillion RMB in 2021. The population also ranks first in China, with a total
population of 126.24 million in the seventh national census in 2020. Energy consumption
also lies at the forefront of China, with electricity consumption reaching 692.6 billion kW·h
in 2019, accounting for about 1/10 of the total.

2.2. Data Sources

The spatial data was used to simulate the spatial pattern of land use and ecosystem
carbon storage. The LUCC data with a resolution of 100 m, and both GDP (https://doi.org/
10.12078/2017121102, accessed on 9 August 2022) and soil type spatial distribution raster
data with a resolution of 1 km were obtained from the Resource and Environment Science
and Data Center (https://www.resdc.cn/, accessed on 9 August 2022). SRTM-DEM 90 m
resolution original elevation data were from the Geospatial Data Cloud site, Computer
Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn,
accessed on 9 August 2022), while the slope data were obtained by using DEM data through
the spatial analysis tool in ArcGIS 10.8 software. The precipitation and temperature data
with a 1 km spatial resolution were accessed from the National Earth System Science Data
Center, National Science and Technology Infrastructure of China (http://www.geodata.cn,
accessed on 22 April 2022). Besides, 100 m resolution gridded population count data were
downloaded from WorldPop (https://www.worldpop.org/, accessed on 8 December 2021).
Furthermore, some basic shapefile geographic information data were from the National
Geomatics Center of China (http://www.ngcc.cn/ngcc/, accessed on 7 August 2022), such
as the administrative center at the county level, the spatial location of highways railways,
and rivers. Via the Euclidean Distance tool in ArcGIS 10.8, the distance to those closest
sources was calculated in each cell. Finally, the coordinate system of all data is unified, and
the spatial resolution is resampled to 100 m.

In order to verify the accuracy of the model, the statistical data of the population in
Guangdong Province were used, which were obtained from the Guangdong Bureau of
Statistics (http://stats.gd.gov.cn/, accessed on 29 October 2022).

2.3. LUCC Simulation under Multiple Scenarios

In this study, the Markov-PLUS coupling model is used to dynamically simulate the
land use/cover types in Guangdong Province, so that we can not only use the Markov
model to predict the land use demand in different situations, but also give full play to the
ability of the PLUS model to deal with the spatial changes of complex systems with CA, and
then simulate the spatiotemporal dynamic characteristics of land use in both quantitative
and spatial aspects.

2.3.1. Markov Model

Markov processes are the simplest type of stochastic processes, where it is assumed
that the present states (rather than past states) affect the transition to future states (i.e., the
so-called Markov characteristics), so the development of the future state can be predicted
by capturing the impact of the current state [33–35]. Given that the dynamic evolution of
LUCC possesses Markov properties, we used this method to simulate the land use demand
in Guangdong Province. The principle is shown in Formula (1):

S(n) = S(n−1) × Pij, (1)

where S(n) means the land use type at moment n, S(n−1) means the land use type at mo-
ment n−1; Pij represents the land use type transition probability matrix, as is shown in
Formula (2):

Pij =

P11 · · · P1n
...

. . .
...

Pn1 · · · Pnn

, 0 ≤ Pij ≤ 1, ∑n
j=1 Pij = 1, (2)

https://doi.org/10.12078/2017121102
https://doi.org/10.12078/2017121102
https://www.resdc.cn/
http://www.gscloud.cn
http://www.geodata.cn
https://www.worldpop.org/
http://www.ngcc.cn/ngcc/
http://stats.gd.gov.cn/
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where Pij means the transition probability from land use type i to j, and n represents the
amount of land use type.

2.3.2. PLUS Model

PLUS model, namely Patch-generating Land Use Simulation model, is a kind of ge-
ographic Cellular Automata (CA) modeling to show complex land use/cover systems,
so as to achieve the purpose of assisting land policy formulation [36]. However, among
the existing CA models, on the one hand, they focused on the improvement of modeling
procedures, and few studies on promoting the understanding of the underlying nonlinear
relationship of LUCC [37,38]. On the other hand, the research on the causes of land use
change is limited [39,40], that is to say, there are certain deficiencies in both the transforma-
tion rule mining strategy and the landscape dynamic change simulation strategy. Therefore,
a rule mining framework based on Land Expansion Analysis Strategy (LEAS) and a CA
model based on multiple random seed (CARS) is proposed, which can mine the driving
factors of land expansion and landscape change, resulting in higher simulation accuracy
and compatibility with more similar landscapes [41].

