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Abstract: Improving our understanding of the patterns and drivers of regional carbon budgets is
critical to mitigating climate change regionally and globally. Different from previous research, our
study attempts to reveal the comprehensive impact of climate change and human activities factors
on the carbon budget. Based on the Carnegie–Ames–Stanford approach (CASA) model, the IPCC
inventory method, the ordinary least squares (OLS) regression model, the Geodetector model, and the
geographically weighted regression (GWR) method, we investigated the spatiotemporal patterns of
the carbon budget in the Yangtze River Delta (YRD) region from 2000 to 2015 and analyzed the effects
of climate change and human activities on the carbon budget. The results showed that the carbon
budget in the YRD region changed from 271.33 million tons in 2000 to −1193.76 million tons in 2015.
During this period, the changes in the carbon budget per unit area in the four provinces all showed
a decreasing trend, among which Shanghai decreased the most, followed by Jiangsu, Zhejiang and
Anhui. In terms of spatial pattern, the carbon budget of the YRD region has a “core-edge” structural
feature. The closer it is to Shanghai, the core area, the more severe the carbon budget deficit; the
farther from it, the greater the carbon budget surplus. Overall, we found that human activities have
a greater impact on the carbon budget than climate change. The top three drivers were, in order,
changes in population density, GDP per capita, and unused land, with q values of 0.3317, 0.1202,
and 0.0998, respectively. Locally, the impact of the drivers on the carbon budget shows obvious
spatial heterogeneity. In particular, the population density was negatively correlated with carbon
budget changes in the entire study area, and the coefficients of GDP per capita and unused land were
negative in most counties. Based on the results, we put forward suggestions for restricting population
flow among the core area and the peripheral area, promoting industrial innovation in the core area
and ecological protection in the peripheral area, as well as implementing three-dimensional space
development in the core area and controlling the expansion of construction land in the peripheral
area. Our study can provide a scientific basis for low-carbon development in the YRD region. The
methodology and findings of this study can provide references for similar studies in other urbanized
regions around the world.

Keywords: carbon budget; spatiotemporal patterns; drivers; Yangtze River Delta

1. Introduction

Since the industrial revolution, the global economy has developed rapidly, and various
energy sources have been widely used. The resulting emissions of greenhouse gases
(including CO2, CH4, and N2O), especially CO2, have led to the gradual acceleration of the
rise in the global average temperature over the past 200 years [1–3]. The need to mitigate
climate change has become a global consensus [4]. Terrestrial ecosystems have a strong
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carbon sequestration function, and terrestrial vegetation can convert and store atmospheric
CO2 into organic matter through photosynthesis, playing a key role in mitigating global
warming [5]. Many studies have demonstrated that carbon sequestration in terrestrial
ecosystems can offset substantial anthropogenic carbon emissions [6–8]. Therefore, it is
critical to uncover the relationship between carbon emissions and carbon sequestration and
the drivers behind them.

The carbon budget of terrestrial ecosystems refers to the difference between carbon
sequestration and carbon emissions [9]. Conducting carbon budget research can help clarify
the regional carbon emission reduction pressure and carbon sink potential [10–12]. Prelimi-
nary research on regional carbon budgets mainly focused on natural ecosystems, such as
forests, grasslands, farmlands, and wetlands [13–16]. In recent years, with the deepening of
global change research and the proposal of a low-carbon economy, carbon budget research
covering natural and human social and economic activities has begun to attract academic
attention [9,17]. The assessment methods of the carbon budget mainly include field surveys,
empirical models, remote-sensing models, IPCC inventory methods, etc. [18]. Field surveys
can be used to obtain measured data on vegetation and soil carbon densities or the net
carbon exchange between ecosystems and the atmosphere. This method is suitable for
studies at the scale of sample sites and ecosystems [19]. At larger spatial scales, statistical
models are usually established to evaluate carbon budgets based on empirical relationships,
and such studies are typified by Houghton’s bookkeeping model [20]. In recent decades,
with the advancement of remote sensing and GIS technology, remote-sensing models (such
as the CASA model) have become an effective technical means to assess carbon sequestra-
tion [21]. The IPCC inventory method is widely used in carbon emission accounting due to
its simple calculation and high practicability [22]. Combining remote-sensing models with
the IPCC inventory approach can greatly improve the efficiency and accuracy of carbon
budget assessments [23]. To date, researchers have carried out many carbon budget studies
based on these methods in different regions of the world [21,24,25]. However, how to apply
scientific research results to guide carbon management in practice is still a challenge [26].

Before developing carbon management strategies, policymakers should understand what
underlying factors affect carbon budgets and where and when these impacts occur [27,28].
Climate change and human activities are considered the two main driving factors of
carbon budget dynamics [21,29–32]. Climatic change affects the ecosystem carbon budget
mainly by changing vegetation phenology, photosynthesis, respiration, soil moisture and
evapotranspiration [10,33]. Human activities, especially the impacts of land use/land cover
change (LUCC) on carbon budgets, are important factors leading to the current increase in
atmospheric CO2 concentrations [34,35]. Studies by Houghton et al. showed that from 1850
to 1990, global LUCC led to the emission of 124 Pg C into the atmosphere, of which 108 Pg
C came from the reduction in forest ecosystem area [20]. In addition, some researchers have
focused on other indicators of human activity, such as the impact of population growth
and GDP growth on the carbon budget [9,36,37]. However, most of the current driving
analysis studies only focus on one of climate change [38,39] or human activities [40,41], and
comprehensive analysis of carbon budget changes caused by multiple drivers is rare.

With the rapid development of the national economy, China has become a major
CO2 emitter [42]. To mitigate global warming, China has made unremitting efforts to
increase forest and grass areas and reduce energy consumption in recent years [43]. The
Chinese government has pledged to peak carbon emissions by 2030 and be carbon-neutral
by 2060 [44]. Located in East China, the Yangtze River Delta (YRD) region is the largest
urban agglomeration and is one of the regions with the fastest urbanization [45]. In the past
few decades, energy has played an important role in promoting the rapid development
of the YRD region, but it has also caused a high level of carbon emissions [46]. The
unbalanced regional development in this area has become increasingly prominent, and
it is urgent to formulate differentiated regional development policies. To date, some
researchers have carried out research on the carbon budget at the national scale in China [47].
Other researchers have conducted many studies on either carbon sequestration or carbon
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emissions in the YRD region [22,45,48–50]. However, studies on the spatiotemporal patterns
of the carbon budget and its drivers in this region have not yet been performed.

Different from previous research, our study tried to reveal the comprehensive impact
of human activities and climate change factors on the carbon budget and to narrow the
gaps in carbon budget research in the YRD region. We estimated the carbon budgets
of 308 county-level administrative units in the YRD region from 2000 to 2015 and explored
the drivers of the spatiotemporal patterns of the carbon budget. The purpose of our study
was to find scientific carbon management pathways in the YRD region. Given this challenge,
three questions were addressed: (1) Is there a certain characteristic in the spatiotemporal
pattern of the carbon budget in the YRD region? (2) Which drivers have a greater impact on
the carbon budget and where do these impacts occur? (3) How should we carry out carbon
management to reduce the imbalance of regional carbon budget? Our results provide a
scientific basis for the low-carbon and sustainable development in the YRD region, and our
methodology provides a reference for other rapidly urbanizing regions in the world.

2. Materials and Methods
2.1. Study Area

The YRD region includes Shanghai, Jiangsu, Zhejiang, and Anhui provinces (Figure 1),
comprising 41 cities and 308 county-level administrative units (including counties and
districts, which are uniformly expressed as counties in our research). The study area covers
an area of 358,000 square kilometers, accounting for approximately 3.7% of China’s total
area. The YRD region is located in the lower reaches of the Yangtze River (114◦54′–123◦10′ E
and 27◦02′–35◦08′ N). The region has abundant rainfall, with an annual precipitation of
704–2000 mm and an annual average temperature of 12.2–18.9 ◦C. The water system is
well-developed and the vegetation is mainly subtropical evergreen broad-leaved forest.
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The YRD is one of the most densely populated areas in China, and it has the fastest
urbanization process in the entire country [45]. During 2000 and 2015, the process of urban
expansion led to a significant decline in ecosystem carbon sequestration [51]. However,
carbon emissions in the YRD region continued to increase during this period. Researchers
confirmed that the coupling coordination between carbon sequestration and carbon emis-
sion in this region was in an imbalanced state [52]. As of 2015, carbon sequestration had
offset less than 5% of carbon emissions in eight core cities in the YRD region [53].

2.2. Data Sources

The data required to assess the carbon sequestration, carbon emissions, and drivers are
mainly meteorological data, land use data, normalized difference vegetation index (NDVI),
population density data, gross domestic product (GDP) per capita data, administrative
boundary data, nighttime light data, and energy consumption data (Table 1).

Table 1. Data used in this study.