In the PLUS model, we first need to use the land expansion analysis strategy (LEAS) to
extract the part of all kinds of land use expansion in the two periods, so we can obtain the
samples from the increased part. Then, the random forest algorithm was used to explore all
kinds of land use expansion and driving forces one by one. This process makes us obtain
the development probability of all land use types and also learn the contribution of driving
factors to land use expansion in this period. This strategy can well analyze the mechanism
of land use change over a period of time and has strong explanatory power. Secondly, based
on CARS, this module simulates local microscopic by combining random seed generation
and decreasing threshold mechanism for neighborhood scope, neighborhood weight factor,
random patch seed probability, and conversion cost settings, and the combined effect
of adaptability coefficient, neighborhood effect, and development probability land use
competition. Finally, the land use is allocated to each grid by using the CA mechanism, so
that the initial land use types are transformed into those with high development probability,
which makes the model more reasonable and the simulation accuracy higher [41].

There are 11 historical spatial raster data input in the PLUS model as the LUCC driving
factors in our study (Table 1). They are five socio-economic factors (gross domestic product,
population, and the distance to the administrative center, highway, and railway,) and six
climate-environmental factors (elevation, slope, precipitation, temperature, soil type, and
the distance to river). Combined with the earlier research and the availability of data, these
factors basically meet the model simulation demand to reflect the impact of LUCC and
conform to the actual situation in Guangdong Province [42–44].

Table 1. LUCC driving factors.

Category Factor Definition Data Source

Socio-economic

Gross Domestic Product (GDP) https://www.resdc.cn/
accessed on 9 August 2022

Population https://hub.worldpop.org/
accessed on 8 December 2021

Distance to administrative center http://www.ngcc.cn/ngcc
accessed on 7 August 2022Distance to highway

Distance to railway

Climate-environment

Elevation http://www.gscloud.cn
accessed on 9 August 2022Slope

Precipitation http://www.geodata.cn/
accessed on 8 December 2021Temperature

Soil type https://www.resdc.cn/
accessed on 9 August 2022

Distance to river http://www.ngcc.cn/ngcc/
accessed on 7 August 2022

https://www.resdc.cn/
https://hub.worldpop.org/
http://www.ngcc.cn/ngcc
http://www.gscloud.cn
http://www.geodata.cn/
https://www.resdc.cn/
http://www.ngcc.cn/ngcc/
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2.3.3. Scenario Setting

LUCC is a complex process, and the spatial development of Guangdong Province
is guided by various policies. In China, territorial spatial planning is a series guide for
regional space development and the basis for development, protection, and construction
activities, so bringing planning indicators into land use scenario simulation has important
practical significance and can better guide practice. Therefore, according to the policy
projects such as Guangdong Territorial Planning (2016–2035) and Guangdong Territorial
Spatial Planning (2020–2035), four scenarios of business as usual (BU), ecological protection
(EP), farmland protection (FP), and economic development (ED) were set up to explore
LUCC in different periods and scenarios.

Business as usual (BU) scenario: only based on the expansion law and change charac-
teristics of historical land use in Guangdong Province from 2010 to 2020, regardless of the
impact of policy regulation and control. With the Markov model, the scale of land demand
in 2030 is predicted.

Ecological protection (EP) scenario: this will be one of the key strategies for future
development in Guangdong Province. The importance of forest ecosystems is highlighted
while other natural ecosystems are also preserved. The forest land holdings in the Guang-
dong Territorial Planning (2016–2035) were included in the scenario setting. It is stipulated
to reduce the probability of conversion of other land use types to built-up land by 50% for
forest land and grassland, and by 30% for watershed and farmland [45].

Farmland protection (FP) scenario: strict implementation of farmland protection is
also one of the important tasks in Guangdong Province. In this scenario, the development
of farmland will be restricted, that is, farmland will not be transformed into any other land
use type. In addition, the probability of conversion of unused to farmland will increase by
50% [46].