Data Name Data Type Year Source

County administrative
boundaries in the YRD

region
Vector data 2015

Resource environment data cloud platform
(http://www.resdc.cn/Default.aspx accessed on

30 May 2021)

Monthly total precipitation Site data 2000, 2015 China Meteorological Data Network
(http://data.cma.cn/ accessed on 5 June 2021)

Average temperature Site data 2000, 2015 China Meteorological Data Network
(http://data.cma.cn/ accessed on 5 June 2021)

Solar radiation Site data 2000, 2015 China Meteorological Data Network
(http://data.cma.cn/ accessed on 15 June 2021)

Normalized difference
vegetation index 1 km × 1 km Raster data 2000, 2015

Resource environment data cloud platform
(http://www.resdc.cn/Default.aspx accessed on

2 July 2021)

Land use/land cover 30 m × 30 m Raster data 2000, 2015
Resource environment data cloud platform

(http://www.resdc.cn/Default.aspx accessed on
5 July 2021)

Population density 1 km × 1 km Raster data 2000, 2015
Resource environment data cloud platform

(http://www.resdc.cn/Default.aspx accessed on
5 July 2021)

GDP per capita 1 km × 1 km Raster data 2000, 2015
Resource environment data cloud platform

(http://www.resdc.cn/Default.aspx accessed on
5 July 2021)

Energy emission data Text data 2000, 2015
Statistical yearbook of CNKI

(https://data.cnki.net/Yearbook accessed on
6 August 2021)

Night lights data 1 km × 1 km Raster data 2000, 2015

Harvard University Database
(https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/YGIVCD accessed
on 8 October 2021)

2.3. Methods

The analytical workflow for this study consisted of three key steps. First, we used
the CASA model, the IPCC inventory method and the PSO-BP neural network model
to evaluate the carbon sequestration and carbon emissions in the Yangtze River Delta
in 2000 and 2015, and then calculated the carbon budget. Second, we investigated the
spatiotemporal pattern of the carbon budget based on statistical analysis and GIS spatial
analysis. Third, we used the OLS model to eliminate the variables with multicollinearity
from multiple potential driving factors and analyzed the driving forces from the global and
local perspectives based on the Geodetector model and the GWR model, respectively. The
flow chart of this study is shown in Figure 2.

http://www.resdc.cn/Default.aspx
http://data.cma.cn/
http://data.cma.cn/
http://data.cma.cn/
http://www.resdc.cn/Default.aspx
http://www.resdc.cn/Default.aspx
http://www.resdc.cn/Default.aspx
http://www.resdc.cn/Default.aspx
https://data.cnki.net/Yearbook
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YGIVCD
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YGIVCD
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2.3.1. Assessment of Carbon Sequestration, Emissions, and Budget
Carbon Sequestration

The CASA model was used to estimate the NPP in the YRD region [54], and then, the
amount of carbon sequestration in vegetation was obtained. The NPP estimated in the



Land 2022, 11, 1230 6 of 18

model can be determined from the photosynthetically active radiation absorbed by the
plants (APAR) and the actual photosynthetic efficiency (ε):

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

In Equation (1), APAR(x, t) is the photosynthetically active radiation absorbed by
pixel x in month t (MJ·m−2), and ε(x, t) is the actual light energy utilization rate of
pixel x in month t (MJ·m−2). For the specific calculation, we referred to the research of
Yang et al. [55].

According to vegetation photosynthesis, every 1 g of dry matter produced by the
ecosystem can absorb 1.62 g of CO2, and the carbon content of dry matter accounts for
approximately 45% of the total NPP [56]. Therefore, the equation for calculating carbon
sequestration (CS) is as follows:

CS = (NPP÷ 0.45)× 1.62 (2)

Carbon Emissions

In previous studies, the total CO2 emission data for China were usually calculated
by referring to the method of calculating the pollutant emission coefficient described in
the national Greenhouse Gas Inventory Guidelines published by the IPCC in 2006. This
method has high practicality and applicability, and it has been widely used to calculate
energy and fuel emissions [57–59]. In this paper, the method of Han et al. [22] was used.
The specific formula are as follows:

AE = ∑
m,n,t

(ECm,n,t × NCVm,n × EFm,n) (3)

where m, n, and t are the industry, fuel type, and year of investigation, respectively; AE is
the carbon emissions (in metric tons), and EC is the energy consumption (in metric tons).
NCV is the net calorific value (MWh/t) and EF is the CO2 emission factor (t CO2/MWh).
The details of NCV and EF refers to the study of Han et al. [22]. Due to the lack of energy
consumption data for some counties in the YRD region, in our study, a particle swarm
optimization–back propagation (PSO-BP) neural network model was used to simulate
the carbon emissions of counties with missing data using the MATLAB platform with
reference to Chen et al. [60]. To prevent overfitting, the MATLAB platform uses the method
of dividing the data into three parts: training, validation, and testing. Only the training
data were used in the training step, and the other two datasets that were not used in the
training were used for testing. The collected carbon emission data for the counties were
used as training data and testing data, and the counties with missing data were predicted
and simulated. The training sample size was 70% of the output layer data in the different
years. We achieved good simulation results (see Supplementary Figure S1). The PSO-BP
neural network codes used in this study are shown in the Supplementary File (Code).

Carbon Budget

Zhao et al. [61] defined the regional carbon budget as the comparative relationship
and balance between carbon sequestration and carbon emissions caused by all natural and
man-made activities in a certain region in a specific period of time. Our study calculated
the carbon budget with reference to Li et al. [62], and the formula is as follows:

CB = CS− AE (4)

In Equation (4), CB is the amount of carbon budget, CS is the amount of carbon
sequestration, and AE is the amount of carbon emissions. If the value of CB is positive, it
means that the carbon budget is in surplus; if the value of CB is negative, it means that the
carbon budget is in deficit.
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2.3.2. County-Level Data Analysis

Using the county level as the study unit is conducive to a more specific analysis of
the temporal and spatial characteristics of regional carbon budgets and the formulation of
more targeted emission reduction measures. Based on the Zonal Statistics tool of ArcGIS
10.8, our study counted and analyzed the values of the carbon budget and drivers at the
county level. Then, we further divided the county-level statistical values into six categories
to better demonstrate their evolution characteristics.

2.3.3. Driver Analysis

Referring to the research by Sun et al. [63] and after considering the natural status,
development characteristics, and data availability of the YRD region, at the county scale,
we selected 11 indicators as the potential drivers of carbon budget changes. The drivers
included climate change (average temperature, average annual precipitation, and annual
solar radiation per unit area) and human activities (proportion of cultivated land, forestland,
grassland, water area, built-up area, unused land; population density; and per capita GDP).
Changes in all potential drivers from 2000 to 2015 were first calculated and then regressed
with changes in carbon budget per unit area.

After selecting the potential drivers, we first performed collinearity diagnosis based
on the ordinary least squares (OLS) regression model and eliminated potential drivers with
a variance inflation factor (VIF) greater than 7.5. Then, a Geodetector and geographically
weighted regression (GWR) model were used to carry out global and local driving factor
analysis. Geodetector can be used to detect spatial heterogeneity and find out the driving
mechanism behind it [64]. The global impact of drivers on the carbon budget changes was
analyzed by the factor detection tool in Geodetector. The GWR model is a local regression
model based on the OLS model, which can reflect the degree of influence of different
geographical variables on the region [65].

We used the OLS and GWR tools in ArcGIS 10.8 for the modeling. The Geodetector
can be accessed at the website www.geodetector.cn (accessed on 10 November 2021).

3. Results
3.1. Changes in Carbon Sequestration and Emissions

From 2000 to 2015, both carbon sequestration and carbon emissions in the YRD
region showed an increasing trend, where carbon sequestration increased by 4.18%, while
carbon emissions increased by 215.86% (Table 2). Among the four provinces, Anhui
and Jiangsu both increased carbon sequestration to some extent, while the other two
showed a decreasing trend. Shanghai, in particular, saw a 14.51% reduction in carbon
sequestration. In terms of carbon emissions, Jiangsu, Zhejiang, Shanghai and Anhui were
ranked according to the increase in the total amount. According to the increase in carbon
emissions per unit area, the rankings were Shanghai (433.78 t/ha), Jiangsu (64.20 t/ha),
Zhejiang (32.16 t/ha) and Anhui (14.50 t/ha).

Table 2. Quantitative changes in carbon sequestration and emissions during 2000–2015.