Economic development (ED) scenario: based on the rapid economic development
and urbanization of Guangdong Province, further priority is given to economic benefits.
However, according to China’s actual policy, urban development requires a clear urban
development boundary, so the upper threshold of land use development intensity specified
in the Guangdong Territorial Planning (2016–2035) is considered when setting this scenario.

2.4. Ecosystem Carbon Storage

The Carbon Storage and Sequestration module from the InVEST model was applied
to estimate the carbon storage in the ecosystem of Guangdong Province. The InVEST
model uses LUCC maps and carbon storage from four carbon pools (aboveground biomass,
belowground biomass, soil, and dead matter) to estimate carbon storage in the current
landscape or carbon sequestration over a period. The equation for the total carbon stock is
shown in Formulas (3) and (4):

Ci = Cabove + Cbelow + Csoil + Cdead, (3)

Ctotal =
n

∑
i=1

Ci × Ai, (i = 1, 2, . . . , n) (4)

where Ci represents the carbon density on land use type i (t/ha), Cabove means carbon
density of aboveground biomass (t/ha); Cbelow means carbon density of belowground
biomass (t/ha); Csoil means carbon density of soil (t/ha); Cdead means carbon density of
dead matter (t/ha); Ai means the area of land use type i; Ctotal represents total ecosystem
carbon storage (t).

3. Results
3.1. LUCC Features in the Historic Period and Future Scenarios
3.1.1. LUCC Features in the Historic Period

According to historical land use data (Table 2), from 2010 to 2020, the land use type
with the largest area change was farmland, with a decrease of more than 2 × 105 ha
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(nearly 5%); the most obvious increase in proportion was built-up land (more than 16%),
with a cumulative expansion of nearly 2 × 105 ha; In addition, the area of grassland also
increased, but the magnitude was not significant, with an increase of less than 3 × 104 ha
(approximately 3% only); the rest of the land use types did not change remarkably. The
considerable expansion of built-up area is one of the most noteworthy features of land use
change in Guangdong Province.

Table 2. Land use area in 2010, 2020, and 2030 under multi-scenario (Business as Usual, Economic
Development, Ecological Protection, and Farmland Protection, unit: 104 ha).

Year/Scenario Farmland Forest Grassland Water Built-Up Unused

Previous period 2010 429.92 1078.56 73.62 77.73 115.38 1.28
2020 409.83 1079.12 76.43 77.88 133.98 1.05

Future scenario in 2030

Business as Usual 405.03 1078.46 76.84 77.88 139.08 1.01
Ecological Protection 396.97 1084.50 75.93 79.57 140.40 0.94
Farmland Protection 410.64 1079.49 75.59 77.62 134.00 0.96

Economic Development 370.01 1064.81 76.37 71.09 195.23 0.80

Spatially, built-up land has spread to different degrees in all parts of the land around
the towns during the decade, with the conversion of farmland around cities being the
most significant source of expansion (Figure 2). The most obvious expansion occurred
in the Pearl River Delta urban agglomeration area, where the scale of built-up land is
larger than it was 10 years ago, making it more concentrated and contiguous. In addition,
since Guangdong is mostly mountainous and hilly, the eastern part is a plain area with
comfortable temperatures and abundant precipitation, which creates natural conditions
for orderly development in the east. The built-up areas in the eastern part of Guangdong
Province have also undergone significant urban expansion, and according to the relevant
plans, this area will be developed into the “Shantou-Chaozhou-Jieyang Metropolitan Area”
with the spatial form of a compact combination city.

The increase in the area of forest and grassland is another important feature. Recent
years, as one of the fastest-growing urbanized regions, ecological and environmental
problems have become increasingly prominent as the economic level continues to rise.
For this reason, Guangdong Province has focused on the health and stability of natural
ecosystems and has vigorously promoted plantation and ecological restoration, which has
resulted in an increase in the area of forest and grassland ecosystems [47].

3.1.2. LUCC Features in Future Scenarios

Based on the characteristics of historical land use changes in Guangdong Province,
and combined with planning projects such as Guangdong Territorial Planning (2016–2035)
and Guangdong Territorial Spatial Planning (2020–2035), the land use pattern under four
future scenarios was simulated. The common feature of the four scenarios is that they
have carried out different degrees of urban expansion, which is in line with the actual
development strategy of Guangdong (Table 2).