Carbon Sequestration (Mt) Carbon Emission (Mt)

Area (ha) 2000 2015 2000–2015 2000 2015 2000–2015

YRD region 3.59 × 107 968.82 1009.36 40.54 697.49 2203.12 1505.63
Anhui 1.40 × 107 368.86 394.82 25.95 161.22 364.38 203.16
Jiangsu 1.07 × 107 225.53 243.19 17.67 286.39 974.57 688.18

Zhejiang 1.06 × 107 359.41 358.51 −0.90 145.96 485.21 339.25
Shanghai 0.63 × 106 15.02 12.84 −2.18 103.92 378.96 275.04

www.geodetector.cn
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3.2. Spatiotemporal Dynamics of the Carbon Budgets
3.2.1. Changes in the Amount of Carbon Budget from 2000 to 2015

In 2000, the total carbon budgets of Anhui, Zhejiang and the entire study area were in
surplus, while Jiangsu and Shanghai were in deficit (Figure 3a). Specifically, the ranking of
carbon budgets was as follows: Zhejiang, Anhui, Jiangsu and Shanghai, which were 213.45,
207.65, −60.86 and −88.90 million tons, respectively. In 2015, only Anhui’s carbon budget
was in surplus, and the other three provinces were in deficit. Jiangsu had the largest carbon
budget deficit gaps (−731.37 million tons), followed by Shanghai (−366.12 million tons) and
Zhejiang (−126.70 million tons). In terms of changes in carbon budgets from 2000 to 2015,
all four provinces showed a decreasing trend. The order of carbon budget reduction was
Jiangsu, Zhejiang, Shanghai and Anhui. From 2000 to 2015, the carbon budget of the entire
YRD region decreased by 1465.09 million tons.
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In 2000, the carbon budget per unit area was negative in Shanghai, Jiangsu, and
the YRD region and positive in Anhui and Zhejiang (Figure 3b). In 2015, only Anhui’s
carbon budget per unit area was positive, and the other three provinces were all negative,
especially Shanghai, which reached −577.43 t/ha. From 2000 to 2015, the changes in the
carbon budget per unit area in the four provinces all showed a decreasing trend, among
which Shanghai decreased the most (−437.21 t/ha), followed by Jiangsu (−62.55 t/ha),
Zhejiang (−32.24 t/ha) and Anhui (−12.65 t/ha).

3.2.2. Spatial Heterogeneity of the Carbon Budget Changes

We investigated the changes in the total carbon budget (Figure 4) and in the carbon
budget per unit area (Figure 5) of each county in the YRD region from 2000 to 2015. In 2000,
the carbon budget of most counties in the study area was in surplus, while the counties
in deficit were mainly distributed in southern Jiangsu, northern Zhejiang and Shanghai
(Figure 4a; Figure 5a). In 2015, more counties went from surplus to deficit in the carbon
budget, and deficit gaps were increasing in many areas (Figure 4b; Figure 5b). From the
results of carbon budget changes, most counties showed a decreasing trend from 2000
to 2015, and the areas with a large decrease were located in Shanghai, southern Jiangsu and
northern Zhejiang; only a few counties showed an increasing trend, which were scattered
in northern Jiangsu, southern Zhejiang and northern Anhui (Figure 4c; Figure 5c).
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3.3. Driver Analysis

By using the carbon budget changes in the YRD region as the dependent variable and
taking climate change (average temperature, average annual precipitation, and annual solar
radiation per unit area) and human activities (proportion of cultivated land, forestland,
grassland, water area, built-up area, unused land; population density; and per capita
GDP) as the independent variables, the OLS model was first constructed. According to the
OLS results, the variance inflation coefficient (VIF) values of the proportion of cultivated
land and built-up area exceeded 7.5. To avoid multicollinearity, these two factors were
excluded, and the remaining nine factors were selected. The GWR tool in ArcGIS provides
standard error coefficients that measure the reliability of each coefficient estimate. These
estimates are more confident when the value of the standard error coefficient is relatively
small. Spatial distributions of standard error coefficients for each driver can be found in
the Supplementary File (Figure S2).

3.3.1. Global Analysis

Our study analyzed the impact of each driver on the carbon budget changes based
on the factor detection module in Geodetector. The magnitude of the q value represents
the influence of each driver. The results showed that changes in population density had
the greatest impact on the carbon budget from 2000 to 2015, followed by changes in GDP
per capita, the proportion of unused land, and average temperature per unit area, with q
values of 0.3317, 0.1202, 0.0998, and 0.0928, respectively (Figure 6). Population, GDP, and
unused land changes are factors in human activities, and temperature changes are factors
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in climate change. The q values of the remaining drivers were not high, but they could
still reflect the differences in the impact of different factors on the carbon budget changes.
Changes in the proportion of grassland and annual average precipitation had less effect on
the carbon budget.
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3.3.2. Local Analysis

The results of GWR analysis showed that there is obvious spatial heterogeneity in
the impact of various driving factors on carbon budget changes (Figure 7). Temperature
and carbon budget changes were negatively correlated in southern Anhui and southern
Jiangsu (around the Yangtze River) and were positively correlated in other regions. The
areas with positive precipitation coefficients were mainly located in the east and south
of Jiangsu, and the other areas in the YRD region had negative values. The areas with
negative solar radiation coefficients were mainly located along the eastern coast of the YRD
region, while most of the western regions were positive. The forest coefficient showed the
characteristics of a circle. The coefficient value centered on Shanghai was positive and
the largest, and the farther away from the center, the smaller the coefficient value which
gradually became negative. The influence of grassland on carbon budget changes also
had the characteristics of a circle, but it had become centered in eastern Zhejiang, and the
evolution trend in coefficient values was opposite to that of forest. The spatial distribution
of water area coefficients was similar to that of solar radiation, with negative values mainly
distributed in the eastern coastal zone of the study area and positive values in other regions.
The coefficients of unused land were high in the southeast and low in the northwest. Except
for some counties in the western part of Anhui, where the coefficients were negative, all
other regions were positive. Population density was negatively correlated with carbon
budget changes in the entire study area, and the minimum coefficient values were located
in the western fringe counties of Anhui and the junctions of Jiangsu, Zhejiang and Shanghai.
The per capita GDP coefficients were positive in a few counties in eastern Zhejiang and
negative in other areas; the minimum values were located in the middle of the YRD region.
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4. Discussion

In this paper, we combined the remote-sensing model and the IPCC inventory method
to explore the spatiotemporal pattern changes in the carbon budget in the YRD region of
China and analyzed the drivers leading to the changes. Different from previous studies,
this study focused on county-scale analysis and analyzed the comprehensive effects of
multiple drivers on carbon budgets. The issues we tried to discuss were threefold: (1) to
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determine the characteristics of the spatiotemporal pattern of the carbon budget in the YRD
region, (2) to analyze the driving effect of different factors on carbon budget changes, and
(3) to discuss the implications, limitations and future perspectives of this study.

4.1. Spatiotemporal Patterns of Carbon Budgets

Our study found that the increase in carbon sequestration in the YRD region from 2000
to 2015 was much smaller than the increase in carbon emissions, and the carbon budget
deficit areas were mainly located in Shanghai, southern Jiangsu, and northern Zhejiang,
which is consistent with the findings of Tao et al. [53]. The rapid urbanization process, the
increase in impervious surface area, and the large energy consumption in these areas were
the main reasons for this phenomenon. As the core city of the YRD region, Shanghai is the
growth pole of regional development. Many studies have shown that the socioeconomic
development of the YRD region has a “core-edge” structure [66–68]. We found that the
spatial pattern characteristics of carbon budgets in the YRD region are as follows: with
Shanghai as the center, it gradually changes from a carbon budget deficit to a surplus as the
distance increases, and the closer to Shanghai, the greater the deficit. This indicated that
the spatial pattern of the carbon budget in the YRD region also has a “core-edge” structural
feature. Although few studies have focused on the carbon budget in the YRD region, the
results of some carbon sequestration or carbon emission studies conducted in this region
can also support our speculation. For example, the research conducted by Sun et al. in
the YRD region showed that the ecosystem carbon storage gradually increased with the
distance from Shanghai [69]; Han et al. showed that the closer to Shanghai, the greater the
value of net carbon emissions (the difference between carbon sources and carbon sinks in
each pixel) [22]; Liu et al. demonstrated that the spatial network of the carbon emission
efficiency in the YRD region had a core–edge structure [70]. Similarly, the carbon emissions
of the Pearl River Delta, [71,72], Los Angeles, Moscow, Tokyo, New Delhi, and Sao Paulo
also have this spatial pattern [73]. According to the first law of geography, the correlation
between objects is related to the distance. Generally, the closer the distance is, the greater
the correlation between objects, and vice versa. The carbon budget is also applicable to
this law; that is, adjacent areas have similar pattern characteristics due to their similar
dominant functional positioning. Shanghai and its surrounding areas have a high degree
of geographical connection, and the dominant function is economic development. The
large amount of energy consumption and the limited area of natural ecosystems make the
region’s carbon budget deficit serious.