In the BU scenario, the farmland around the city will be further occupied, but to a
minor extent, and the area of the remaining land use types is essentially the same as in 2020.
In the EP scenario, as required in the planning policy to ensure the forest land holdings
in 2030, a portion of other natural ecosystems (farmland, grassland, unused land) will be
converted to forest land, and those will also convert to built-up land due to the need for
urban construction.
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Figure 2. Spatial distribution of various land use types in (a) 2010, (b) 2020, and 2030 under (c) business
as usual (BU), (d) ecological protection (EP), (e) farmland protection (FP), and (f) economic develop-
ment (ED) scenario.

In the FP scenario, it is assumed that farmland will not be converted to any other
land use types, indicating that they will not be transformed into built-up land. However,
the urban expansion will happen still. The forest is generally far away from the city, so
important sources of built-up land expansion turn out to be the unused land and grassland
around the city, whose land use area is much smaller than farmland, so the city expansion
will be on a not big scale.

In the ED scenario, the expansion of towns and cities is greatly increased for the
pursuit of economic interests. Under the premise of meeting the upper limit of development
intensity in the planning projects concerned, the built-up land will no longer be restricted
by spatial conditions, and the farmland, forest, grassland, and unused land around them
will be utilized. In this scenario, the built-up land in the entire Pearl River Delta will be
more concentrated and larger in scale than ever before. The spatial mapping of land use
under each scenario is shown in Figure 2.
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3.2. Ecosystem Carbon Storage

From the perspective of Table 3, the carbon reserves decreased significantly from
2010 to 2020, which decreased 12.61 Tg C. During this decade, drastic urban expansion
has taken place in Guangdong Province, and the area of built-up land increased from
115.38 × 104 ha in 2010 to 133.98 × 104 ha in 2020, resulting in the transformation of a large
area of natural ecosystem to built-up land. There are 79.83% of carbon loss areas are caused
by the conversion of other land use types to built-up areas, among which the conversion of
farmland to built-up land is the largest (31.56%).

Table 3. Carbon storage amount in 2010, 2020 and 2030 in future scenarios (Business as Usual,
Economic Development, Ecological Protection, and Farmland Protection).

Year/Scenario Carbon Storage/Tg

Previous period 2010 1619.21
2020 1606.60

Future scenario in 2030

Business as Usual 1602.41
Ecological Protection 1601.92
Farmland Protection 1606.51

Economic Development 1558.98

In each scenario, carbon storage will further reduce. In the BU scenario, there will
be a loss of 4.19 Tg C. Only the carbon storage in the FP scenario is higher than that in
the BU, with merely a small loss (0.09 Tg C). The carbon storage of the other scenarios has
decreased significantly. The remaining scenarios showed a significant decline in carbon
storage, with the ED scenario reaching the upper limit of development in terms of urban
expansion and incurring the most carbon loss of any scenario, with a loss of 47.62 Tg C,
which is 3.7 times the amount lost in 2010–2020. The EP scenario is second only to the ED
scenario in terms of carbon loss (4.68 Tg C).

In 2030, urban expansion under each scenario will continue, and various natural
ecosystems will be transformed into built-up land at different scales, so carbon storage
will decline in each scenario. In the ED scenario, the urban development intensity will
reach saturation, while the cities, such as the Pearl River Delta, will occupy large areas of
farmland, grassland, forest, so the carbon storage will decline significantly. The carbon
storage in the FP scenario will be higher than that in the EP scenario, indicating that the
interaction between spatially adjacent elements cannot be ignored when the planned land
use amount meets the need.

Considering the actual situation in Guangdong Province (Figure 3), since farmland
is key to providing food and other consumer goods for the residents in the town, most of
the farmland is also distributed around the city. In the FP scenario, farmland is strictly
restricted, so while protecting farmland, it also greatly constrains the sprawl of towns and
cities and reduces the damage to natural ecosystems and carbon loss. In the EP scenario,
the protection of forest land and grassland is often emphasized, they are far away from
the city, so the phenomenon of urban expansion in this scenario is still obvious enough. In
order to increase ecosystem carbon storage, it is also important to consider the significance
of farmland along with ecological protection.
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Figure 3. Spatial distribution of carbon storage in (a) 2010, (b) 2020, and 2030 under (c) BU, (d) EP,
(e) FP, and (f) ED scenario.