4.2. Drivers of Carbon Budget Changes

The factors influencing the carbon budget of terrestrial ecosystems vary in different
regions [74]. In this study, changes in population density, per capita GDP, and unused
land area accounted for the top three impacts on the carbon budget in the YRD region
(Figure 6). This shows that compared with climate change factors, human activities have a
greater impact on the carbon budget in the YRD region. Moreover, we found that the effects
of different drivers on the spatiotemporal pattern of the carbon budget were different
(Figure 7). The results indicated that changes in population density have a much larger
impact on the carbon budget than other drivers and were negatively correlated across all
regions. This is consistent with Tan et al. [37], who concluded that population growth has a
positive effect on China’s carbon emissions. For the core area, an increase in population
means an increase in food consumption, housing needs and transportation needs, resulting
in more energy consumption and carbon emissions [75]. For the peripheral area, the
primary industry practitioners continue to flow to the secondary and tertiary industries of
the core area or local [76]. The reduction in the labor force in the primary industry means
an enhancement of mechanization; the development of the secondary industry means
an increase in energy consumption. These will all increase carbon emissions. Our study
showed that an increase in per capita GDP in the YRD region leads to a reduction in the
carbon budget. On the one hand, industrial development needs to obtain a large quantity



Land 2022, 11, 1230 13 of 18

of raw materials, energy and resources from the region for the production process, resulting
in carbon emissions; on the other hand, the construction of factories occupies forestland,
grassland and wetlands, resulting in reduced carbon sequestration [77]. The increase in
population and GDP in the YRD region is also accompanied by the development of much
unused land into construction land, such as roads and high-rise buildings. These urban
infrastructures and high-rise buildings will increase the demand for energy-intensive raw
materials (such as steel, cement, etc.), thereby increasing carbon emissions [78]. In addition,
a large increase in impervious surfaces comes at the cost of encroaching on urban public
space, which will weaken the carbon sequestration function of natural ecosystems.

The relationship between water area and carbon budget is negatively correlated in the
east of the study area and positively correlated in the west, which is related to the imbalance
of economic development in the east and west of the YRD region. The eastern coastal areas
have a high degree of urbanization, and the construction and development of cities pay
more attention to the quality of life of residents. In recent years, many blue infrastructures,
such as lakes and wetlands, have been added to cities in the eastern region [79]. How-
ever, most of the increased water was converted from woodland, grassland or cultivated
land [80], thus leading to a decline in carbon sequestration and, in turn, a reduction in the
carbon budget. Due to the relatively backward economy in the western part of the study
area, the local government still regards economic development as the primary task. This
has resulted in many water areas being landfilled and developed for construction, reducing
the carbon budget. Forests are important carbon sinks in terrestrial ecosystems [34,81].
In this study, forest and carbon budgets were positively correlated in most areas with
significant spatial heterogeneity. The closer to the core area, the greater the impact of forest
change on the carbon budget. This shows that compared with peripheral cities, forests in
core areas play a more critical role in regulating the carbon budget. Grassland accounts
for a small proportion of land use types in the YRD region and has little impact on the
regional carbon budget as a whole. Grassland is mainly distributed in the southern area,
and a large area of grassland was converted into forest during the study period [49,82].
The cultivated land is mainly distributed in the northern area. Due to the Grain for Green
program, some cultivated land was converted into grassland. Therefore, the relationship
between grassland and carbon budget changes was negatively correlated in the southern
part of the YRD region and positively correlated in the northern part.

In terms of climate change factors, the overall impact of temperature on the carbon
budget is greater than that of solar radiation and precipitation (Figure 6), which is consistent
with the study by Zhang et al. [83]. We found that the effect of temperature on the carbon
budget is the opposite to that of precipitation in many regions. For example, temperature
and carbon budget are negatively correlated in southern Jiangsu, while precipitation and
carbon budget are positively correlated; temperature and carbon budget are positively
correlated in the northern area, Shanghai and most of Zhejiang Province, while precip-
itation and carbon budget are negatively correlated. Durand et al. demonstrated that
increasing solar radiation can promote photosynthesis in vegetation, thereby increasing
carbon sequestration [84]. It may also exacerbate the urban heat island effect and lead to an
increase in carbon emissions [85]. In our study, the effect of radiation on the carbon budget
showed an opposite situation in the east and the west. This may be due to the high degree
of urbanization in the eastern region. High-density buildings, asphalt pavements, and
cement pavements have larger heat absorption rates and smaller specific heat capacities,
which will further enhance the urban heat island effect under the influence of increased
radiation [86]. To mitigate the heat island effect, the eastern region consumes more energy
to cool down. The increase in carbon sequestration caused by increased radiation is not
enough to offset this part of carbon emissions. Due to the low degree of urbanization in
the western area, the impact of radiation on carbon sequestration is greater than that of
carbon emissions. Therefore, radiation in these regions is positively correlated with the
carbon budget.
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4.3. Implications, Limitations and Future Perspectives

Our study found that the spatial pattern of the carbon budget in the YRD region has a
“core-edge” structural feature. As the core of the YRD region, Shanghai and its surrounding
areas have high population density and rapid economic development and are under the
pressure of an unbalanced carbon budget. The peripheral area farther from the core area
assumed the main carbon sink function. Furthermore, we revealed that population density,
GDP per capita, and unused land change have the largest impacts on the carbon budget.
Low-carbon development not only requires effectively curbing carbon emissions from
the perspective of carbon sources but also requires increasing carbon sinks as much as
possible, thereby improving the level of carbon sequestration in the region. Based on
these study results, we make recommendations from three aspects: population, industrial
development, and land use. (1) Limit the continuous migration of the population from the
peripheral area to the core area. The increase in the urban population will inevitably bring
about a larger gathering of economic activities and an increase in built-up areas, which
in turn will result in more energy consumption and carbon emissions. Therefore, this is a
key factor in regulating the regional carbon budget. (2) Upgrade high-energy-consuming
industries in the core area and further promote regional economic growth and low-carbon
development through innovation; continue to carry out afforestation projects in peripheral
areas and develop ecological industries. Based on the accounting results of the carbon
budget, the government can formulate ecological compensation measures and improve the
carbon-trading market to compensate for the carbon sink functional area. In this way, on
the one hand, the counties in the peripheral area can use this part of the funds to improve
the salaries, employment opportunities, and medical and education levels of residents to
retain the local labor force and reduce the population pressure in the core area. On the other
hand, the counties of peripheral area can also invest more funds in ecological protection
projects. To support policy formulation, our research provided a list of counties with severe
reductions and counties with increases in carbon budgets in the YRD region from 2000
to 2015 (Supplementary Tables S1 and S2). (3) Implement a compact and three-dimensional
urban space development model in the core area to promote the intensive use of land,
control the excessive growth of artificial surfaces in the peripheral area and reduce the
occupation of natural open space.

Our results provide a scientific basis for local green and low-carbon development poli-
cies. However, this study still has some limitations that need to be improved. For example,
the carbon budget of terrestrial ecosystems is scale-dependent. This study assumed that
the YRD region is a closed area and did not consider its carbon cycle relationship with
the larger external terrestrial ecosystem. Due to data availability limitations, soil carbon
storage was not considered in this paper, which may lead to an underestimation of total
carbon sequestration. In addition, policy formulation also has an impact on the carbon
budget changes, but this study did not involve policy scenario simulation.

Despite the above limitations, the method used in this paper is highly maneuverable
and can quickly and effectively reveal the spatiotemporal patterns of the regional carbon
budget and its drivers. In the future, we plan to work on the following aspects to further
improve the current research. First, we will conduct sampling of vegetation and soil
quadrats to verify the accuracy of the CASA model and supplement the soil carbon storage
component. Second, we will combine global carbon dioxide satellite-monitoring data with
the IPCC inventory approach to improve the simulation accuracy of carbon emissions.
Third, we plan to search for available regional policy data and analyze the impacts of policy
factors on carbon budget changes.

5. Conclusions

This study explored the spatiotemporal pattern characteristics of the carbon budget
and analyzed its drivers in the YRD region. The results showed that both carbon sequestra-
tion and carbon emissions in the study area increased from 2000 to 2015, but the increase in
carbon emissions far exceeded the carbon sequestration. The study area changed from a
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carbon balance surplus in 2000 to a deficit in 2015. From the perspective of spatial patterns,
the carbon budget in the YRD region has a “core-edge” structural feature. The closer it is
to Shanghai, the core area, the more severe the carbon budget deficit; the farther from it,
the greater the carbon budget surplus. We found that population density, GDP per capita
and unused land change accounted for the top three impacts on the carbon budget in the
YRD region. Overall, human activity has a larger impact on the carbon budget than climate
change, and these impacts are mostly negative. Locally, the impact of each driver on the
carbon budget showed obvious spatial heterogeneity. The different natural environments
and socioeconomic development in different regions are the reasons for this spatial het-
erogeneity. Based on the results, we proposed limiting the continuous migration of the
population from the peripheral area to the core area, carrying out industrial restructuring in
the core area, and focusing on implementing ecological protection projects in the peripheral
area, implementing a compact and three-dimensional urban space development model in
the core area, and controlling the occupation of open natural spaces by built-up land in
peripheral areas. Our study can provide a scientific basis for low-carbon development in
the YRD region. Our methodology and findings can provide references for similar studies
in other urbanized regions around the world.
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