4. Discussion
4.1. Verification of PLUS Model

Studies have shown that in the context of global change, population size and built-up
area tend to be positively correlated [48,49]. This study explores future urban scale changes
through the trend of the future population, thereby verifying the demand for land use.
As machine learning is increasingly considered an effective tool for future population
prediction, three methods, Holt-Winters, Damped Holt-Winters method, and ARIMA
Model, have proven to be effective tools [50,51]. In this study, by using the forecast and
tseries packages in R language, the predictions of the future population of Guangdong
Province are made by the above three models.

Each model passes the goodness-of-fit test and is statistically significant. The popu-
lation number prediction results can be seen in Table 4. Although there are differences in
the prediction results of each model, it is affirmative that the population of Guangdong
Province will further increase by 2030, so it is presumed that the scale of built-up land will
also increase accordingly. The area of built-up land will increase from each scenario, so the
land use demand can be proved to be correct.
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Table 4. Predicted population by different machine learning methods.

Year Holt’s Method Damped Holt’s Method ARIMA Model

2020 9783.091
2030 10,721.533 * 10,089.474 ** 10,643.284 *

Note: * p < 0.05; ** p < 0.01.

Taking 2010 as the base period, the PLUS model simulated the LUCC in Guangdong
Province in 2020 by combining a variety of LUCC drivers. Compared with the actual
situation, it can be concluded (Figure 4) that there is an extremely high spatial distribution
similarity between those two. From the quantitative relationship, the Kappa coefficient
is 0.8571, which shows the applicability of the model and the accuracy of the driving
force selection.

Figure 4. The comparison between (a) actual and (b) stimulated LUCC in 2020.

4.2. Comparison of Carbon Storage Result

In this study, ecosystem carbon storage was calculated by the InVEST model. In order
to make the research results more objective and accurate, a set of carbon density by land
use type under different carbon pools was derived by comparing it with other scholars’
studies. The specific data and reference sources are shown in Table 5.

Table 5. Carbon density in different carbon pool on diverse LUCC and their references.

LUCC Cabove
(Mg/ha)

Cbelow
(Mg/ha)

Csoil
(Mg/ha)

Cdead
(Mg/ha) Reference

Farmland 27.89 2 47.52 1 [52,53]
Forest 48.18 8.3 49.24 6.5 [52–54]
Grass 38.24 5.2 50.45 1.9 [52,53,55]
Water 0 0 0 0 -

Built-up land 0 0 0 0 -
Unused land 30.23 20 40.75 5 [52,55]

In addition, the ecosystem carbon storage in other regions of China with similar
natural background characteristics was compared. Due to the large differences in the study
area between different study results and the lack of comparability of the respective total
carbon storage, the amount of contained carbon per unit area, i.e., carbon density, was used
for comparing with each other [56].

The result of this study and others (Table 6) are in the same order of magnitude, which
can demonstrate the accuracy of the results. On the other hand, the carbon density of
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ecosystems in Guangdong Province is not as high as in other regions with similar natural
background characteristics. Although Guangdong Province has low latitude, adjacent to
the ocean, and has year-round high temperatures, humid climate, and evergreen seasons,
which are suitable for vegetation growth, the urbanization rate of Guangdong Province is
among the highest in China. Large areas of natural ecosystems have been developed into
built-up land, which is the main reason for the low carbon storage level.

Table 6. Carbon storage in previous studies.

Author(s) Study Region Year Carbon Density (Mg/ha)

This study Guangdong Province 2010 90.09
2020 89.39

Kaiqi, Z. et al. [57] Guilin City 2010 199.13
2020 197.92

Qi, F. et al. [58] Su-Xi-Chang Region 2010 48.44
Qing, L. et al. [59] Hainan Province 2010 127.37

Rubo, Z. et al. [60] Pearl River Delta
2000 115.00
2015 115.48

Zhiqiang, Z. et al. [61] Guangzhou City 2010 50.54

4.3. Suggestions for the Conservation of Carbon

According to the Climate Action from the United Nations, it is imperative to take
credible actions to achieve the Net-zero goal. Net zero means the remaining emissions
are reabsorbed from the atmosphere by the natural ecosystem. Therefore, the ability to
store carbon is of vital importance to avoid the catastrophic impacts of climate change and
preserve a livable planet. Many countries pledged to achieve the net-zero target, including
some big emission objects, like China.

Although China plays the biggest emission role all around the world, the government
aims to cut its CO2 emissions to zero by 2060. China takes up-to-down measurements
to make this commitment come true, indicating that the provincial governments were
required to achieve their Net-zero goal. Taking Guangdong Province as an example, several
planning documents were released in 2021 to guide the departments concerned to achieve
the net-zero target, the 14th Five-Year Plan of Ecological Environment Protection and
the 14th Five-Year Plan for Ecological Civilization Construction for instance. These two
documents are updated every five years, and the Net-zero goal became one of the most
essential objectives for the first time. However, to take advantage of the absorption ability
of the ecosystem, both two planning documents proposed the explicit protection target
indicators to the proportion of forest coverage, wetland protection, and green infrastructure
area, but the contribution of farmland was ignored. There are multiple documents aiming
to achieve the Net-zero goal that only concentrates on ecological protection approaches,
and lacks the consideration of farmland protection methods.

To sum up, it is highly advisable that the importance of both ecological and farmland
protection indicators should be taken seriously in future planning documents concerned in
not only China but also in other countries or areas.

4.4. Limitations and Prospects

As society evolves and population numbers further rise, more necessities such as
food, energy, and water will be obtained from natural ecosystems, resulting in a further
complex relationship between humans and natural ecosystems [62]. However, in this study,
only the characteristics of historical changes and the constraints of planning projects on
future LUCC were considered in the simulation of LUCC, but the coupling of human-land
systems was less considered. Few major LUCC events were taken into consideration, such
as logging, river damming, and forest fires.

Moreover, the climbing population is bound to cause higher-intensity human activities,
and anthropogenic processes have already produced significant changes to the climate [63].
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However, this study took less account of the effects of climate change when predicting
future land use patterns. It is hoped that more indicators that can reflect these two points
will be incorporated into the influencing factors of LUCC simulations in further studies.

Besides, the model can properly be implemented in a local area such as Guangdong
Province, but whether this model is appropriate for a larger scale is not explored, in our
future studies we will be able to consider answering such important questions.

5. Conclusions

We integrated the Markov-PLUS-InVEST model to simulate the land use pattern of
Guangdong Province in 2030 based on the land use pattern in 2010 and 2020 and assessed
the ecosystem carbon storage under each historical and future land use scenario. The main
conclusions are as follows.

During 2010–2020, the area of built-up land in Guangdong Province increases signif-
icantly, the area of farmland decreases by nearly 5%, the area of grassland increased by
about 3%, and the area of the remaining land use types does not change much. The scale of
built-up land increases in all four future scenarios, but the scale of expansion varies due to
the constraints of spatial patterns and policies. Due to the location limitation, construction
land expansion is minimal in the FP scenario, and the area of natural ecosystems such
as farmland and forest land grows significantly; the land use change in the BU scenario
is a continuation of 2010 and 2020. Forests are well protected in the EP scenario, but
due to the lack of constraints on urban sprawl, the expansion is still obvious. In the ED
scenario, with economic development as the guide, the urban sprawl encroaches on many
natural ecosystems.

The ecosystem carbon storage declined significantly during the last decade 2010–2020,
this could be due to urban expansion. In the four scenarios in 2030, the further development
of urban size will decrease carbon storage, and there will be a relationship of FP > BU > EP
> ED for ecosystem carbon storage. Therefore, it is suggested that not only the quantitative
coordination of land use should be considered in planning but also the spatial locational
factors need to be taken into account, so as to enhance the protection of land use types close
to cities such as farmland. This could simultaneously increase ecosystem carbon storage
in terms of both limiting urban sprawl and increasing ecosystem carbon potential, which
makes it an efficient nature-based solution to reserve carbon.
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